首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Populations of Atriplex triangularis were grown under laboratory conditions in a growth chamber and manipulated in an inland Ohio saline pond in order to examine the relative effects of salinity, nitrogen fertilization, and population density on growth, reproduction, and survival. For laboratory plants, nitrogen fertilization was the most important variable, with biomass and reproductive effort being greatest at the high nitrogen level. As salinity increased, biomass decreased only in plants not limited by nitrogen. Increasing density caused biomass per plant to decrease at both high and low nitrogen levels. For field plants, density was the most important variable, with biomass per plant and survival both decreasing as density increased. As density increased, size inequality among individuals increased but biomass per unit area and individual reproductive effort remained relatively constant. Nitrogen fertilization slightly enhanced survival, but did not affect biomass. It is suggested that density-dependent processes may be significant even in relatively harsh physical environments.  相似文献   

2.
BACKGROUND AND AIMS: Although mangroves have been extensively studied, little is known about their ecological wood anatomy. This investigation examined the potential use of vessel density as a proxy for soil water salinity in the mangrove species Rhizophora mucronata (Rhizophoraceae) from Kenya. METHODS: In a time-standardized approach, 50 wood discs from trees growing in six salinity categories were investigated. Vessel densities, and tangential and radial diameters of rainy and dry season wood of one distinct year, at three positions on the stem discs, were measured. A repeated-measures ANOVA with the prevailing salinity was performed. KEY RESULTS: Vessel density showed a significant increase with salinity, supporting its use as a prospective measure of salinity. Interestingly, the negative salinity response of the radial diameter of vessels was less striking, and tangential diameter was constant under the varying environmental conditions. An effect of age or growth rate or the presence of vessel dimorphism could be excluded as the cause of the absence of any ecological trend. CONCLUSIONS: The clear trend in vessel density with salinity, together with the absence of a growth rate and age effect, validates the potential of vessel density as an environmental proxy. However, it can only be used as a relative measure of salinity given that other environmental variables such as inundation frequency have an additional influence on vessel density. With view to a reliable, absolute proxy, future research should focus on finding wood anatomical features correlated exclusively with soil water salinity or inundation frequency. The plasticity in vessel density with differing salinity suggests a role in the establishment of a safe water transport system. To confirm this hypothesis, the role of inter-vessel pits, their relationship to the rather constant vessel diameter and the underlying physiology and cell biology needs to be examined.  相似文献   

3.
In meromictic lakes such as Lake Shira, horizontal inhomogeneity is small in comparison with vertical gradients. To determine the vertical distribution of temperature, salinity, and density of water in a deep zone of a Lake Shira, or other saline lakes, a one-dimensional (in vertical direction) mathematical model is presented. A special feature of this model is that it takes into account the process of ice formation. The model of ice formation is based on the one-phase Stefan problem with the linear temperature distribution in the solid phase. A convective mixed layer is formed under an ice cover due to salt extraction in the ice formation process. To obtain analytical solutions for the vertical distribution of temperature, salinity, and density of water, we use a scheme of vertical structure in the form of several layers. In spring, the ice melts as top and bottom. These processes are taken into account in the model. The calculated profiles of salinity and temperature of Shira Lake are in good agreement with field measurement data for each season. Additionally, we focussed on the redox zone, which is the zone in which the aerobic layers of a water column meet the anaerobic ones. Hyperactivity of plankton communities is observed in this zone in lakes with hydrogen sulphide monimolimnion, and Lake Shira is among them. The location of the redox zone in the lake, which is estimated from field measurements, coincides with a sharp increase in density (the pycnocline) during autumn and winter. During spring and summer, the redox zone is deeper than the pycnocline. The location of pycnocline calculated with the hydro physical model is in good agreement with field measurement data.  相似文献   

4.
In a brackish, temperate, 24-m-deep Lake Shira, the profiles of salinity, temperature, oxygen and sulfide concentrations were measured on a seasonal basis from 2002 to 2009. The lake was shown to be meromictic with autumnal overturn restricted to mixolimnion. The depth of mixolimnion and position of oxic–anoxic interface varied annually. The spring mixing processes contribute to the formation of mixolimnion in autumn. The exceptionally windy spring of 2007 caused the deepening of mixolimnion in the winter of 2008. The winter position of oxic–anoxic interface was affected by the position of lower boundary of mixolimnion in all winters. The salinity in the winter mixolimnion increased compared with the autumn because of freezing out of salts from the upper water layers meters during ice formation and their dissolution in water below. The profiles of salinity and temperature were simulated by the mathematical 1-D model of temperature and salinity conditions taking into account ice formation. The simulated profiles generally coincided with the measured ones. The coincidence implies that simplified one-dimensional model can be applied to roughly describe salinity and density profiles and mixing behavior of Lake Shira.  相似文献   

