首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have previously demonstrated the presence of a cyclic GMP (cGMP)-dependent calcium-activated inward current in vascular smooth-muscle cells, and suggested this to be of importance in synchronizing smooth-muscle contraction. Here we demonstrate the characteristics of this current. Using conventional patch-clamp technique, whole-cell currents were evoked in freshly isolated smooth-muscle cells from rat mesenteric resistance arteries by elevation of intracellular calcium with either 10 mM caffeine, 1 microM BAY K8644, 0.4 microM ionomycin, or by high calcium concentration (900 nM) in the pipette solution. The current was found to be a calcium-activated chloride current with an absolute requirement for cyclic GMP (EC50 6.4 microM). The current could be activated by the constitutively active subunit of PKG. Current activation was blocked by the protein kinase G antagonist Rp-8-Br-PET-cGMP or with a peptide inhibitor of PKG, or with the nonhydrolysable ATP analogue AMP-PNP. Under biionic conditions, the anion permeability sequence of the channel was SCN- > Br- > I- > Cl- > acetate > F- > aspartate, but the conductance sequence was I- > Br- > Cl- > acetate > F- > aspartate = SCN-. The current had no voltage or time dependence. It was inhibited by nickel and zinc ions in the micromolar range, but was unaffected by cobalt and had a low sensitivity to inhibition by the chloride channel blockers niflumic acid, DIDS, and IAA-94. The properties of this current in mesenteric artery smooth-muscle cells differed from those of the calcium-activated chloride current in pulmonary myocytes, which was cGMP-independent, exhibited a high sensitivity to inhibition by niflumic acid, was unaffected by zinc ions, and showed outward current rectification as has previously been reported for this current. Under conditions of high calcium in the patch-pipette solution, a current similar to the latter could be identified also in the mesenteric artery smooth-muscle cells. We conclude that smooth-muscle cells from rat mesenteric resistance arteries have a novel cGMP-dependent calcium-activated chloride current, which is activated by intracellular calcium release and which has characteristics distinct from other calcium-activated chloride currents.  相似文献   

2.
In the present study we used whole-cell patch clamp recordings to investigate swelling-activated Cl-currents (ICl-swell) in M-1 mouse cortical collecting duct (CCD) cells. Hypotonic cell swelling reversibly increased the whole-cell Cl- conductance by about 30-fold. The I-V relationship was outwardly-rectifying and ICl-swell displayed a characteristic voltage-dependence with relatively fast inactivation upon large depolarizing and slow activation upon hyperpolarizing voltage steps. Reversal potential measurements revealed a selectivity sequence SCN- > I- > Br- > Cl- > > gluconate. ICl-swell was inhibited by tamoxifen, NPPB (5-nitro-2(3-phenylpropylamino)-benzoate), DIDS (4,4'-diisothiocyanostilbene-2,2'-disulphonic acid), flufenamic acid, niflumic acid, and glibenclamide, in descending order of potency. Extracellular cAMP had no significant effect. ICl-swell was Ca2+ independent, but current activation depended on the presence of a high- energy gamma-phosphate group from intracellular ATP or ATP gamma S. Moreover, it depended on the presence of intracellular Mg2+ and was inhibited by staurosporine, which indicates that a phosphorylation step is involved in channel activation. Increasing the cytosolic Ca2+ concentration by using ionomycin stimulated Cl- currents with a voltage dependence different from that of ICl-swell. Analysis of whole-cell current records during early onset of ICl-swell and during final recovery revealed discontinuous step-like changes of the whole-cell current level which were not observed under nonswelling conditions. A single-channel I-V curve constructed using the smallest resolvable current transitions detected at various holding potentials and revealed a slope conductance of 55, 15, and 8 pS at +120, 0, and -120 mV, respectively. The larger current steps observed in these recordings had about 2, 3, or 4 times the size of the putative single-channel current amplitude, suggesting a coordinated gating of several individual channels or channel subunits. In conclusion we have functionally characterized ICl-swell in M-1 CCD cells and have identified the underlying single channels in whole-cell current recordings.  相似文献   

