首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cells synthesize the GPI anchor carbohydrate core by successively adding N-acetylglucosamine, three mannoses, and phosphoethanolamine (EtN-P) onto phosphatidylinositol, thus forming the complete GPI precursor lipid which is then added to proteins. Previously, we isolated a GPI deficient yeast mutant accumulating a GPI intermediate containing only two mannoses, suggesting that it has difficulty in adding the third, alpha1,2-linked Man of GPI anchors. The mutant thus displays a similar phenotype as the mammalian mutant cell line S1A-b having a mutation in the PIG-B gene. The yeast mutant, herein named gpi10-1 , contains a mutation in YGL142C, a yeast homolog of the human PIG-B. YGL142C predicts a highly hydrophobic integral membrane protein which by sequence is related to ALG9, a yeast gene required for adding Man in alpha1,2 linkage to N-glycans. Whereas gpi10-1 cells grow at a normal rate and make normal amounts of GPI proteins, the microsomes of gpi10-1 are completely unable to add the third Man in an in vitro assay. Further analysis of the GPI intermediate accumulating in gpi10 shows it to have the structure Manalpha1-6(EtN-P-)Manalpha1-4GlcNalpha1- 6(acyl) Inositol-P-lipid. The presence of EtN-P on the alpha1,4-linked Man of GPI anchors is typical of mammalian and a few other organisms but had not been observed in yeast GPI proteins. This additional EtN-P is not only found in the abnormal GPI intermediate of gpi10-1 but is equally present on the complete GPI precursor lipid of wild type cells. Thus, GPI biosynthesis in yeast and mammals proceeds similarly and differs from the pathway described for Trypanosoma brucei in several aspects.   相似文献   

2.
Anchoring of proteins to membranes by glycosylphosphatidylinositols (GPIs) is ubiquitous among all eukaryotes and heavily used by parasitic protozoa. GPI is synthesized and transferred en bloc to form GPI- anchored proteins. The key enzyme in this process is a putative GPI:protein transamidase that would cleave a peptide bond near the COOH terminus of the protein and attach the GPI by an amide linkage. We have identified a gene, GAA1, encoding an essential ER protein required for GPI anchoring. gaal mutant cells synthesize the complete GPI anchor precursor at nonpermissive temperatures, but do not attach it to proteins. Overexpression of GAA1 improves the ability of cells to attach anchors to a GPI-anchored protein with a mutant anchor attachment site. Therefore, Gaa1p is required for a terminal step of GPI anchor attachment and could be part of the putative GPI:protein transamidase.  相似文献   

3.
GPI7 is involved in adding ethanolaminephosphate to the second mannose in the biosynthesis of glycosylphosphatidylinositol (GPI) in Saccharomyces cerevisiae. We isolated gpi7 mutants, which have defects in cell separation and a daughter cell-specific growth defect at the non-permissive temperature. WSC1, RHO2, ROM2, GFA1, and CDC5 genes were isolated as multicopy suppressors of gpi7-2 mutant. Multicopy suppressors could suppress the growth defect of gpi7 mutants but not the cell separation defect. Loss of function mutations of genes involved in the Cbk1p-Ace2p pathway, which activates the expression of daughter-specific genes for cell separation after cytokinesis, bypassed the temperature-sensitive growth defect of gpi7 mutants. Furthermore, deletion of EGT2, one of the genes controlled by Ace2p and encoding a GPI-anchored protein required for cell separation, ameliorated the temperature sensitivity of the gpi7 mutant. In this mutant, Egt2p was displaced from the septal region to the cell cortex, indicating that GPI7 plays an important role in cell separation via the GPI-based modification of daughter-specific proteins in S. cerevisiae.  相似文献   