5.
Salinity exerts a severe detrimental effect on crop yields globally. Growth of plants in saline soils results in physiological stress, which disrupts the essential biochemical processes of respiration, photosynthesis, and transpiration. Understanding the molecular responses of plants exposed to salinity stress can inform future strategies to reduce agricultural losses due to salinity; however, it is imperative that signalling and functional response processes are connected to tailor these strategies. Previous research has revealed the important role that plant mitochondria play in the salinity response of plants. Review of this literature shows that 2 biochemical processes required for respiratory function are affected under salinity stress: the tricarboxylic acid cycle and the transport of metabolites across the inner mitochondrial membrane. However, the mechanisms by which components of these processes are affected or react to salinity stress are still far from understood. Here, we examine recent findings on the signal transduction pathways that lead to adaptive responses of plants to salinity and discuss how they can be involved in and be affected by modulation of the machinery of energy metabolism with attention to the role of the tricarboxylic acid cycle enzymes and mitochondrial membrane transporters in this process.  相似文献   

6.
每日盐度波动对真盐生植物盐地碱蓬种内相互作用沿盐度梯度的影响 土壤盐度的异质性是河口潮间带的一个突出的环境特征,影响植物的生长和盐沼中生物相互作用的转变。本研究旨在探究盐度梯度和盐度波动对一种真盐生植物的种内相互作用的交互影响。  相似文献   

7.
The effects of physical transport processes on the initiation of harmful algal blooms (HABs) in estuaries were investigated through both mathematical model analysis and numerical model experiments. This study highlights the influence of the flushing effect due to physical transport processes on the location of bloom initiation, which is comparable to or even more important than local processes. The theoretical analysis suggests that the differential flushing effect at different waterbodies due to complex geometry is one of the dominant factors causing inhomogeneous distribution of algal density during HAB initiation. The ratio of residence time to volume is one of the key variables that determine the differential timing of HAB occurrence in estuary-subestuary systems with multiple interconnected waterbodies. As a result, a HAB tends to be observed first in those locations with relatively long residence time and small waterbodies, such as tributaries or areas with large eddies. Multiple unconnected originating locations can co-exist within an estuary.Two three-dimensional model experiments with realistic forcings were conducted to demonstrate the flushing effect on annual Cochlodinium polykrikoides bloom in the lower James River. The results show that while the environmental conditions that affect local processes, such as salinity and temperature, are important in determining the originating locations of HABs, the differential flushing effect is the dominant factor driving the spatial difference in the density of C. polykrikoides in this region during the bloom initiation. This explains why the occurrence of the first bloom in this region is frequently observed in the Lafayette River, a relatively small waterbody with long residence time. Because of the relatively low growth rate of C. polykrikoides and because of the high water-exchange between the mainstem and tributaries of the James River, initial cyst distribution is suggested to have a relatively small impact on originating locations of the bloom compared to flushing effect and salinity, and the HAB originating locations do not have to be in the waterbody with abundant cysts.  相似文献   

8.
The physical and chemical processes operating in the River Tamar Estuary (south-west England) have been comprehensively described and reported in the literature. There are well-established gradients of salinity, suspended sediment and oxygen which vary both on short-term (tidal) and long-term (seasonal) cycles. Freshwater runoff, the main factor determining salinity distribution, is also the cause of the high variability in suspended sediment concentrations. The biological processes are less well studied and information on the link between the benthic and pelagic systems is particularly lacking. Mysids, through their role as detritivores and as a major component in the diet of some fish, provide this link. Of the four species of mysid distributed longitudinally in the Tamar Estuary, the most abundant isMesopodopsis slabberi which occurs between 5 and 25 km from the estuary head. Observations over an annual cycle have shown marked seasonal changes in both abundance and distribution in the estuary. During winter and spring, densities remained generally low (<50 m−3) but, as water temperatures increased, the density increased and reachedca 1200 individuals m−3 in July. There was a shift in the longitudinal distribution ofM. slabberi in response to changes in the position of the salinity gradient. Adults comprised the majority of the population in salinities less than 10‰ whereas juveniles and immature animals were distributed over a wider area than the adults and occurred in water of higher salinity than the main adult distribution.M. slabberi appears to utilise the two-layered estuarine circulation to maintain its position in the estuary.  相似文献   