3.
M Ottolia  L Toro 《Biophysical journal》1994,67(6):2272-2279
Large conductance calcium-activated K+ (KCa) channels are rapidly activated by niflumic acid dose-dependently and reversibly. External niflumic acid was about 5 times more potent than internal niflumic acid, and its action was characterized by an increase in the channel affinity for [Ca2+], a parallel left shift of the voltage-activation curve, and a decrease of the channel long-closed states. Niflumic acid applied from the external side did not interfere with channel block by charybdotoxin, suggesting that its site of action is not at or near the charybdotoxin receptor. Accordingly, partial tetraethylammonium blockade did not interfere with channel activation by niflumic acid. Flufenamic acid and mefenamic acid also stimulated KCa channel activity and, as niflumic acid, they were more potent from the external than from the internal side. Fenamates applied from the external side displayed the following potency sequence: flufenamic acid approximately niflumic acid >> mefenamic acid. These results indicate that KCa channels possess at least one fenamatereceptor whose occupancy leads to channel opening.  相似文献   

4.
ATP is an efficacious secretagogue for mucin and chloride in the epithelial cell line HT29-Cl.16E. Mucin release has been measured as [3H]glucosamine-labeled product in extracellular medium and as single-cell membrane capacitance increases indicative of exocytosis-related increases in membrane area. The calcium-activated chloride channel blocker niflumic acid, also reported to modulate secretion, was used to probe for divergence in the purinergic signaling of mucin exocytosis and channel activation. With the use of whole cell patch clamping, ATP stimulated a transient capacitance increase of 15 +/- 4%. Inclusion of niflumic acid significantly reduced the ATP-stimulated capacitance change to 3 +/- 1%, although normalized peak currents were not significantly different. Ratiometric imaging was used to assess intracellular calcium (Cai2+) dynamics during stimulation. In the presence of niflumic acid, the ATP-stimulated peak change in Cai2+ was unaffected, but the initial response and overall time to Cai2+ peak were significantly affected. Excluding external calcium before ATP stimulation or including the capacitative calcium entry blocker LaCl3 during stimulation muted the initial calcium transient similar to that observed with niflumic acid and significantly reduced peak capacitance change, suggesting that a substantial portion of the ATP-stimulated mucin exocytosis in HT29-Cl.16E depends on a rapid, brief calcium influx through the plasma membrane. Niflumic acid interferes with this influx independent of a chloride channel blockade effect.  相似文献   

5.
The non-steroidal anti-inflammatory drugs, flufenamic acid, mefenamic acid and niflumic acid, block Ca2(+)-activated non-selective cation channels in inside-out patches from the basolateral membrane of rat exocrine pancreatic cells. Half-maximal inhibition was about 10 microM for flufenamic acid and mefenamic acid, whereas niflumic acid was less potent (IC50 about 50 microM). Indomethacin, aspirin, diltiazem and ibuprofen (100 microM) had not effect. It is concluded that the inhibitory effect of flufenamate, mefenamate and niflumate is dependent on the specific structure, consisting of two phenyl rings linked by an amino bridge.  相似文献   

6.
We investigated regulation by extracellular ATP of channels important for volume regulation of rat hippocampal neurons. Cultures made from fetuses at the eighteenth gestational day were predominantly neuronal after 10-20 days in vitro, as indicated by immunostaining for neuron specific enolase. Neurons recorded with whole-cell patch clamp showed inward currents when membrane voltages were driven to values greater than -50 mV. Chloride conductance increased with 10 microM-100 microM extracellular ATP in a dose-dependent fashion. Similarly, an increase in taurine conductance was observed with 50 microM ATP. These currents were inhibited by the anion channel and purinergic receptor antagonists niflumic acid and suramin, respectively. The chloride conductance response to 10 microM ATP was increased over eight-fold in hypoosmotic medium (250 mOsm); however, chloride conductance in 0 mM ATP was not altered by this osmolality. Thus anion and osmolyte conducting channels activated via purinergic receptors may mediate volume regulation of hippocampal neurons.  相似文献   