4.
Using mutational and proteomic approaches, we have demonstrated the importance of the glycosylphosphatidylinositol (GPI) anchor pathway for cell wall synthesis and integrity and for the overall morphology of the filamentous fungus Neurospora crassa. Mutants affected in the gpig-1, gpip-1, gpip-2, gpip-3, and gpit-1 genes, which encode components of the N. crassa GPI anchor biosynthetic pathway, have been characterized. GPI anchor mutants exhibit colonial morphologies, significantly reduced rates of growth, altered hyphal growth patterns, considerable cellular lysis, and an abnormal "cell-within-a-cell" phenotype. The mutants are deficient in the production of GPI-anchored proteins, verifying the requirement of each altered gene for the process of GPI-anchoring. The mutant cell walls are abnormally weak, contain reduced amounts of protein, and have an altered carbohydrate composition. The mutant cell walls lack a number of GPI-anchored proteins, putatively involved in cell wall biogenesis and remodeling. From these studies, we conclude that the GPI anchor pathway is critical for proper cell wall structure and function in N. crassa.  相似文献   

5.
The major surface proteins of the parasitic protozoon Leishmania mexicana are anchored to the plasma membrane by glycosylphosphatidylinositol (GPI) anchors. We have cloned the L. mexicana GPI8 gene that encodes the catalytic component of the GPI:protein transamidase complex that adds GPI anchors to nascent cell surface proteins in the endoplasmic reticulum. Mutants lacking GPI8 (DeltaGPI8) do not express detectable levels of GPI-anchored proteins and accumulate two putative protein-anchor precursors. However, the synthesis and cellular levels of other non-protein-linked GPIs, including lipophosphoglycan and a major class of free GPIs, are not affected in the DeltaGPI8 mutant. Significantly, the DeltaGPI8 mutant displays normal growth in liquid culture, is capable of differentiating into replicating amastigotes within macrophages in vitro, and is infective to mice. These data suggest that GPI-anchored surface proteins are not essential to L. mexicana for its entry into and survival within mammalian host cells in vitro or in vivo and provide further support for the notion that free GPIs are essential for parasite growth.  相似文献   

6.
Glycosylphosphatidylinositol (GPI) anchoring plays key roles in many biological processes by targeting proteins to the cell wall; however, its roles are largely unknown in plant pathogenic fungi. Here, we reveal the roles of the GPI anchoring in Magnaporthe oryzae during plant infection. The GPI-anchored proteins were found to highly accumulate in appressoria and invasive hyphae. Disruption of GPI7, a GPI anchor-pathway gene, led to a significant reduction in virulence. The Δgpi7 mutant showed significant defects in penetration and invasive growth. This mutant also displayed defects of the cell wall architecture, suggesting GPI7 is required for cell wall biogenesis. Removal of GPI-anchored proteins in the wild-type strain by hydrofluoric acid (HF) pyridine treatment exposed both the chitin and β-1,3-glucans to the host immune system. Exposure of the chitin and β-1,3-glucans was also observed in the Δgpi7 mutant, indicating GPI-anchored proteins are required for immune evasion. The GPI anchoring can regulate subcellular localization of the Gel proteins in the cell wall for appressorial penetration and abundance of which for invasive growth. Our results indicate the GPI anchoring facilitates the penetration of M. oryzae into host cells by affecting the cell wall integrity and the evasion of host immune recognition.  相似文献   

7.
Numerous glycoproteins of Saccharomyces cerevisiae are anchored in the lipid bilayer by a glycophosphatidylinositol (GPI) anchor. Mild alkaline hydrolysis reveals that the lipid components of these anchors are heterogeneous in that both base-sensitive and base-resistant lipid moieties can be found on most proteins. The relative abundance of base-resistant lipid moieties is different for different proteins. Strong alkaline or acid hydrolysis of the mild base-resistant lipid component liberates C18-phytosphingosine indicating the presence of a ceramide. Two lines of evidence suggest that proteins are first attached to a base-sensitive GPI anchor, the lipid moiety of which subsequently gets exchanged for a base-resistant ceramide: (i) an early glycolipid intermediate of GPI biosynthesis only contains base-sensitive lipid moieties; (ii) after a pulse with [3H]myo-inositol the relative abundance of base-sensitive GPI anchors decreases significantly during chase. This decrease does not take place if GPI-anchored proteins are retained in the ER.  相似文献   

