首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Internal Mg2+ blocks many potassium channels including Kv1.5. Here, we show that internal Mg2+ block of Kv1.5 induces voltage-dependent current decay at strongly depolarised potentials that contains a component due to acceleration of C-type inactivation after pore block. The voltage-dependent current decay was fitted to a bi-exponential function (tau(fast) and tau(slow)). Without Mg2+, tau(fast) and tau(slow) were voltage-independent, but with 10 mM Mg2+, tau(fast) decreased from 156 ms at +40 mV to 5 ms at +140 mV and tau(slow) decreased from 2.3 s to 206 ms. With Mg2+, tail currents after short pulses that allowed only the fast phase of decay showed a rising phase that reflected voltage-dependent unbinding. This suggested that the fast phase of voltage-dependent current decay was due to Mg2+ pore block. In contrast, tail currents after longer pulses that allowed the slow phase of decay were reduced to almost zero suggesting that the slow phase was due to channel inactivation. Consistent with this, the mutation R487V (equivalent to T449V in Shaker) or increasing external K+, both of which reduce C-type inactivation, prevented the slow phase of decay. These results are consistent with voltage-dependent open-channel block of Kv1.5 by internal Mg2+ that subsequently induces C-type inactivation by restricting K+ filling of the selectivity filter from the internal solution.  相似文献   

2.
Functional biological synthetic composite (BSC) membranes were made using phospholipids, biological membrane proteins and permeable synthetic supports or membranes. Lipid bilayers were formed on porous polycarbonate (PC), polyethylene terephthalate (PETE) and poly (l-lactic acid) (PLLA) membranes and in 10-100 microm laser-drilled pores in a 96-well plastic plate as measured by increased resistance or decreased currents. Bilayers in 50 microm and smaller pores were stable for up to 4 h as measured by resistance changes or a current after gramicidin D reconstitution. Biological membrane transport reconstitution was then carried out. Using vesicles containing Kv1.5 K(+) channels, K(+) currents and decreased resistance were measured across bilayers in 50 microm pores in the plastic plate and PLLA membranes, respectively, which were inhibited by compound B, a Kv1.5 K(+) channel inhibitor. Functional reconstitution of Kv1.5 K(+) channels was successful. Incorporation of membrane proteins in functional form in stable permeable membrane-supported lipid bilayers is a simple technology to create BSC membranes that mimic biological function which is readily adaptable for high throughput screening.  相似文献   

3.
Mutations in cardiac voltage-gated K+ channels cause long QT syndrome (LQTS) and sudden death. We created a transgenic mouse with a long QT phenotype (Kv1DN) by overexpression of a truncated K+ channel in the heart and investigated whether the dominant negative effect of the transgene would be overcome by the direct injection of adenoviral vectors expressing wild-type Kv1.5 (AV-Kv1.5) into the myocardium. End points at 3-10 days included electrophysiology in isolated cardiomyocytes, surface ECG, programmed stimulation of the right ventricle, and in vivo optical mapping of action potentials and repolarization gradients in Langendorff-perfused hearts. Overexpression of Kv1.5 reconstituted a 4-aminopyridine-sensitive outward K+ current, shortened the action potential duration, eliminated early afterdepolarizations, shortened the QT interval, decreased dispersion of repolarization, and increased the heart rate. Each of these changes is consistent with a physiologically significant primary effect of adenoviral expression of Kv1.5 on ventricular repolarization of Kv1DN mice.  相似文献   