7.
Electrophysiological methods were used to assess the effect of chloride-channel blockers on the macroscopic and microscopic currents of mouse connexin50 (Cx50) and rat connexin46 (Cx46) hemichannels expressed in Xenopus laevis oocytes. Oocytes were voltage-clamped at -50 mV and hemichannel currents (ICx50 or ICx46) were activated by lowering the extracellular Ca2+ concentration ([Ca2+]o) from 5 mM to 10 microM. Ion-replacement experiments suggested that ICx50 is carried primarily (>95%) by monovalent cations (PK : PNa : PCl = 1.0 : 0.74 : 0.05). ICx50 was inhibited by 18beta-glycyrrhetinic acid (apparent Ki, 2 microM), gadolinium (3 microM), flufenamic acid (3 microM), niflumic acid (11 microM), NPPB (15 microM), diphenyl-2-carboxylate (26 microM), and octanol (177 microM). With the exception of octanol, niflumic acid, and diphenyl-2-carboxylate, the above agents also inhibited ICx46. Anthracene-9-carboxylate, furosemide, DIDS, SITS, IAA-94, and tamoxifen had no inhibitory effect on either ICx50 or ICx46. The kinetics of ICx50 inhibition were not altered at widely different [Ca2+]o (10-500 microM), suggesting that drug-hemichannel interaction does not involve the Ca2+ binding site. In excised membrane patches, application of flufenamic acid or octanol to the extracellular surface of Cx50 hemichannels reduced single channel-open probability without altering the single-channel conductance, but application to the cytoplasmic surface had no effect on the channels. We conclude that some chloride-channel blockers inhibit lens-connexin hemichannels by acting on a site accessible only from the extracellular space, and that drug-hemichannel interaction involves a high-affinity site other than the Ca2+ binding site.  相似文献   

8.
We studied monovalent permeability of Ca2+ release-activated Ca2+ channels (ICRAC) in Jurkat T lymphocytes following depletion of calcium stores. When external free Ca2+ ([Ca2+]o) was reduced to micromolar levels in the absence of Mg2+, the inward current transiently decreased and then increased approximately sixfold, accompanied by visibly enhanced current noise. The monovalent currents showed a characteristically slow deactivation (tau = 3.8 and 21.6 s). The extent of Na+ current deactivation correlated with the instantaneous Ca2+ current upon readdition of [Ca2+]o. No conductance increase was seen when [Ca2+]o was reduced before activation of ICRAC. With Na+ outside and Cs+ inside, the current rectified inwardly without apparent reversal below 40 mV. The sequence of conductance determined from the inward current at -80 mV was Na+ > Li+ = K+ > Rb+ >> Cs+. Unitary inward conductance of the Na+ current was 2.6 pS, estimated from the ratios delta sigma2/delta Imean at different voltages. External Ca2+ blocked the Na+ current reversibly with an IC50 value of 4 microM. Na+ currents were also blocked by 3 mM Mg2+ or 10 microM La3+. We conclude that ICRAC channels become permeable to monovalent cations at low levels of external divalent ions. In contrast to voltage-activated Ca2+ channels, the monovalent conductance is highly selective for Na+ over Cs+. Na+ currents through ICRAC channels provide a means to study channel characteristics in an amplified current model.  相似文献   

9.
Properties of the calcium-activated chloride current in heart   总被引:12,自引:0,他引:12       下载免费PDF全文
We used the whole cell patch clamp technique to study transient outward currents of single rabbit atrial cells. A large transient current, IA, was blocked by 4-aminopyridine (4AP) and/or by depolarized holding potentials. After block of IA, a smaller transient current remained. It was completely blocked by nisoldipine, cadmium, ryanodine, or caffeine, which indicates that all of the 4AP-resistant current is activated by the calcium transient that causes contraction. Neither calcium-activated potassium current nor calcium-activated nonspecific cation current appeared to contribute to the 4AP-resistant transient current. The transient current disappeared when ECl was made equal to the pulse potential; it was present in potassium-free internal and external solutions. It was blocked by the anion transport blockers SITS and DIDS, and the reversal potential of instantaneous current-voltage relations varied with extracellular chloride as predicted for a chloride-selective conductance. We concluded that the 4AP-resistant transient outward current of atrial cells is produced by a calcium-activated chloride current like the current ICl(Ca) of ventricular cells (1991. Circulation Research. 68:424-437). ICl(Ca) in atrial cells demonstrated outward rectification, even when intracellular chloride concentration was higher than extracellular. When ICa was inactivated or allowed to recover from inactivation, amplitudes of ICl(Ca) and ICa were closely correlated. The results were consistent with the view that ICl(Ca) does not undergo independent inactivation. Tentatively, we propose that ICl(Ca) is transient because it is activated by an intracellular calcium transient. Lowering extracellular sodium increased the peak outward transient current. The current was insensitive to the choice of sodium substitute. Because a recently identified time-independent, adrenergically activated chloride current in heart is reduced in low sodium, these data suggest that the two chloride currents are produced by different populations of channels.  相似文献   