8.
The trypanosome variant surface glycoprotein (VSG), like many other eukaryotic cell surface proteins, is anchored to the plasma membrane by a glycosyl-phosphatidylinositol (GPI) moiety. This glycolipid is assembled first as a precursor (glycolipid A) that is then covalently attached to the newly synthesized polypeptide. We have developed a trypanosome cell-free system capable of performing all of the steps in the biosynthesis of the glycan portion of glycolipid A. Using [3H]sugar nucleotides as substrates, several biosynthetic intermediates have been identified. From structural analyses of these intermediates, we propose a pathway for GPI biosynthesis. Based on comparisons between the VSG GPI anchor and similar structures in other cells, we believe that this same pathway will apply to the GPI anchors, and the related insulin-mediator compound, of higher eukaryotes.  相似文献   

9.
The trypanosome variant surface glycoprotein (VSG) is anchored to the plasma membrane via a glycosyl phosphatidylinositol (GPI). The GPI is synthesized as a precursor, glycolipid A, that is subsequently linked to the VSG polypeptide. The VSG anchor is unusual, compared with anchors in other cell types, in that its fatty acid moieties are exclusively myristic acid. To investigate the mechanism for myristate specificity we used a cell-free system for GPI biosynthesis. One product of this system, glycolipid A', is indistinguishable from glycolipid A except that its fatty acids are more hydrophobic than myristate. Glycolipid A' is converted to glycolipid A through highly specific fatty acid remodeling reactions involving deacylation and subsequent reacylation with myristate. Therefore, myristoylation occurs in the final phase of trypanosome GPI biosynthesis.  相似文献   

10.
Güther ML  Prescott AR  Ferguson MA 《Biochemistry》2003,42(49):14532-14540
Glycosylphosphatidylinositol (GPI) membrane anchors are ubiquitous among the eukaryotes. In most organisms, the pathway of GPI biosynthesis involves inositol acylation and inositol deacylation as discrete steps at the beginning and end of the pathway, respectively. The bloodstream form of the protozoan parasite Trypanosoma brucei is unusual in that these reactions occur on multiple GPI intermediates and that it can express side chains of up to six galactose residues on its mature GPI anchors. An inositol deacylase gene, T. brucei GPIdeAc, has been identified. A null mutant was created and shown to be capable of expressing normal mature GPI anchors on its variant surface glycoprotein. Here, we show that the null mutant synthesizes galactosylated forms of the mature GPI precursor, glycolipid A, at an accelerated rate (2.8-fold compared to wild type). These free GPIs accumulate at the cell surface as metabolic end products. Using continuous and pulse-chase labeling experiments, we show that there are two pools of glycolipid A. Only one pool is competent for transfer to nascent variant surface glycoprotein and represents 38% of glycolipid A in wild-type cells. This pool rises to 75% of glycolipid A in the GPIdeAc null mutant. We present a model for the pathway of GPI biosynthesis in T. brucei that helps to explain the complex phenotype of the GPIdeAc null mutant.  相似文献   