9.
Hydrography and exchange processes in a tropical estuary, the Gulf of Nicoya, Costa Rica, are described from data collected in 1979 and 1980. The measurements and analyses were made in both the dry season and wet season and include temperature, salinity, and density at twenty locations in the gulf and currents (over a semi-diurnal tidal cycle) at five locations. These new results enlarge on the early study by Peterson (1958). Circulation in the lower gulf shows a marked east-west asymmetry due to the predominant runoff along its eastern shore from Rio Barranca and Tarcoles. The freshened surface water from the upper gulf combines with the runoff from these rivers and flows southward along the eastern side of the lower gulf. This flow is compensated by a northward flow of more saline water on the western side at all depths and on the eastern side along the bottom. The boundary between the southward and northward surface flow is marked by a strong salinity front in the rainy season. There is a rapid increase in tidal energy density toward the shoaling northern reaches of the lower gulf, between San Lucas Island and Puntarenas Peninsula. Enhanced mixing must accompany this increase, and direct measurements in the constriction between San Lucas and Puntaneras show that tidal mixing is dominant in transporting salt into the upper gulf against the freshwater runoff.  相似文献   

10.
In order to test the feasibility of using native halophytes to reclaim brinecontaminated soil, seedlings of five inland halophytes, Atriplexprostrata, Hordeum jubatum, Salicornia europaea, Spergularia marina, and Suaeda calceoliformis, were planted at threedensities on a site near Athens, Ohio which had been contaminated by oilwell brine water. Ten replicates of each density treatment weretransplanted on two distinct areas of high and low salinity in May of 1993. Seedling survivorship, soil moisture, and soil salinity were monitored weeklythroughout the growing season. Biomass production and ion uptake weredetermined for each plant surviving until harvest. Soil analyses wereperformed prior to planting and after harvest to determine overall changesin soil chemistry and to determine the amount of Na+ reductionfrom the soil due to leaching by precipitation during the course of theexperiment. Survival was determined to be density independent for all ofthe species with the exception of S. marina where survival wasfacilitated at high density. Increased salinity negatively affected the survivaland yield of A. prostrata. The remaining species had greater survivalunder high salinity conditions, and density appeared to be the key factorinfluencing yield. Sodium and chloride ions were accumulated in planttissues in much greater amounts than K+, Ca+2or Mg+2. Salicornia europaea plants grown in high densityon the high salinity site accumulated the highest amount of Na+ andH. jubatum grown in low density on the high salinity site accumulatedthe lowest amount of Na+. Soil salinities measured directly from theroot zone were significantly reduced (p<0.05) at the end of thegrowing season when compared to their controls. Atriplex prostrata(high density/low salinity) plots produced the greatest reduction in soilsalinity (15.8%) and S. marina (high density/high salinity) plots hadthe least reduction (1.2%).  相似文献   

11.
The purpose of this study was to investigate the xylem anatomy and hydraulic characteristics of the mangrove Laguncularia racemosa grown under contrasting salinities. The study addressed the hypothesis that, at high salinity, water transport capacity may decrease in association with higher water use efficiency. Plants were grown in media to which 0, 15 and 30 NaCl was added. Vessel density and diameter were determined in transverse sections of stem and midrib leaves in terminal shoots, and hydraulic parameters were measured. In stems, the vessel density increased with salinity, while the anatomical diameter (d(a)) and hydraulic diameter (d(h)) declined; in leaves, these parameters remained unchanged with salinity. Huber value and hydraulic and specific conductivities decreased with salinity. Leaf blade resistance increased with salinity and represented the largest fraction of twig resistance. Xylem anatomy and leaf tissue of L. racemosa appeared to be modulated by salinity, which led to a coordinated decline in hydraulic properties as salinity increased. Therefore, these structural changes would reflect functional water use characteristics of leaves under salinity.  相似文献   