4.
The experiments here were undertaken to determine the feasibility of increasing the cell surface expression of voltage-gated ion channels in cardiac cells in vivo and to explore the functional consequences of ectopic channel expression. Transgenic mice expressing a green fluorescent protein (GFP)-tagged, voltage-gated K+ (Kv) channel alpha-subunit, Kv1.5-GFP, driven by the cardiac-specific alpha-MHC promoter, were generated. In recent studies, Kv1.5 has been shown to encode the micromolar 4-aminopyridine (4-AP)-sensitive delayed rectifier K+ current (I(K,slow)) in mouse myocardium. Unexpectedly, Kv1.5-GFP expression is heterogeneous in the ventricles of these animals. Although no electrocardiographic abnormalities were evident, expression of Kv1.5-GFP results in marked decreases in action potential durations in GFP-positive ventricular myocytes. In voltage-clamp recordings from GFP-positive ventricular myocytes, peak outward K+ currents are significantly higher, and their waveforms are distinct from those recorded from wild-type cells. Pharmacological experiments revealed a selective increase in a micromolar 4-AP-sensitive current, similar to the 4-AP-sensitive component of I(K,slow) in wild-type cells. The inactivation rate of the "overexpressed" current, however, is significantly slower than the Kv1.5-encoded component of I(K,slow) in wild-type cells, suggesting differences in association with accessory subunits and/or posttranslational processing.  相似文献   

5.
6.
In the present study, patch clamp experiments demonstrated the expression of multiple ionic currents, including a Ba2+-sensitive inward rectifier K+ current (IKir), a 4-aminopyridine- (4-AP) sensitive delayed rectifier K+ current (IKDR), and a nifedipine-sensitive, tetrodotoxin-resistant inward Na+ current (INa.TTXR) in the non-transformed rat gastric epithelial cell line RGM-1. RT-PCR revealed molecular identities of mRNAs for the functional ionic currents, including Kir1.2 for IKir, Kv1.1, Kv1.6, and Kv2.1 for IKDR, and Nav1.5 for INa.TTXR. Pharmacologic blockade of Kv and Nav, but not Kir, suppressed RGM-1 cell proliferation. To further elucidate which subtypes of the ion channels were involved in cell proliferation, RNA interference was employed to knockdown specific gene expression. Downregulation of Kv1.1 or Nav1.5 by RNA interference suppressed RGM-1 cell proliferation. To conclude, our study is the first to delineate the expression of ion channels and their functions as growth modulators in gastric epithelial cells.  相似文献   

7.
Surface expression of voltage-dependent K(+) channels (Kv) has a pivotal role in leukocyte physiology. Although little is known about the physiological role of lipid rafts, these microdomains concentrate signaling molecules and their ion channel substrates. Kv1.3 associates with Kv1.5 to form functional channels in macrophages. Different isoform stoichiometries lead to distinct heteromeric channels which may be further modulated by targeting the complex to different membrane surface microdomains. Kv1.3 targets to lipid rafts, whereas Kv1.5 localization is under debate. With this in mind, we wanted to study whether heterotetrameric Kv1.5-containing channels target to lipid rafts. While in transfected HEK-293 cells, homo- and heterotetrameric channels targeted to rafts, Kv1.5 did not target to rafts in macrophages. Therefore, Kv1.3/Kv1.5 hybrid channels are mostly concentrated in non-raft microdomains. However, LPS-induced activation, which increases the Kv1.3/Kv1.5 ratio and caveolin, targeted Kv1.5 back to lipid rafts. Moreover, Kv1.5 did not localize to low-buoyancy fractions in L6E9 skeletal myoblasts, which also coexpress both channels, heart membranes or cardiomyocyes. Coexpression of a Cav3(DGV)-mutant confined Kv1.5 to Cav3(DGV)-vesicles of HEK cells. Contrarily, coexpression of Kvbeta2.1 impaired the Kv1.5 targeting to raft microdomains in HEK cells. Our results indicate that Kv1.5 partnership interactions are underlying mechanisms governing channel targeting to lipid rafts.  相似文献   

