首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 513 毫秒
1.
MHC class II molecules bind antigenic peptides in the late endosomal/lysosomal MHC class II compartments (MIIC) before cell surface presentation. The class II modulatory molecules HLA-DM and HLA-DO mainly localize to the MIICs. Here we show that DM/DO complexes continuously recycle between the plasma membrane and the lysosomal MIICs. Like DMbeta and the class II-associated invariant chain, the DObeta cytoplasmic tail contains potential lysosomal targeting signals. The DObeta signals, however, are not essential for internalization of the DM/DO complex from the plasma membrane or targeting to the MIICs. Instead, the DObeta tail determines the distribution of both DM/DO and class II within the multivesicular MIIC by preferentially localizing them to the limiting membrane and, in lesser amounts, to the internal membranes. This distribution augments the efficiency of class II antigenic peptide loading by affecting the efficacy of lateral interaction between DM/DO and class II molecules. Sorting of DM/DO and class II molecules to specific localizations within the MIIC represents a novel way of regulating MHC class II Ag presentation.  相似文献   

2.
During biosynthesis, major histochompatibility complex class II molecules are transported to the cell surface through a late endocytic multilaminar structure with lysosomal characteristics. This structure did not resemble any of the previously described endosomal compartments and was termed MIIC. We show here that continuous protein synthesis is required for the maintenance of MIIC in B cells. Transfection of class II molecules in human embryonal kidney cells induces the formation of multilaminar endocytic structures that are morphologically analogous to MIIC in B cells. Two lysosomal proteins (CD63 and lamp-1), which are expressed in MIIC of B cells, are also present in the structures induced by expression of major histocompatibility complex class II molecules. Moreover, endocytosed HRP enters the induced structures defining them as endocytic compartments. Exchanging the transmembrane and cytoplasmic tail of the class II alpha and beta chains for that of HLA-B27 does not result in the induction of multilaminar structures, and the chimeric class II molecules are now located in multivesicular structures. This suggests that expression of class II molecules is sufficient to induce the formation of characteristic MIIC-like multilaminar structures.  相似文献   

3.
The mannose receptor (MR), the prototype of a new family of multilectin receptor proteins important in innate immunity, undergoes rapid internalization and recycling from the endosomal system back to the cell surface. Sorting of the MR in endosomes prevents the receptor from entering lysosomes where it would be degraded. Here, we focused on a diaromatic sequence (Tyr(18)-Phe(19)) in the MR cytoplasmic tail as an endosomal sorting signal. The subcellular distribution of chimeric constructs between the MR and the cation-dependent mannose 6-phosphate receptor was assessed by Percoll density gradients and cell surface assays. Unlike the wild type constructs, mutant receptors with alanine substitutions of Tyr(18)-Phe(19) were highly missorted to lysosomes, indicating that the di-aromatic motif of the MR cytoplasmic tail mediates sorting in endosomes. Within this sequence Tyr(18) is the key residue with Phe(19) contributing to this function. Moreover, Tyr(18) was also found to be essential for internalization, consistent with the presence of overlapping signals for internalization and endosomal sorting in the cytosolic tail of the MR. A di-aromatic amino acid sequence in the cytosolic tail has now been shown to function in two receptors known to be internalized from the plasma membrane, the MR and the cation-dependent mannose 6-phosphate receptor. This feature therefore appears to be a general determinant for endosomal sorting.  相似文献   

4.
The structural and functional integrity of cytoplasmic organelles is maintained by intracellular mechanisms that sort and target newly synthesized proteins to their appropriate cellular locations. In melanocytic cells, melanin pigment is synthesized in specialized organelles, melanosomes. A family of melanocyte-specific proteins, known as tyrosinase-related proteins that regulate melanin pigment synthesis, is localized to the melanosomal membrane. The human brown locus protein, tyrosinase-related protein-1 or gp75, is the most abundant glycoprotein in melanocytic cells, and is a prototype for melanosomal membrane proteins. To investigate the signals that allow intracellular retention and sorting of glycoprotein (gp)75, we constructed protein chimeras containing the amino-terminal extracellular domain of the T lymphocyte surface protein CD8, and transmembrane and cytoplasmic domains of gp75. In fibroblast transfectants, chimeric CD8 molecules containing the 36-amino acid cytoplasmic domain of gp75 were retained in cytoplasmic organelles. Signals in the gp75 cytoplasmic tail alone, were sufficient for intracellular retention and targeting of the chimeric proteins to the endosomal/lysosomal compartment. Analysis of subcellular localization of carboxy-terminal deletion mutants of gp75 and the CD8/gp75 chimeras showed that deletion of up amino acids from the gp75 carboxyl terminus did not affect intracellular retention and sorting, whereas both gp75 and CD8/gp75 mutants lacking the carboxyl-terminal 27 amino acids were transported to the cell surface. This region contains the amino acid sequence, asn-gln-pro-leu-leu-thr, and this hexapeptide is conserved among other melanosomal proteins. Further evidence showed that this hexapeptide sequence is necessary for intracellular sorting of gp75 in melanocytic cells, and suggested that a signal for sorting melanosomal proteins along the endosomal/lysosomal pathway lies within this sequence. These data provide evidence for common signals for intracellular sorting of melanosomal and lysosomal proteins, and support the notion that lysosomes and melanosomes share a common endosomal pathway of biogenesis.  相似文献   