12.
Physical processes determine to great extent the habitat of hydrobionts, as well as the transfer and sedimentation of substances, the intensity of pollution and rate of natural purification of water bodies. Mathematical models of different levels of complexity, developed to investigate hydrophysical processes in lakes, are discussed in this paper. The numerical algorithms and computer programmes described can be used to determine the influence of the morphometric characteristics and weather on the temperature regime of Lake Shira (Khakasia, Siberia) and the pattern of the wind currents. Examples of calculating the temperature regime in the context of a one- dimensional model and of calculating the parameters of wind currents in the water body of a simple geometrical form are given.The study suggests that the pattern of wind currents in Lake Shira is significantly affected by the density stratification, which depends not only on temperature but also on salinity. In order to construct a realistic pattern of currents a 3-D computer model of Lake Shira must be developed and used to estimate the validity of the two-dimensional and one-dimensional models. The present research can be further developed by extending the obtained algorithms to three-dimensional problems, taking into account the heat exchange, salinity and the geometry (bathymetric contours) of the water body. Calculations can be made for Lake Shira and the obtained data used in biophysical models.  相似文献   

13.
14.
Soil salinity acts as a critical environmental filter on microbial communities, but the consequences for microbial diversity and biogeochemical processes are poorly understood. Here, we characterized soil bacterial communities and microbial functional genes in a coastal estuarine wetland ecosystem across a gradient (~5 km) ranging from oligohaline to hypersaline habitats by applying the PCR-amplified 16S rRNA (rRNA) genes sequencing and microarray-based GeoChip 5.0 respectively. Results showed that saline soils in marine intertidal and supratidal zone exhibited higher bacterial richness and Faith's phylogenetic diversity than that in the freshwater-affected habitats. The relative abundance of taxa assigned to Gammaproteobacteria, Bacteroidetes and Firmicutes was higher with increasing salinity, while those affiliated with Acidobacteria, Chloroflexi and Cyanobacteria were more prevalent in wetland soils with low salinity. The phylogenetic inferences demonstrated the deterministic role of salinity filtering on the bacterial community assembly processes. The abundance of most functional genes involved in carbon degradation and nitrogen cycling correlated negatively with salinity, except for the hzo gene, suggesting a critical role of the anammox process in tidal affected zones. Overall, the salinity filtering effect shapes the soil bacterial community composition, and soil salinity act as a critical inhibitor in the soil biogeochemical processes in estuary ecosystems.  相似文献   

15.
几种生态因子对曼氏无针乌贼野生和养殖卵孵化的影响   总被引:5,自引:0,他引:5  
比较了曼氏无针乌贼野生卵和养殖卵的区别,研究了不同温度、盐度、孵化密度、卵类型对野生和养殖曼氏无针乌贼孵化率和孵化时间的影响.结果表明:野生卵的质量较佳,养殖卵则以黑色小卵的质量为佳.野生卵的最佳孵化温度为27 ℃~29 ℃,最佳孵化盐度为24.5~32.0;孵化密度对野生卵孵化率的影响不显著.养殖卵在19 ℃~29 ℃下的孵化率为6.7%~30.0%,高于33 ℃和低于17 ℃均不能孵化;在盐度19.5~32.0范围内孵化率为18.3%~25.0%,盐度低于17.0不能孵化;充气情况下,孵化密度对养殖卵的孵化率影响不显著,而不充气情况下影响显著.  相似文献   

16.
高盐废水来源广泛,在利用生物脱氮法处理高盐含氮废水时,盐分会对生物脱氮产生抑制作用.硝化反应是生物脱氮工艺中的关键过程,研究盐分对硝化反应的影响机理具有重要意义.本文概述了盐分对废水生物脱氮过程中硝化反应影响的研究进展,总结了盐胁迫对好氧氨氧化过程、亚硝酸盐氧化过程中硝化效率和反应特性的影响规律,并分析了盐分对硝化微生物细胞形态、生物絮体结构和胞外聚合物特性变化以及菌群结构的影响,系统阐述了盐胁迫下的硝化反应机理,为高盐分高铵氮废水生物脱氮工艺设计提供理论指导.
  相似文献   