8.
In Kv2.1 potassium channels, changes in external [K+] modulate current magnitude as a result of a K+-dependent interconversion between two outer vestibule conformations. Previous evidence indicated that outer vestibule conformation (and thus current magnitude) is regulated by the occupancy of a selectivity filter binding site by K+. In this paper, we used the change in current magnitude as an assay to study how the interconversion between outer vestibule conformations is controlled. With 100 mM internal K+, rapid elevation of external [K+] from 0 to 10 mM while channels were activated produced no change in current magnitude (outer vestibule conformation did not change). When channels were subsequently closed and reopened in the presence of elevated [K+], current magnitude was increased (outer vestibule conformation had changed). When channels were activated in the presence of low internal [K+], or when K+ flow into conducting channels was transiently interrupted by an internal channel blocker, increasing external [K+] during activation did increase current magnitude (channel conformation did change). These data indicate that, when channels are in the activated state under physiological conditions, the outer vestibule conformation remains fixed despite changes in external [K+]. In contrast, when channel occupancy is lowered, (by channel closing, an internal blocker or low internal [K+]), the outer vestibule can interconvert between the two conformations. We discuss evidence that the ability of the outer vestibule conformation to change is regulated by the occupancy of a nonselectivity filter site by K+. Independent of the outer vestibule-based potentiation mechanism, Kv2.1 was remarkably insensitive to K+-dependent processes that influence current magnitude (current magnitude changed by <7% at membrane potentials between -20 and 30 mV). Replacement of two outer vestibule lysines in Kv2.1 by smaller neutral amino acids made current magnitude dramatically more sensitive to the reduction in K+ driving force (current magnitude changed by as much as 40%). When combined, these outer vestibule properties (fixed conformation during activation and the presence of lysines) all but prevent variation in Kv2.1 current magnitude when [K+] changes during activation. Moreover, the insensitivity of Kv2.1 current magnitude to changes in K+ driving force promotes a more uniform modulation of current over a wide range of membrane potentials by the K+-dependent regulation of outer vestibule conformation.  相似文献   

9.
J Lu  H M Fishman 《Biophysical journal》1995,69(6):2467-2475
Two ampullary epithelial properties necessary for electroreception were used to identify the types of ion channels and transporters found in apical and basal membranes of ampullary receptor cells of skates and to assess their individual role under voltage-clamp conditions. The two essential properties are (1) a steady-state negative conductance generated in apical membranes and (2) a small, spontaneous current oscillation originating in basal membranes (Lu and Fishman, 1995). The effects of pharmacological agents and ion substitutions on these properties were evaluated from transorgan or transepithelial complex admittance determinations in the frequency range 0.125 to 50 Hz measured in individual, isolated ampullary organs. In apical membranes, L-type Ca channels were found to be responsible for generation of the steady-state negative conductance. In basal membranes, K and Ca-dependent Cl (Cl(Ca)) channels were demonstrated to contribute to a net positive membrane conductance. L-type Ca channels were also evident in basal membranes and are thought to function in synaptic transmission from the electroreceptive epithelium to the primary afferent nerve. In addition to ion channels in basal membranes, two transporters (Na+/K+ pump and Na(+)-Ca+ exchanger) were apparent. Rapid (minutes) cessation of the current oscillation after blockage of any of the basal ion channels (Ca, Cl(Ca), K) suggests critical involvement of each of these channel types in the generation of the oscillation. Suppression of either Na+/K+ transport or Na(+)-Ca2+ exchange also eliminated the oscillation but at a slower rate, indicating an indirect effect.  相似文献   

10.
11.
The precise subcellular localization of ion channels is often necessary to ensure rapid and efficient integration of both intracellular and extracellular signaling events. Recently, we have identified lipid raft association as a novel mechanism for the subcellular sorting of specific voltage-gated K(+) channels to regions of the membrane rich in signaling complexes. Here, we demonstrate isoform-specific targeting of voltage-gated K(+) (Kv) channels to distinct lipid raft populations with the finding that Kv1.5 specifically targets to caveolae. Multiple lines of evidence indicate that Kv1.5 and Kv2.1 exist in distinct raft domains: 1) channel/raft association shows differential sensitivity to increasing concentrations of Triton X-100; 2) unlike Kv2.1, Kv1.5 colocalizes with caveolin on the cell surface and redistributes with caveolin following microtubule disruption; and 3) immunoisolation of caveolae copurifies Kv1.5 channel. Both depletion of cellular cholesterol and inhibition of sphingolipid synthesis alter Kv1.5 channel function by inducing a hyperpolarizing shift in the voltage dependence of activation and inactivation. The differential targeting of Kv channel subtypes to caveolar and noncaveolar rafts within a single membrane represents a unique mechanism of compartmentalization, which may permit isoform-specific modulation of K(+) channel function.  相似文献   