5.
We have investigated the distribution of newly synthesized lysosomal enzymes in endocytic compartments of normal rat kidney (NRK) cells. The mannose-6-phosphate (Man6-P) containing lysosomal enzymes could be iodinated in situ after internalization of lactoperoxidase (LPO) by fluid phase endocytosis and isolated on CI-MPR affinity columns. For EM studies, the ectodomain of the CI-MPR conjugated to colloidal gold was used as a probe specific for the phosphomannosyl marker of the newly synthesized hydrolases. In NRK cells, approximately 20-40% of the phosphorylated hydrolases present in the entire pathway were found in early endocytic structures proximal to the 18 degrees C temperature block including early endosomes. These structures were characterized by a low content of endogenous CI-MPR and were accessible to fluid phase markers internalized for 5-15 min at 37 degrees C. The bulk of the phosphorylated lysosomal enzymes was found in late endocytic structures distal to the 18 degrees C block, rich in endogenous CI-MPR and accessible to endocytic markers internalized for 30-60 min at 37 degrees C. The CI-MPR negative lysosomes were devoid of phosphorylated hydrolases. This distribution was unchanged in cells treated with Man6-P to block recapture of secreted lysosomal enzymes. However, lysosomal enzymes were no longer detected in the early endosomal elements of cells treated with cycloheximide. Immunoprecipitation of cathepsin D from early endosomes of pulse-labeled cells showed that this hydrolase is a transient component of this compartment. These data indicate that in NRK cells, the earliest point of convergence of the lysosomal biosynthetic and the endocytic pathways is the early endosome.  相似文献   

6.
Human lysosome membrane glycoprotein h-lamp-1 is a highly N-glycosylated protein found predominantly in lysosomes, with low levels present at the cell surface. The signal required for delivery of h-lamp-1 to lysosomes was investigated by analyzing the intracellular distribution of h-lamp-1 with altered amino acid sequences expressed from mutated cDNA clones. A cytoplasmic tail tyrosine residue found conserved in chicken, rodent, and human deduced amino acid sequences was discovered to be necessary for efficient lysosomal transport of h-lamp-1 in COS-1 cells. In addition, the position of the tyrosine residue relative to the membrane and carboxyl terminus also determined lysosomal expression. Supplanting the wild-type h-lamp-1 cytoplasmic tail onto a cell surface reporter glycoprotein was sufficient to cause redistribution of the chimera to lysosomes. A similar chimeric protein replacing the cytoplasmic tyrosine residue with an alanine was not expressed in lysosomes. Altered proteins that were not transported to lysosomes were found to accumulate at the cell surface, and unlike wild-type lysosomal membrane glycoproteins, were unable to undergo endocytosis. These data indicate that lysosomal membrane glycoproteins are sorted to lysosomes by a cytoplasmic signal containing tyrosine in a specific position, and the sorting signal may be recognized both in the trans-Golgi network and at the cell surface.  相似文献   