10.
Bradykinin (BK) is an inflammatory mediator that can cause bronchoconstriction. In this study, we investigated the membrane currents induced by BK in cultured human airway smooth muscle (ASM) cells. Depolarization of the cells induced outward currents, which were inhibited by tetraethylammonium (TEA) in a concentration-dependent manner with an IC50 of 0.33 microM. The currents were increased by elevating intracellular free Ca2+ concentration, suggesting they are calcium-activated potassium channels [I(K(Ca))]. Preexposure to inhibitor of I(K(Ca)) of large conductance (BKCa), iberiotoxin, and small conductance (SKCa), apamin, inhibited the increase of outward current induced by BK. The relative contribution of BKCa was greatest in early passage cells. Both nickel and SKF-96365 (10 microM) inhibited the increase of the I(K(Ca)) induced by BK; however, the l-type Ca2+ channel blocker, nifedipine, had no effect. Activation of the BK-induced current was inhibited by heparin, indicating dependence on intact inositol 1,4,5-triphosphate (IP3)-sensitive intracellular Ca2+ stores. BK also increased inositol phosphate accumulation and induced a transient Ca2+-activated chloride current (CACC) and a sustained nonselective cation current (I(CAT)). In summary, BK activates BKCa, SKCa, CACC, and I(CAT) via IP3-sensitive stores in human ASM.  相似文献   

11.
The rodent vomeronasal organ plays a crucial role in several social behaviors. Detection of pheromones or other emitted signaling molecules occurs in the dendritic microvilli of vomeronasal sensory neurons, where the binding of molecules to vomeronasal receptors leads to the influx of sodium and calcium ions mainly through the transient receptor potential canonical 2 (TRPC2) channel. To investigate the physiological role played by the increase in intracellular calcium concentration in the apical region of these neurons, we produced localized, rapid, and reproducible increases in calcium concentration with flash photolysis of caged calcium and measured calcium-activated currents with the whole cell voltage-clamp technique. On average, a large inward calcium-activated current of -261 pA was measured at -50 mV, rising with a time constant of 13 ms. Ion substitution experiments showed that this current is anion selective. Moreover, the chloride channel blockers niflumic acid and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid partially inhibited the calcium-activated current. These results directly demonstrate that a large chloride current can be activated by calcium in the apical region of mouse vomeronasal sensory neurons. Furthermore, we showed by immunohistochemistry that the calcium-activated chloride channels TMEM16A/anoctamin1 and TMEM16B/anoctamin2 are present in the apical layer of the vomeronasal epithelium, where they largely colocalize with the TRPC2 transduction channel. Immunocytochemistry on isolated vomeronasal sensory neurons showed that TMEM16A and TMEM16B coexpress in the neuronal microvilli. Therefore, we conclude that microvilli of mouse vomeronasal sensory neurons have a high density of calcium-activated chloride channels that may play an important role in vomeronasal transduction.  相似文献   