12.
The amino acid located at position 369 is a key determinant of the ion conduction pathway or pore of the voltage-gated K+ channels, Kv2.1 and a chimeric channel, CHM, constructed by replacing the pore region of Kv2.1 with that of Kv3.1. To determine the orientation of residue 369 with respect to the aqueous lumen of the pore, the nonpolar Ile at 369 in Kv2.1 was replaced with a basic His. This substitution produced a Cs(+)-selective channel with Cs+:K+ permeability ratio of 4 compared to 0.1 in the wild type. Block by external tetraethylammonium (TEA) was reduced about 20-fold, while block by internal TEA was unaffected. External protons and Zn2+, that are known to interact with the imidazole ring of His, blocked the mutant channel much more effectively than the wild type channel. The blockade by Zn2+ and protons was voltage-independent, and the proton blockade had a pKa of about 6.5, consistent with the pKa for His in solution. The histidyl-specific reagent diethylpyrocarbonate produced greatly exaggerated blockade of the mutated channel compared to the wild type. The residue at position 369 appears to form part of the binding site for external TEA and to influence the selectivity for monovalent cations. We suggest that the imidazole side-chain of His369 is exposed to the aqueous lumen at a surface position near the external mouth of the pore.  相似文献   

13.
Electrophysiological properties of human adipose tissue-derived stem cells   总被引:2,自引:0,他引:2  
Human adipose tissue-derived stem cells (hASCs) represent a potentially valuable cell source for clinical therapeutic applications. The present study was designed to investigate properties of ionic channel currents present in undifferentiated hASCs and their impact on hASCs proliferation. The functional ion channels in hASCs were analyzed by whole-cell patch-clamp recording and their mRNA expression levels detected by RT-PCR. Four types of ion channels were found to be present in hASCs: most of the hASCs (73%) showed a delayed rectifier-like K(+) current (I(KDR)); Ca(2+)-activated K(+) current (I(KCa)) was detected in examined cells; a transient outward K(+) current (I(to)) was recorded in 19% of the cells; a small percentage of cells (8%) displayed a TTX-sensitive transient inward sodium current (I(Na.TTX)). RT-PCR results confirmed the presence of ion channels at the mRNA level: Kv1.1, Kv2.1, Kv1.5, Kv7.3, Kv11.1, and hEAG1, possibly encoding I(KDR); MaxiK, KCNN3, and KCNN4 for I(KCa); Kv1.4, Kv4.1, Kv4.2, and Kv4.3 for I(to) and hNE-Na for I(Na.TTX). The I(KDR) was inhibited by tetraethyl ammonium (TEA) and 4-aminopyridine (4-AP), which significantly reduced the proliferation of hASCs in a dose-dependent manner (P < 0.05), as suggested by bromodeoxyurindine (BrdU) incorporation. Other selective potassium channel blockers, including linopiridine, iberiotoxin, clotrimazole, and apamin also significantly inhibited I(KDR). TTX completely abolished I(Na.TTX). This study demonstrates for the first time that multiple functional ion channel currents such as I(KDR), I(KCa), I(to), and I(Na.TTX) are present in undifferentiated hASCs and their potential physiological function in these cells as a basic understanding for future in vitro experiments and in vivo clinical investigations.  相似文献   