7.
Melanosomes and premelanosomes are lysosome-related organelles with a unique structure and cohort of resident proteins. We have positioned these organelles relative to endosomes and lysosomes in pigmented melanoma cells and melanocytes. Melanosome resident proteins Pmel17 and TRP1 localized to separate vesicular structures that were distinct from those enriched in lysosomal proteins. In immunogold-labeled ultrathin cryosections, Pmel17 was most enriched along the intralumenal striations of premelanosomes. Increased pigmentation was accompanied by a decrease in Pmel17 and by an increase in TRP1 in the limiting membrane. Both proteins were largely excluded from lysosomal compartments enriched in LAMP1 and cathepsin D. By kinetic analysis of fluid phase uptake and immunogold labeling, premelanosomal proteins segregated from endocytic markers within an unusual endosomal compartment. This compartment contained Pmel17, was accessed by BSA-gold after 15 min, was acidic, and displayed a cytoplasmic planar coat that contained clathrin. Our results indicate that premelanosomes and melanosomes represent a distinct lineage of organelles, separable from conventional endosomes and lysosomes within pigmented cells. Furthermore, they implicate an unusual clathrin-coated endosomal compartment as a site from which proteins destined for premelanosomes and lysosomes are sorted.  相似文献   

8.
Surfactant protein (SP) A and SP-A-mediated lipid uptake by isolated type II cells were investigated with biochemical and morphological methods. Inhibition of coated-pit function by potassium depletion severely reduced both SP-A and SP-A-mediated lipid internalization. Lipid uptake in the absence of SP-A was not affected. With confocal laser scanning microscopy and immunoelectron microscopy, SP-A and lipid predominantly (60%) colocalized in intracellular vesicles carrying early endosomal markers (EEA1) 5 min after endocytosis but were negative for the late endosomal or lysosomal marker LAMP-1. As estimated by subcellular fractionation, at this time point, 23% of the internalized SP-A and 45% of internalized lipid were localized within light (<0.38 M sucrose) fractions, which contain lamellar bodies and are positive for EEA1. The remaining label was predominantly found within EEA1-positive and plasma membrane-containing subfractions (> or = 1 M sucrose). We suggest that in isolated type II cells in vitro, SP-A and lipid are taken up together via the coated-pit pathway and that at early time points, both components reside in the same early endosomal compartment.  相似文献   

9.
Dendritic cells (DC), uniquely among APC, express an open/empty conformation of MHC class II (MHC-II) proteins (correctly folded molecules lacking bound peptides). Generation and trafficking of empty HLA-DR during DC differentiation are investigated here. HLA-DR did not fold as an empty molecule in the endoplasmic reticulum/trans-Golgi network, did not derived from MHC/Ii complexes trafficking to the cell surface, but was generated after invariant chain degradation within lysosomal-like MHC-II rich compartments (MIIC). In pre-DC, generated from monocytes cultured in the presence of GM-CSF, Lamp-1(+)MHC-II(+) compartments are predominantly electron dense and, in these cells, empty MHC-II molecules accounts for as much as 20% of total surface HLA-DR. In immature DC, generated in presence of GM-CSF and IL-4, empty HLA-DR reside in multilamellar MIIC, but are scarcely observed at the cell surface. Thus, the morphology/composition of lysosomal MIIC at different DC maturational stages appear important for surface egression or intracellular retention of empty HLA-DR. Ag loading can be achieved for the fraction of empty HLA-DR present in the "peptide-receptive" form. Finally, in vivo, APC-expressing surface empty HLA-DR were found in T cell areas of secondary lymphoid organs.  相似文献   

10.
We have used monospecific antisera to two lysosomal membrane glycoproteins, lgp120 and a similar protein, lgp110, to compare the biosynthesis and intracellular transport of lysosomal membrane components, plasma membrane proteins, and lysosomal enzymes. In J774 cells and NRK cells, newly synthesized lysosomal membrane and plasma membrane proteins (the IgG1/IgG2b Fc receptor or influenza virus hemagglutinin) were transported through the Golgi apparatus (defined by acquisition of resistance to endo-beta-N-acetylglucosaminidase H) with the same kinetics (t1/2 = 11-14 min). In addition, immunoelectron microscopy of normal rat kidney cells showed that lgp120 and vesicular stomatitis virus G-protein were present in the same Golgi cisternae demonstrating that lysosomal and plasma membrane proteins were not sorted either before or during transport through the Golgi apparatus. To define the site at which sorting occurred, we compared the kinetics of transport of lysosomal and plasma membrane proteins and a lysosomal enzyme to their respective destinations. Newly synthesized proteins were detected in dense lysosomes (lgp's and beta-glucuronidase) or on the cell surface (Fc receptor or hemagglutinin) after the same lag period (20-25 min), and accumulated at their final destinations with similar kinetics (t1/2 = 30-45 min), suggesting that these two lgp's are not transported to the plasma membrane before reaching lysosomes. This was further supported by measurements of the transport of membrane-bound endocytic markers from the cell surface to lysosomes, which exhibited additional lag periods of 5-15 min and half-times of 1.5-2 h. The time required for transport of newly synthesized plasma membrane proteins to the cell surface, and for the transport of plasma membrane markers from the cell surface to lysosomes would appear too long to account for the rapid transport of lgp's from the Golgi apparatus to lysosomes. Thus, the observed kinetics suggest that lysosomal membrane proteins are sorted from plasma membrane proteins at a post-Golgi intracellular site, possibly the trans Golgi network, before their delivery to lysosomes.  相似文献   