12.
We have used the whole-cell patch clamp recording technique to characterize a swelling-activated chloride current in guinea pig atrial and ventricular myocytes and to compare the electrophysiological and pharmacological properties of this current with the isoprenaline- activated chloride current in the same cell types. Osmotic swelling of guinea pig cardiac myocytes caused activation of an outwardly rectifying, anion-selective current with a conductance and permeability sequence of I- approximately NO3- > Br- > Cl- > Asp-. This current was inhibited by tamoxifen, 4,4''-diisothiocyano-stilbene-2,2''-disulphonate and anthracene-9-carboxylic acid, in decreasing order of potency. The isoprenaline-activated anion current, like the swelling-activated current, had a higher permeability to I- relative to Cl-, but it had a markedly reduced conductance for I- compared to Cl-. The isoprenaline- activated current was insensitive to inhibition by tamoxifen, 4,4''- diisothiocyanostilbene-2,2''-disulphonate and anthracene-9-carboxylic acid. The swelling-activated current could be elicited in > 90% atrial myocytes studied but only 34% ventricular myocytes. Conversely, the isoprenaline-activated current was elicited in < 10% atrial myocytes and > 90% ventricular myocytes. In those ventricular myocytes where it was possible to elicit swelling-activated and isoprenaline-activated currents simultaneously, the currents retained the same distinguishing characteristics as when they were elicited in isolation. Thus, while guinea pig atrial cells appear to preferentially express swelling- activated chloride channels and guinea pig ventricular myocytes preferentially express isoprenaline-activated chloride channels, the presence of these two channel types are not necessarily mutually exclusive. This raises the possibility that there may be coordinated regulation of the expression of different Cl- channels within the heart.  相似文献   

13.
In whole-cell patch clamp recordings from chick dorsal root ganglion neurons, removal of intracellular K+ resulted in the appearance of a large, voltage-dependent inward tail current (Icat). Icat was not Ca2+ dependent and was not blocked by Cd2+, but was blocked by Ba2+. The reversal potential for Icat shifted with the Nernst potential for [Na+]. The channel responsible for Icat had a cation permeability sequence of Na+ >> Li+ >> TMA+ > NMG+ (PX/PNa = 1:0.33:0.1:0) and was impermeable to Cl-. Addition of high intracellular concentrations of K+, Cs+, or Rb+ prevented the occurrence of Icat. Inhibition of Icat by intracellular K+ was voltage dependent, with an IC50 that ranged from 3.0-8.9 mM at membrane potentials between -50 and -110 mV. This voltage- dependent shift in IC50 (e-fold per 52 mV) is consistent with a single cation binding site approximately 50% of the distance into the membrane field. Icat displayed anomolous mole fraction behavior with respect to Na+ and K+; Icat was inhibited by 5 mM extracellular K+ in the presence of 160 mM Na+ and potentiated by equimolar substitution of 80 mM K+ for Na+. The percent inhibition produced by both extracellular and intracellular K+ at 5 mM was identical. Reversal potential measurements revealed that K+ was 65-105 times more permeant than Na+ through the Icat channel. Icat exhibited the same voltage and time dependence of inactivation, the same voltage dependence of activation, and the same macroscopic conductance as the delayed rectifier K+ current in these neurons. We conclude that Icat is a Na+ current that passes through a delayed rectifier K+ channel when intracellular K+ is reduced to below 30 mM. At intracellular K+ concentrations between 1 and 30 mM, PK/PNa remained constant while the conductance at -50 mV varied from 80 to 0% of maximum. These data suggest that the high selectivity of these channels for K+ over Na+ is due to the inability of Na+ to compete with K+ for an intracellular binding site, rather than a barrier that excludes Na+ from entry into the channel or a barrier such as a selectivity filter that prevents Na+ ions from passing through the channel.  相似文献   

14.
Single calcium-activated potassium channel currents were recorded in intact and excised membrane patches from cultured human macrophages. Channel conductance was 240 pS in symmetrical 145 mM K+ and 130 pS in 5 mM external K+. Lower conductance current fluctuations (40% of the larger channels) with the same reversal potential as the higher conductance channels were noted in some patches. Ion substitution experiments indicated that the channel is permeable to potassium and relatively impermeable to sodium. The frequency of channel opening increased with depolarization and intracellular calcium concentration. At 10(-7) M (Ca++)i, channel activity was evident only at potentials of +40 mV or more depolarized, while at 10(-5) M, channels were open at all voltages tested (-40 to +60 mV). In intact patches, channels were seen at depolarized patch potentials of +50 mV or greater, indicating that the ionized calcium concentration in the macrophage is probably less than 10(-7) M.  相似文献   