11.
Gpi7 was isolated by screening for mutants defective in the surface expression of glycosylphosphatidylinositol (GPI) proteins. Gpi7 mutants are deficient in YJL062w, herein named GPI7. GPI7 is not essential, but its deletion renders cells hypersensitive to Calcofluor White, indicating cell wall fragility. Several aspects of GPI biosynthesis are disturbed in Deltagpi7. The extent of anchor remodeling, i.e. replacement of the primary lipid moiety of GPI anchors by ceramide, is significantly reduced, and the transport of GPI proteins to the Golgi is delayed. Gpi7p is a highly glycosylated integral membrane protein with 9-11 predicted transmembrane domains in the C-terminal part and a large, hydrophilic N-terminal ectodomain. The bulk of Gpi7p is located at the plasma membrane, but a small amount is found in the endoplasmic reticulum. GPI7 has homologues in Saccharomyces cerevisiae, Caenorhabditis elegans, and man, but the precise biochemical function of this protein family is unknown. Based on the analysis of M4, an abnormal GPI lipid accumulating in gpi7, we propose that Gpi7p adds a side chain onto the GPI core structure. Indeed, when compared with complete GPI lipids, M4 lacks a previously unrecognized phosphodiester-linked side chain, possibly an ethanolamine phosphate. Gpi7p contains significant homology with phosphodiesterases suggesting that Gpi7p itself is the transferase adding a side chain to the alpha1,6-linked mannose of the GPI core structure.  相似文献   

12.
In eukaryotic cells, various proteins are anchored to the plasma membrane through glycosylphosphatidylinositol (GPI). To study the biosynthetic pathways and modifications of GPI, various mutant cells have been isolated from the cells of Chinese hamster ovaries (CHO) supplemented with several exogenous genes involved in GPI biosynthesis using aerolysin, a toxin secreted from gram-negative bacterium Aeromonas hydrophila. Alpha toxin from Gram-positive bacterium Clostridium septicum is homologous to large lobes (LL) of aerolysin, binds GPI-anchored proteins and possesses a cell-destroying mechanism similar to aerolysin. Here, to determine whether alpha toxins can be used as an isolation tool of GPI-mutants, like aerolysin, CHO cells stably transfected with several exogenous genes involved in GPI biosynthesis were chemically mutagenized and cultured in a medium containing alpha toxins. We isolated six mutants highly resistant to alpha toxins and deficient in GPI biosynthesis. By genetic complementation, we determined that one mutant cell was defective of the second subunit of dolichol phosphate mannose synthase (DPM2) and other five cells were of a putative catalytic subunit of inositol acyltransferase (PIG-W). Therefore, C. septicum alpha toxins are a useful screening probe for the isolation of various GPI-mutant cells.  相似文献   

13.
The procyclic form of Trypanosoma brucei exists in the midgut of the tsetse fly. The current model of its surface glycocalyx is an array of rod-like procyclin glycoproteins with glycosylphosphatidylinositol (GPI) anchors carrying sialylated poly-N-acetyllactosamine side chains interspersed with smaller sialylated poly-N-acetyllactosamine-containing free GPI glycolipids. Mutants for TbGPI12, deficient in the second step of GPI biosynthesis, were devoid of cell surface procyclins and poly-N-acetyllactosamine-containing free GPI glycolipids. This major disruption to their surface architecture severely impaired their ability to colonize tsetse fly midguts but, surprisingly, had no effect on their morphology and growth characteristics in vitro. Transmission electron microscopy showed that the mutants retained a cell surface glycocalyx. This structure, and the viability of the mutants in vitro, prompted us to look for non-GPI-anchored parasite molecules and/or the adsorption of serum components. Neither were apparent from cell surface biotinylation experiments but [3H]glucosamine biosynthetic labeling revealed a group of previously unidentified high apparent molecular weight glycoconjugates that might contribute to the surface coat. While characterizing GlcNAc-PI that accumulates in the TbGPI12 mutant, we observed inositolphosphoceramides for the first time in this organism.  相似文献   

14.
Yeast mcd4-174 mutants are blocked in glycosylphosphatidylinositol (GPI) anchoring of protein, but the stage at which GPI biosynthesis is interrupted in vivo has not been identified, and Mcd4p has also been implicated in phosphatidylserine and ATP transport. We report that the major GPI that accumulates in mcd4-174 in vivo is Man(2)-GlcN-(acyl-Ins)PI, consistent with proposals that Mcd4p adds phosphoethanolamine to the first mannose of yeast GPI precursors. Mcd4p-dependent modification of GPIs can partially be bypassed in the mcd4-174/gpi11 double mutant and in mcd4Delta; mutants by high-level expression of PIG-B and GPI10, which respectively encode the human and yeast mannosyltransferases that add the third mannose of the GPI precursor. Rescue of mcd4Delta; by GPI10 indicates that Mcd4p-dependent addition of EthN-P to the first mannose of GPIs is not obligatory for transfer of the third mannose by Gpi10p.  相似文献   