11.
We have used stably transfected CHO cell lines to characterize the pathway of intracellular transport of the lgp120 (lgp-A) to lysosomes. Using several surface labeling and internalization assays, our results suggest that lgp120 can reach its final destination with or without prior appearance on the plasma membrane. The extent to which lgp120 was transported via the cell surface was determined by two factors: expression level and the presence of a conserved glycine-tyrosine motif in the cytoplasmic tail. In cells expressing low levels of wild-type lgp120, the majority of newly synthesized molecules reached lysosomes without becoming accessible to antibody or biotinylation reagents added extracellularly at 4 degrees C. With increased expression levels, however, an increased fraction of transfected lgp120, as well as some endogenous lgp-B, appeared on the plasma membrane. The fraction of newly synthesized lgp120 reaching the cell surface was also increased by mutations affecting the cytoplasmic domain tyrosine or glycine residues. A substantial fraction of both mutants reached the surface even at low expression levels. However, only the lgp120G----A7 mutant was rapidly internalized and delivered from the plasma membrane to lysosomes. Taken together, our results show that the majority of newly synthesized wild-type lgp120 does not appear to pass through the cell surface en route to lysosomes. Instead, it is likely that lysosomal targeting involves a saturable intracellular sorting site whose affinity for lgp's is dependent on a glycine-tyrosine motif in the lgp120 cytoplasmic tail.  相似文献   

12.
The human immunodeficiency virus type 1 (HIV-1) Nef protein upregulates the expression of the invariant chain (Ii)/major histocompatibility complex class II (MHC-II) complex at the cell surface. This complex appears to reach the antigen-loading endosomal compartment at least in part via an indirect pathway in which it is internalized from the cell surface via the adaptor protein 2 (AP-2) complex. Here we provide evidence for a competition model to explain how Nef upregulates the expression of Ii at the cell surface. In this model, Nef and Ii compete for binding to AP-2. In support of this model, Nef decreased the rate of internalization of Ii from the cell surface. The AP-binding dileucine motif in Nef, ENTSLL(165), was necessary and sufficient for the upregulation of Ii. In addition, two leucine-based AP-binding motifs in the Ii cytoplasmic tail, DDQRDLI(8) and EQLPML(17), were critical for the efficient upregulation of Ii by Nef. Experiments using Nef variants in which the native dileucine-based sorting motif was replaced with similar motifs from cellular transmembrane proteins allowed modulation of AP-binding specificity. Analysis of these variants suggested that the binding of Nef to AP-2 is sufficient to upregulate Ii at the plasma membrane. Finally, interference with the expression of AP-2 caused an upregulation of Ii at the plasma membrane, and this decreased the effect of Nef. These data indicate that Nef usurps AP-2 complexes to dysregulate Ii trafficking and potentially interfere with antigen presentation in the context of MHC-II.  相似文献   

13.
Rat lysosomal glycoprotein 120 (lgp120; lamp-I) is a transmembrane protein that is directly delivered from the trans-Golgi network (TGN) to the endosomal/lysosomal system without prior appearance on the cell surface. Its short cytosolic domain of 11 residues encodes determinants for direct lysosomal sorting, endocytosis and, in polarized cells, basolateral targeting. We now characterize the structural requirements in the cytosolic domain required for sorting of lgp120 into the different pathways. Our results show that the cytoplasmic tail is sufficient to mediate direct transport from the trans-Golgi network (TGN) to lysosomes and that a G7-Y8-X-X-I11 motif is crucial for this sorting event. While G7 is only critical for direct lysosomal sorting in the TGN, Y8 and I11 are equally important for lysosomal sorting, endocytosis, and basolateral targeting. Thus, a small motif of five amino acids in the cytoplasmic tail of lgp120 can be recognized by the sorting machinery at several cellular locations and direct the protein into a variety of intracellular pathways.  相似文献   