14.
Voltage-dependent K(+) (Kv) currents in macrophages are mainly mediated by Kv1.3, but biophysical properties indicate that the channel composition could be different from that of T-lymphocytes. K(+) currents in mouse bone marrow-derived and Raw-264.7 macrophages are sensitive to Kv1.3 blockers, but unlike T-cells, macrophages express Kv1.5. Because Shaker subunits (Kv1) may form heterotetrameric complexes, we investigated whether Kv1.5 has a function in Kv currents in macrophages. Kv1.3 and Kv1.5 co-localize at the membrane, and half-activation voltages and pharmacology indicate that K(+) currents may be accounted for by various Kv complexes in macrophages. Co-expression of Kv1.3 and Kv1.5 in human embryonic kidney 293 cells showed that the presence of Kv1.5 leads to a positive shift in K(+) current half-activation voltages and that, like Kv1.3, Kv1.3/Kv1.5 heteromers are sensitive to r-margatoxin. In addition, both proteins co-immunoprecipitate and co-localize. Fluorescence resonance energy transfer studies further demonstrated that Kv1.5 and Kv1.3 form heterotetramers. Electrophysiological and pharmacological studies of different ratios of Kv1.3 and Kv1.5 co-expressed in Xenopus oocytes suggest that various hybrids might be responsible for K(+) currents in macrophages. Tumor necrosis factor-alpha-induced activation of macrophages increased Kv1.3 with no changes in Kv.1.5, which is consistent with a hyperpolarized shift in half-activation voltage and a lower IC(50) for margatoxin. Taken together, our results demonstrate that Kv1.5 co-associates with Kv1.3, generating functional heterotetramers in macrophages. Changes in the oligomeric composition of functional Kv channels would give rise to different biophysical and pharmacological properties, which could determine specific cellular responses.  相似文献   

15.
Glucocorticoid hormones are released as part of the stress response and regulate secretion by the pituitary. Since the activity of ion channels also influences secretion, we examined the effect of the glucocorticoid agonist dexamethasone on ion channel expression. K+ channel mRNA was detected in rat hypothalamus and anterior pituitary, with probes derived from the rat Kv1 gene, a member of the mammalian voltage-gated K+ channel superfamily. High levels were also detected in PRL-secreting clonal (GH3 and GH4C1) rat pituitary cells. Dexamethasone rapidly increased the steady state concentration of Kv1 mRNA in GH3 cells in a dose-dependent manner. This change in gene expression was accompanied by an increase in whole cell voltage-gated K+ current [lk(i)] with similar pharmacology to the Kv1 gene product. Our findings indicate that hormones may act directly on excitable cells to produce long term effects on electrical activity and secretion by regulating K+ channel expression.  相似文献   

16.
Relief of Na+ block of Ca2+-activated K+ channels by external cations   总被引:10,自引:6,他引:4       下载免费PDF全文
The flickery block of single Ca2+-activated K+ channels that is produced by internally applied Na+ can be relieved by millimolar concentrations of external K+. This effect of K+ on the kinetics of Na+ block was studied by the method of amplitude distribution analysis described in the companion paper (Yellen, G., 1984b, J. Gen. Physiol., 84:157-186). It appears that K+ relieves block by increasing the exit rate of the blocking ion from the channel, not by competitively slowing its entrance rate. This suggests that a K ion that enters the channel from the outside can expel the blocking Na ion, which entered the channel from the inside. Cs+, which cannot carry current through the channel, and Rb+, which carries a reduced current through the channel, are just as effective as K+ in relieving the block by internal Na+. The kinetics of block by internal nonyltriethylammonium (C9) are unaffected by the presence of these ions in the external bathing solution.  相似文献   

17.
Bao L  Miao ZW  Zhou PA  Jiang Y  Sha YL  Zhang RJ  Tang YC 《FEBS letters》1999,446(2-3):351-354
A 22-mer peptide, identical to the primary sequence of domain I segment 3 (IS3) of rat brain sodium channel I, was synthesized. With the patch clamp cell-attached technique, single channel currents could be recorded from the patches of cultured rat myotube membranes when the patches were held at hyperpolarized potentials and the electrode solution contained NaCl and 1 microM IS3, indicating that IS3 incorporated into the membranes and formed ion channels. The single channel conductances of IS3 channels were distributed heterogeneously, but mainly in the range of 10-25 pS. There was a tendency that the mean open time and open probability of IS3 channels increased and the mean close time decreased with the increasing of hyperpolarized membrane potentials. IS3 channels are highly selective for Na+ and Li+ but not for Cl- and K+, similar to the authentic Na+ channels.  相似文献   