15.
In humans and Saccharomyces cerevisiae the free glycosylphosphatidylinositol (GPI) lipid precursor contains several ethanolamine phosphate side chains, but these side chains had been found on the protein-bound GPI anchors only in humans, not yeast. Here we confirm that the ethanolamine phosphate side chain added by Mcd4p to the first mannose is a prerequisite for the addition of the third mannose to the GPI precursor lipid and demonstrate that, contrary to an earlier report, an ethanolamine phosphate can equally be found on the majority of yeast GPI protein anchors. Curiously, the stability of this substituent during preparation of anchors is much greater in gpi7Delta sec18 double mutants than in either single mutant or wild type cells, indicating that the lack of a substituent on the second mannose (caused by the deletion of GPI7) influences the stability of the one on the first mannose. The phosphodiester-linked substituent on the second mannose, probably a further ethanolamine phosphate, is added to GPI lipids by endoplasmic reticulum-derived microsomes in vitro but cannot be detected on GPI proteins of wild type cells and undergoes spontaneous hydrolysis in saline. Genetic manipulations to increase phosphatidylethanolamine levels in gpi7Delta cells by overexpression of PSD1 restore cell growth at 37 degrees C without restoring the addition of a substituent to Man2. The three putative ethanolamine-phosphate transferases Gpi13p, Gpi7p, and Mcd4p cannot replace each other even when overexpressed. Various models trying to explain how Gpi7p, a plasma membrane protein, directs the addition of ethanolamine phosphate to mannose 2 of the GPI core have been formulated and put to the test.  相似文献   

16.
Glycosylphosphatidylinositol (GPI) membrane anchors are essential for the integration of yeast cell adhesion proteins into the cell wall, but mature cell-wall proteins are unlikely to be attached directly to the membrane. We thus propose that GPI-anchored glycoprotein forms are intermediates in a process that crosslinks the major components of the cell wall by transglycosylation. This mechanism may be critical for both the biosynthesis and overall architecture of the cell wall.  相似文献   

17.
Glycosylphosphatidylinositol (GPI) is a glycolipid that anchors many proteins to the eukaryotic cell surface. The biosynthetic pathway of GPI is mediated by sequential additions of sugars and other components to phosphatidylinositol. Four mannoses in the GPI are transferred from dolichol-phosphate-mannose (Dol-P-Man) and are linked through different glycosidic linkages. Therefore, four Dol-P-Man-dependent mannosyltransferases, GPI-MT-I, -MT-II, -MT-III, and -MT-IV for the first, second, third, and fourth mannoses, respectively, are required for generation of GPI. GPI-MT-I (PIG-M), GPI-MT-III (PIG-B), and GPI-MT-IV (SMP3) were previously reported, but GPI-MT-II remains to be identified. Here we report the cloning of PIG-V involved in transferring the second mannose in the GPI anchor. Human PIG-V encodes a 493-amino acid, endoplasmic reticulum (ER) resident protein with eight putative transmembrane regions. Saccharomyces cerevisiae protein encoded in open reading frame YBR004c, which we termed GPI18, has 25% amino acid identity to human PIG-V. Viability of the yeast gpi18 deletion mutant was restored by human PIG-V cDNA. PIG-V has two functionally important conserved regions facing the ER lumen. Taken together, we suggest that PIG-V is the second mannosyltransferase in GPI anchor biosynthesis.  相似文献   