14.
W Eberle  C Sander  W Klaus  B Schmidt  K von Figura  C Peters 《Cell》1991,67(6):1203-1209
For rapid endocytosis lysosomal acid phosphatase requires a Tyr-containing signal in its cytoplasmic domain, as do cell surface receptors mediating endocytosis and clustering in coated pits. To determine the structure of the internalization signal an 18 amino acid peptide representing the cytoplasmic tail of lysosomal acid phosphatase was analyzed by two-dimensional nuclear magnetic resonance spectroscopy. Part of the peptide, 5-PPGY-8, forms a well-ordered beta turn of type I in solution. Our result and data on the structure of the endocytosis signal of the low density lipoprotein receptor reported by Bansal and Gierasch in the accompanying paper represent experimental determinations of the three-dimensional structure of protein transport signals and suggest that the essential aromatic amino acid of internalization signals is recognized by a putative cytoplasmic receptor in the structural context of a tight turn.  相似文献   

15.
HLA-DO is an intracellular non-classical class II major histocompatibility complex molecule expressed in the endocytic pathway of B lymphocytes, which regulates the loading of antigenic peptides onto classical class II molecules such as HLA-DR. The activity of HLA-DO is mediated through its interaction with the peptide editor HLA-DM. Here, our results demonstrate that although HLA-DO is absolutely dependent on its association with DM to egress the endoplasmic reticulum, the cytoplasmic portion of its beta chain encodes a functional lysosomal sorting signal. By confocal microscopy and flow cytometry analysis, we show that reporter transmembrane molecules fused to the cytoplasmic tail of HLA-DObeta accumulated in Lamp-1(+) vesicles of transfected HeLa cells. Mutagenesis of a leucine-leucine motif abrogated lysosomal accumulation and resulted in cell surface redistribution of reporter molecules. Finally, we show that mutation of the di-leucine sequence in DObeta did not alter its lysosomal sorting when associated with DM molecules. Taken together, these results demonstrate that lysosomal expression of the DO-DM complex is mediated primarily by the tyrosine-based motif of HLA-DM and suggest that the DObeta-encoded motif is involved in the fine-tuning of the intracellular sorting.  相似文献   

16.
Intracellular cycling of the cation-dependent mannose 6-phosphate receptor (CD-MPR) between different compartments is directed by signals localized in its cytoplasmic tail. A di-aromatic motif (Phe18-Trp19 with Trp19 as the key residue) in its cytoplasmic tail is required for the sorting of the receptor from late endosomes back to the Golgi apparatus. However, the cation-independent mannose 6-phosphate receptor (CI-MPR) lacks such a di-aromatic motif. Therefore the ability of amino acids other than aromatic residues to replace Trp19 in the CD-MPR cytoplasmic tail was tested. Mutant constructs with bulky hydrophobic residues (valine, isoleucine, or leucine) instead of Trp19 exhibited 30-60% decreases in binding to the tail interacting protein of 47 kDa (Tip47), a protein mediating this transport step, and partially prevented receptor delivery to lysosomes. Decreasing hydrophobicity of residues at position 19 resulted in further impairment of Tip47 binding and an increase of receptor accumulation in lysosomes. Intriguingly, mutants mislocalized to lysosomes did not completely co-localize with a lysosomal membrane protein, which might suggest the presence of subdomains within lysosomes. These data indicate that sorting of the CD-MPR in late endosomes requires a distinct di-aromatic motif with only limited possibilities for variations, in contrast to the CI-MPR, which seems to require a putative loop (Pro49-Pro-Ala-Pro-Arg-Pro-Gly55) along with additional hydrophobic residues in the cytoplasmic tail. This raises the possibility of two separate binding sites on Tip47 because both receptors require binding to Tip47 for endosomal sorting.  相似文献   