18.
Nifedipine can block K(+) currents through Kv1.5 channels in an open-channel manner (32). Replacement of internal and external K(+) with equimolar Rb(+) or Cs(+) reduced the potency of nifedipine block of Kv1.5 from an IC(50) of 7.3 microM (K(+)) to 16.0 microM (Rb(+)) and 26.9 microM (Cs(+)). The voltage dependence of block was unaffected, and a single binding site block model was used to describe block for all three ions. By varying ion species at the intra- and extracellular mouth of the channel and by using a nonconducting W472F-Kv1.5 mutant, we demonstrated that block was conditioned by the ion permeating the pore and, to a lesser extent, by the extracellular ion species alone. In Kv1.5, the outer pore mutations R487V and R487Y reduced nifedipine potency close to that of Kv4.2 and other Kv channels with an equivalent valine. Although changing this residue can affect C-type inactivation of Kv channels, the normalized reduction and time course of currents blocked by nifedipine in 5, 135, and 300 mM extracellular K(+) concentration was the same. Similarly, a mean recovery time constant from nifedipine block of 316 ms was unchanged (332 ms) after 5-s prepulses to allow C-type inactivation. This is consistent with the conclusion that nifedipine block and C-type inactivation in the Kv1.5 channel can coexist but are mediated by distinct mechanisms coordinated by outer pore conformation.  相似文献   

19.
K+ activates many inward rectifier and voltage-gated K+ channels. In each case, an increase in K+ current through the channel can occur despite a reduced driving force. We have investigated the molecular mechanism of K+ activation of the inward rectifier K+ channel, Kir3.1/Kir3.4, and the voltage-gated K+ channel, Kv1.4. In the Kir3.1/Kir3.4 channel, mutation of an extracellular arginine residue, R155, in the Kir3.4 subunit markedly reduced K+ activation of the channel. The same mutation also abolished Mg2+ block of the channel. Mutation of the equivalent residue in Kv1.4 (K532) abolished K+ activation as well as C-type inactivation of the Kv1.4 channel. Thus, whereas C-type inactivation is a collapse of the selectivity filter, K+ activation could be an opening of the selectivity filter. K+ activation of the Kv1.4 channel was enhanced by acidic pH. Mutation of an extracellular histidine residue, H508, that mediates the inhibitory effect of protons on Kv1.4 current, abolished both K+ activation and the enhancement of K+ activation at acidic pH. These results suggest that the extracellular positive charges in both the Kir3.1/Kir3.4 and the Kv1.4 channels act as "guards" and regulate access of K+ to the selectivity filter and, thus, the open probability of the selectivity filter. Furthermore, these data suggest that, at acidic pH, protonation of H508 inhibits current through the Kv1.4 channel by decreasing K+ access to the selectivity filter, thus favoring the collapse of the selectivity filter.  相似文献   

20.
Type l voltage-gated K+ channels in murine lymphocytes were studied under voltage clamp in cell-attached patches and in the whole-cell configuration. The kinetics of activation of whole-cell currents during depolarizing pulses could be fit by a single exponential after an initial delay. Deactivation upon repolarization of both macroscopic and microscopic currents was mono-exponential, except in Rb-Ringer or Cs-Ringer solution in which tail currents often displayed "hooks," wherein the current first increased or remained constant before decaying. In some cells type l currents were contaminated by a small component due to type n K+ channels, which deactivate approximately 10 times slower than type l channels. Both macroscopic and single channel currents could be dissected either kinetically or pharmacologically into these two K+ channel types. The ionic selectivity and conductance of type l channels were studied by varying the internal and external permeant ion. With 160 mM K+ in the cell, the relative permeability calculated from the reversal potential with the Goldman-Hodgkin-Katz equation was K+ (identical to 1.0) greater than Rb+ (0.76) greater than NH4+ = Cs+ (0.12) much greater than Na+ (less than 0.004). Measured 30 mV negative to the reversal potential, the relative conductance sequence was quite different: NH4+ (1.5) greater than K+ (identical to 1.0) greater than Rb+ (0.5) greater than Cs+ (0.06) much greater than Na+, Li+, TMA+ (unmeasurable). Single channel current rectification resembled that of the whole-cell instantaneous I-V relation. Anomalous mole-fraction dependence of the relative permeability PNH4/PK was observed in NH4(+)-K+ mixtures, indicating that the type l K+ channel is a multi-ion pore. Compared with other K+ channels, lymphocyte type l K+ channels are most similar to "g12" channels in myelinated nerve.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号