17.
Microbiomes play a critical role in promoting a range of host functions. Microbiome function, in turn, is dependent on its community composition. Yet, how microbiome taxa are assembled from their regional species pool remains unclear. Many possible drivers have been hypothesized, including deterministic processes of competition, stochastic processes of colonization and migration, and physiological ‘host‐effect’ habitat filters. The contribution of each to assembly in nascent or perturbed microbiomes is important for understanding host–microbe interactions and host health. In this study, we characterized the bacterial communities in a euryhaline fish and the surrounding tank water during salinity acclimation. To assess the relative influence of stochastic versus deterministic processes in fish microbiome assembly, we manipulated the bacterial species pool around each fish by changing the salinity of aquarium water. Our results show a complete and repeatable turnover of dominant bacterial taxa in the microbiomes from individuals of the same species after acclimation to the same salinity. We show that changes in fish microbiomes are not correlated with corresponding changes to abundant taxa in tank water communities and that the dominant taxa in fish microbiomes are rare in the aquatic surroundings, and vice versa. Our results suggest that bacterial taxa best able to compete within the unique host environment at a given salinity appropriate the most niche space, independent of their relative abundance in tank water communities. In this experiment, deterministic processes appear to drive fish microbiome assembly, with little evidence for stochastic colonization.  相似文献   

18.
In estuarine sediments, the microbially mediated processes of methylation, demethylation, and volatilization determine the state and overall toxicity of mercury pollutants. The effects of redox potential (Eh) and salinity on the above microbial processes were investigated in reactors constructed to allow for continuous monitoring and adjustment of the pH (6.8) and Eh of freshly collected estuarine sediments. For measurements of methylation and demethylation activity, sediment slurries adjusted to appropriate salinity were spiked with HgCl2 or CH3HgCl, respectively, and were incubated in the reactors. Methylmercury was measured by gas chromatography. Volatilized elemental mercury (Hg0) was trapped and determined by cold vapor atomic absorption spectrometry. Volatilization of Hg0 and CH3HgCH3 were found to be minimal. Methylation of Hg2+ was favored at Eh-220 mV as compared to +110 mV. At -220 mV, high salinity (2.5%) inhibited methylation, and low salinity (0.4%) favored it. At +110 mV, the salinity effect was less pronounced. Demethylation of CH3HgCl was favored at +110 mV regardless of the salinity level. Low redox potential under low salinity conditions inhibited demethylation, but high salinity reversed this inhibition. These findings are helpful for interpreting and predicting the behavior of mercury pollutants in estuarine sediments.  相似文献   

19.
浙江南部近海小黄鱼资源分布及其与环境因子的关系   总被引:3,自引:0,他引:3  
根据2015—2016年浙江南部近海4个航次的底拖网资源调查数据,利用广义可加模型分析了调查期内小黄鱼资源的分布特征及其与环境因子的关系.结果表明:浙江南部近海的小黄鱼资源主要集中在鱼山渔场,夏季为小黄鱼资源的高产期,站点平均资源密度达到500.74 kg·h-1·km-2.不同季节影响小黄鱼资源密度及其分布的环境因子各不相同.其中,环境因子对秋季小黄鱼资源密度的影响效果并不显著.春季,小黄鱼主要分布于水深较浅的高盐水域;夏季,水温和盐度均与小黄鱼资源密度呈负相关关系,小黄鱼主要分布于中温高盐的鱼山海域;冬季,水温与资源密度呈正相关,小黄鱼栖息于水温适宜的外侧站点水域.总体上,小黄鱼资源的分布特征符合其洄游习性,但个别环境因子与资源密度的关系难以解释,仍需进一步研究.研究结果有助于了解浙江南部近海小黄鱼群体的生活习性,以及对小黄鱼资源的养护和管理.  相似文献   

20.
白洋淀蝗区东亚飞蝗的分布与土壤的关系研究   总被引:9,自引:2,他引:7  
从土壤的质地、含水量、pH值和含盐量等方面 ,研究了白洋淀东亚飞蝗Locustamigratoriamanilensis(Meyen)蝗区的土壤状况 ;并结合实地考察的样点处蝗虫密度情况 ,研究了蝗虫不同密度区土壤之间的差异。结果表明 ,研究区蝗虫密度在 3 0头 m2 以上的地区 ,土壤质地为粉砂壤土 ,土壤pH值为7 2 6~ 8 1 2 ,土壤含盐量为 0 0 67%~ 0 2 0 7%。粉砂壤土中 ,砂粒含量较多、粗粉粒含量较少的地方 ,是东亚飞蝗比较理想的生存与活动场所 ;土壤含水量偏高、呈弱碱性的地方 ,适于东亚飞蝗的生存和活动。在研究区 ,土壤含盐量差异对东亚飞蝗的密度分布没有明显的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号