15.
The effects of the phosphoinositide-mobilizing agonist bradykinin (BK) on membrane potential and intracellular calcium in monolayers of normal rat kidney (NRK) fibroblasts were investigated. BK induced a rapid transient depolarization in these cells, which was mimicked by other phosphoinositide-mobilizing factors such as prostaglandin F (PGF), lysophosphatidic acid (LPA), platelet-derived growth factor (PDGF-BB), and serum. Depolarization by BK was independent of extracellular Ca2+ or Na+. It was shown using extracellular Cl substitutions that the depolarization was caused by an increased Cl conductance. Depolarization was inhibited by 5-nitro-2-3-phenylpropyl(amino)benzoic acid (NPPB), niflumic acid, and flufenamic acid, inhibitors of calcium-dependent chloride channels. The depolarization provoked by BK could be mimicked by raising intracellular calcium with ionomycin or thapsigargin and could be blocked with geneticin, a blocker of phospholipase C. When intracellular calcium was buffered by loading the cells with 1,2-bis(2-aminophenoxy)ethane-NNN′N′-tetra-acetic acid (BAPTA), depolarization was prevented. We conclude that in NRK fibroblasts extracellular stimuli that increase intracellular calcium, depolarize the cells via the activation of a calcium-dependent chloride conductance. In addition to an increase in intracellular calcium, depolarization may be an important effector pathway in response to extracellular stimuli in fibroblasts. It is hypothesized that, in electrically coupled cells such as NRK fibroblasts, intercellular transmission of these depolarizations may represent a mechanism to coordinate uniform multicellular responses to Ca2+-mobilizing agonists. J. Cell. Physiol. 170:166–173, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

16.
The ability of the divalent cations calcium, magnesium, and barium to permeate through the cGMP-gated channel of catfish cone outer segments was examined by measuring permeability and conductance ratios under biionic conditions and by measuring their ability to block current carried by sodium when presented on the cytoplasmic or extracellular side of the channel. Current carried by divalent cations in the absence of monovalent cations showed the typical rectification pattern observed from these channels under physiological conditions (an exponential increase in current at both positive and negative voltages). With calcium as the reference ion, the relative permeabilities were Ca > Ba > Mg, and the chord conductance ratios at +50 mV were in the order of Ca approximately Mg > Ba. With external sodium as the reference ion, the relative permeabilities were Ca > Mg > Ba > Na with chord conductance ratios at +30 mV in the order of Na >> Ca = Mg > Ba. The ability of divalent cations presented on the intracellular side to block the sodium current was in the order Ca > Mg > Ba at +30 mV and Ca > Ba > Mg at -30 mV. Block by external divalent cations was also investigated. The current-voltage relations showed block by internal divalent cations reveal no anomalous mole fraction behavior, suggesting little ion-ion interaction within the pore. An Eyring rate theory model with two barriers and a single binding site is sufficient to explain both these observations and those for monovalent cations, predicting a single-channel conductance under physiological conditions of 2 pS and an inward current at -30 mV carried by 82% Na, 5% Mg, and 13% Ca.  相似文献   

17.
L-type calcium currents (ICa) are influenced by changes in extracellular chloride, but sites of anion effects have not been identified. Our experiments showed that CaV1.2 currents expressed in HEK293 cells are strongly inhibited by replacing extracellular chloride with gluconate or perchlorate. Variance-mean analysis of ICa and cell-attached patch single channel recordings indicate that gluconate-induced inhibition is due to intracellular anion effects on Ca2+ channel open probability, not conductance. Inhibition of CaV1.2 currents produced by replacing chloride with gluconate was reduced from ∼75%–80% to ∼50% by omitting β subunits but unaffected by omitting α2δ subunits. Similarly, gluconate inhibition was reduced to ∼50% by deleting an α1 subunit N-terminal region of 15 residues critical for β subunit interactions regulating open probability. Omitting β subunits with this mutant α1 subunit did not further diminish inhibition. Gluconate inhibition was unchanged with expression of different β subunits. Truncating the C terminus at AA1665 reduced gluconate inhibition from ∼75%–80% to ∼50% whereas truncating it at AA1700 had no effect. Neutralizing arginines at AA1696 and 1697 by replacement with glutamines reduced gluconate inhibition to ∼60% indicating these residues are particularly important for anion effects. Expressing CaV1.2 channels that lacked both N and C termini reduced gluconate inhibition to ∼25% consistent with additive interactions between the two tail regions. Our results suggest that modest changes in intracellular anion concentration can produce significant effects on CaV1.2 currents mediated by changes in channel open probability involving β subunit interactions with the N terminus and a short C terminal region.  相似文献   