17.
Adenovirus (Ad) cell entry involves sequential interactions with host cell receptors that mediate attachment (CAR), internalization (alphavbeta3 and alphavbeta5), and penetration (alphavbeta5) of the endosomal membrane. These events allow the virus to deliver its genome to the nucleus. While integrins alphavbeta3 and alphavbeta5 both promote Ad internalization into cells, integrin alphavbeta5 selectively facilitates Ad-mediated membrane permeabilization and endosome rupture. In the experiments reported herein, we demonstrate that the intracellular domain of the integrin beta5 subunit specifically regulates Ad-mediated membrane permeabilization and gene delivery. CS-1 melanoma cells expressing a truncated integrin beta5 or a chimeric (beta5-beta3) cytoplasmic tail (CT) supported normal levels of Ad endocytosis but had reduced Ad-mediated gene delivery and membrane permeabilization relative to cells expressing a wild-type integrin beta5. Thin-section electron microscopy revealed that virion particles were capable of being endocytosed into cells expressing a truncated beta5CT, but they failed to escape cytoplasmic vesicles and translocate to the nucleus. Site-specific mutagenesis studies suggest that a C-terminal TVD motif in the beta5CT plays a major role in Ad membrane penetration.  相似文献   

18.
CD63 is a lysosomal membrane protein that belongs to the tetraspanin family. Its carboxyterminal cytoplasmic tail sequence contains the lysosomal targeting motif GYEVM. Strong, tyrosine-dependent interaction of the wild-type carboxyterminal tail of CD63 with the AP-3 adaptor subunit mu 3 was observed using a yeast two-hybrid system. The strength of interaction of mutated tail sequences with mu 3 correlated with the degree of lysosomal localization of similarly mutated human CD63 molecules in stably transfected normal rat kidney cells. Mutated CD63 containing the cytosolic tail sequence GYEVI, which interacted strongly with mu 3 but not at all with mu 2 in the yeast two-hybrid system, localized to lysosomes in transfected normal rat kidney and NIH-3T3 cells. In contrast, it localized to the cell surface in transfected cells of pearl and mocha mice, which have genetic defects in genes encoding subunits of AP-3, but to lysosomes in functionally rescued mocha cells expressing the delta subunit of AP-3. Thus, AP-3 is absolutely required for the delivery of this mutated CD63 to lysosomes. Using this AP-3-dependent mutant of CD63, we have shown that AP-3 functions in membrane traffic from the trans-Golgi network to lysosomes via an intracellular route that appears to bypass early endosomes.  相似文献   

19.
Although endosomes and lysosomes are associated with different subcellular functions, we present evidence that a lysosomal enzyme, arylsulfatase-A, is present in prelysosomal vesicles which constitute part of the endosomal compartment. When human cultured fibroblasts were subfractionated with Percoll gradients, arylsulfatase-A activity was enriched in three subcellular fractions: dense lysosomes, light lysosomes, and light membranous vesicles. Pulsing the cells for 1 to 10 min with the fluid-phase endocytic marker, horseradish peroxidase, showed that endosomes enriched with the marker were distributed partly in the light lysosome fraction but mainly in the light membranous fraction. By pulsing the fibroblasts for 10 min with horseradish peroxidase conjugated to colloidal gold and then staining the light membranous and light lysosomal fractions for arylsulfatase-A activity with a specific cytochemical technique, the endocytic marker was detected under the electron microscope in the same vesicles as the lysosomal enzyme. The origin of the lysosomal enzyme in this endosomal compartment was shown not to be acquired through mannose 6-phosphate receptor-mediated endocytosis of enzymes previously secreted from the cell. Together with our recent finding that the light membranous fraction contains prelysosomes distinct from bona fide lysosomes and was highly enriched with newly synthesized arylsulfatase-A molecules, these results demonstrate that prelysosomes also constitute part of the endosomal compartment to which intracellular lysosomal enzymes are targeted.  相似文献   

20.
Lysosomal acid phosphatase (LAP) is synthesized as a transmembrane protein with a short carboxy-terminal cytoplasmic tail of 19 amino acids, and processed to a soluble protein after transport to lysosomes. Deletion of the membrane spanning domain and the cytoplasmic tail converts LAP to a secretory protein, while deletion of the cytoplasmic tail as well as substitution of tyrosine 413 within the cytoplasmic tail against phenylalanine causes accumulation at the cell surface. A chimeric polypeptide, in which the cytoplasmic tail of LAP was fused to the ectoplasmic and transmembrane domain of hemagglutinin is rapidly internalized and tyrosine 413 of the LAP tail is essential for internalization of the fusion protein. A chimeric polypeptide, in which the membrane spanning domain and cytoplasmic tail of LAP are fused to the ectoplasmic domain of the Mr 46 kd mannose 6-phosphate receptor, is rapidly transported to lysosomes, whereas wild type receptor is not transported to lysosomes. We conclude that a tyrosine containing endocytosis signal in the cytoplasmic tail of LAP is necessary and sufficient for targeting to lysosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号