18.
G Sipos  A Puoti    A Conzelmann 《The EMBO journal》1994,13(12):2789-2796
Glycosylphosphatidylinositol (GPI) anchoring of membrane proteins occurs through two distinct steps, namely the assembly of a precursor glycolipid and its subsequent transfer onto newly synthesized proteins. To analyze the structure of the yeast precursor glycolipid we made use of the pmi40 mutant that incorporates very high amounts of [3H]mannose. Two very polar [3H]mannose-labeled glycolipids named CP1 and CP2 qualified as GPI precursor lipids since their carbohydrate head group, Man alpha 1,2(X-->PO4-->6)Man alpha 1,2Man alpha 1,6Man alpha-GlcN-inositol (with X most likely being ethanolamine) comprises the core structure which is common to all GPI anchors described so far. CP1 predominates in cells grown at 24 degrees C whereas CP2 is induced by stress conditions. The apparent structural identity of the head groups suggests that CP1 and CP2 contain different lipid moieties. The lipid moieties of both CP1 and CP2 can be removed by mild alkaline hydrolysis although the protein-bound GPI anchors made by the pmi40 cells under identical labeling conditions contain mild base resistant ceramides. These findings imply that the ceramide moiety found on the majority of yeast GPI anchored proteins is added through a lipid remodeling step that occurs after the addition of the GPI precursor glycolipids to proteins.  相似文献   

19.
Glycosylphosphatidylinositol (GPI) anchors various proteins to the membrane of eukaryotic cells. Paroxysmal nocturnal hemoglobinuria (PNH) is a hematopoietic stem cell disorder that is primarily due to the lack of GPI-anchored proteins on the surface of blood cells. To detect the GPI-deficient cells in PNH patients, we modified alpha toxin, a pore-forming toxin of the Gram-positive bacterium Clostridium septicum. We first showed that aerolysin, a homologous toxin from Aeromonas hydrophila, bound to both of Chinese hamster ovary cells deficient of N-glycan maturation as well as GPI biosynthesis at a significant level. However, alpha toxin bound to the mutant cells of N-glycosylation, but not to GPI-deficient cells. It suggested that alpha toxin could be used as a specific probe to differentiate only GPI-deficient cells. As a diagnostic probe, alpha toxin must be the least cytotoxic while maintaining its affinity for GPI. Thus, we constructed several mutants. Of these, the mutants carrying the Y155G or S189C/S238C substitutions bound to GPI as well as the wild-type toxin. These mutants also efficiently underwent proteolytic activation and aggregated into oligomers on the cell surface, which are events that precede the formation of a pore in the host cell membrane, leading to cell death. Nevertheless, these mutants almost completely failed to kill host cells. It was revealed that the substitutions affect the events that follow oligomerization. The S189C/S238C mutant toxin differentiated GPI-deficient granulocyte and PMN, but not red blood cells, of a PNH patient from GPI-positive cells at least as sensitively as the commercial monoclonal antibodies that recognize the CD59 or CD55 GPI proteins on blood cells. Thus, this modified bacterial toxin can be employed instead of costly monoclonal antibodies to diagnose PNH patients.  相似文献   

20.
A large number of mammalian proteins are anchored to the cell membrane by a glycosylphosphatidylinositol (GPI) anchor. Biosynthetic intermediates of the GPI anchor have been identified in mammalian cells. The early GPI precursors are sensitive to phosphatidylinositol (PI)-specific phospholipase C (PLC). However, all of the later GPI precursors, which contain 1 or more mannose residues, are PI-PLC-resistant, suggesting that there is another unidentified precursor. Here, we report the identification of this missing link. This GPI precursor can only be labeled with glucosamine and inositol, and is resistant to PI-PLC but sensitive to GPI-phospholipase D. It accumulates in large quantity only in mutants which are defective in the addition of the first mannose residue to the elongating GPI core. Thus, fatty acylation of glucosaminylphosphatidylinositol, to render it PI-PLC-resistant, is an obligatory step in the biosynthesis of mammalian GPI anchor precursors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号