18.
19.
Summary 1. Intracellular and voltage-clamp recordings were obtained from a selected population of neuroscretory (ns) cells in the X organ of the crayfish isolated eyestalk. Pulses of -aminobutyric acid (GABA) elicited depolarizing responses and bursts of action potentials in a dose-dependent manner. These effects were blocked by picrotoxin (50 µM) but not by bicuculline. Picrotoxin also suppressed spontaneous synaptic activity.2. The responses to GABA were abolished by severing the neurite of X organ cells, at about 150 µm from the cell body. Responses were larger when the application was made at the neuropil level.3. Topical application of Cd2+ (2 mM), while suppressing synaptic activity, was incapable of affecting the responses to GABA.4. Under whole-cell voltage-clamp, GABA elicited an inward current with a reversal potential dependent on the chloride equilibrium potential. The GABA effect was accompanied by an input resistance reduction up to 33% at a –50 mV holding potential. No effect of GABA was detected on potassium, calcium, and sodium currents present in X organ cells.5. The effect of GABA on steady-state currents was dependent on the intracellular calcium concentration. At 10–6 M [Ca2+]i, GABA (50 µM) increased the membrane conductance more than threefold and shifted the zero-current potential from–25 to–10 mV. At 10–9 M [Ca2+]i, GABA induced only a 1.3-fold increase in membrane conductance, without shifting the zero-current potential.6. These results support the notion that in the population of X organ cells sampled in this study, GABA acts as an excitatory neurotransmitter, opening chloride channels.  相似文献   

20.
Acetylcholine-evoked currents mediated by activation of nicotinic receptors in rat parasympathetic neurons were examined using whole-cell voltage clamp. The relative permeability of the neuronal nicotinic acetylcholine (nACh) receptor channel to monovalent and divalent inorganic and organic cations was determined from reversal potential measurements. The channel exhibited weak selectivity among the alkali metals with a selectivity sequence of Cs+ > K+ > Rb+ > Na+ > Li+, and permeability ratios relative to Na+ (Px/PNa) ranging from 1.27 to 0.75. The selectivity of the alkaline earths was also weak, with the sequence of Mg2+ > Sr2+ > Ba2+ > Ca2+, and relative permeabilities of 1.10 to 0.65. The relative Ca2+ permeability (PCa/PNa) of the neuronal nACh receptor channel is approximately fivefold higher than that of the motor endplate channel (Adams, D. J., T. M. Dwyer, and B. Hille. 1980. Journal of General Physiology. 75:493-510). The transition metal cation, Mn2+ was permeant (Px/PNa = 0.67), whereas Ni2+, Zn2+, and Cd2+ blocked ACh-evoked currents with half-maximal inhibition (IC50) occurring at approximately 500 microM, 5 microM and 1 mM, respectively. In contrast to the muscle endplate AChR channel, that at least 56 organic cations which are permeable to (Dwyer et al., 1980), the majority of organic cations tested were found to completely inhibit ACh- evoked currents in rat parasympathetic neurons. Concentration-response curves for guanidinium, ethylammonium, diethanolammonium and arginine inhibition of ACh-evoked currents yielded IC50's of approximately 2.5- 6.0 mM. The organic cations, hydrazinium, methylammonium, ethanolammonium and Tris, were measureably permeant, and permeability ratios varied inversely with the molecular size of the cation. Modeling suggests that the pore has a minimum diameter of 7.6 A. Thus, there are substantial differences in ion permeation and block between the nACh receptor channels of mammalian parasympathetic neurons and amphibian skeletal muscle which represent functional consequences of differences in the primary structure of the subunits of the ACh receptor channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号