首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Brain uptake and metabolism of ketone bodies in animal models   总被引:1,自引:0,他引:1  
As a consequence of the high fat content of maternal milk, the brain metabolism of the suckling rat represents a model of naturally occurring ketosis. During the period of lactation, the rate of uptake and metabolism of the two ketone bodies, beta-hydroxybutyrate and acetoacetate is high. The ketone bodies enter the brain via monocarboxylate transporters whose expression and activity is much higher in the brain of the suckling than the mature rat. beta-Hydroxybutyrate and acetoacetate taken up by the brain are efficiently used as substrates for energy metabolism, and for amino acid and lipid biosynthesis, two pathways that are important for this period of active brain growth. Ketone bodies can represent about 30-70% of the total energy metabolism balance of the immature rat brain. The active metabolism of ketone bodies in the immature brain is related to the high activity of the enzymes of ketone body metabolism. Thus, the use of ketone bodies by the immature rodent brain serves to spare glucose for metabolic pathways that cannot be fulfilled by ketones such as the pentose phosphate pathway mainly. The latter pathway leads to the biosynthesis of ribose mandatory for DNA synthesis and NADPH which is not formed during ketone body metabolism and is a key cofactor in lipid biosynthesis. Finally, ketone bodies by serving mainly biosynthetic purposes spare glucose for the emergence of various functions such as audition, vision as well as more integrated and adapted behaviors whose appearance during brain maturation seems to critically relate upon active glucose supply and specific regional increased use.  相似文献   

2.
Persistent mild hyperketonemia is a common finding in neonatal rats and human newborns, but the physiological significance of elevated plasma ketone concentrations remains poorly understood. Recent advances in ketone metabolism clearly indicate that these compounds serve as an indispensable source of energy for extrahepatic tissues, especially the brain and lung of developing rats. Another important function of ketone bodies is to provide acetoacetyl-CoA and acetyl-CoA for synthesis of cholesterol, fatty acids, and complex lipids. During the early postnatal period, acetoacetate (AcAc) and beta-hydroxybutyrate are preferred over glucose as substrates for synthesis of phospholipids and sphingolipids in accord with requirements for brain growth and myelination. Thus, during the first 2 wk of postnatal development, when the accumulation of cholesterol and phospholipids accelerates, the proportion of ketone bodies incorporated into these lipids increases. On the other hand, an increased proportion of ketone bodies is utilized for cerebroside synthesis during the period of active myelination. In the lung, AcAc serves better than glucose as a precursor for the synthesis of lung phospholipids. The synthesized lipids, particularly dipalmityl phosphatidylcholine, are incorporated into surfactant, and thus have a potential role in supplying adequate surfactant lipids to maintain lung function during the early days of life. Our studies further demonstrate that ketone bodies and glucose could play complementary roles in the synthesis of lung lipids by providing fatty acid and glycerol moieties of phospholipids, respectively. The preferential selection of AcAc for lipid synthesis in brain, as well as lung, stems in part from the active cytoplasmic pathway for generation of acetyl-CoA and acetoacetyl-CoA from the ketone via the actions of cytoplasmic acetoacetyl-CoA synthetase and thiolase.  相似文献   

3.
Ketone body metabolism during development   总被引:1,自引:0,他引:1  
This paper briefly reviews the role of ketone bodies during development in the rat. Regulation of ketogenesis is in part dependent on the supply to the liver of medium- and long-chain fatty acids derived from mother's milk. The partitioning of long-chain fatty acids between the hepatic esterification and oxidation pathways is controlled by the concentration of malonyl-CoA, a key intermediate in the conversion of carbohydrate to lipid. As hepatic lipogenesis is depressed during the suckling period, [malonyl-CoA] is low and entry of long-chain acyl-CoA into the mitochondria for partial oxidation to ketone bodies is not restrained. Removal of ketone bodies by developing tissues is regulated by their availability in the circulation and by the activities of the enzymes of ketone body utilization. The patterns of activities of these enzymes differ among tissues during development so that the neonatal brain is an important site of ketone body utilization. The major role of ketone bodies in development is as an oxidative fuel to spare glucose, but they can also act as lipid precursors.  相似文献   

4.
Ketone body metabolism in the mother and fetus   总被引:1,自引:0,他引:1  
Pregnancy is characterized by a rapid accumulation of lipid stores during the first half of gestation and a utilization of these stores during the latter half of gestation. Lipogenesis results from dietary intake, an exaggerated insulin response, and an intensified inhibition of glucagon release. Increasing levels of placental lactogen and a heightened response of adipose tissue to additional lipolytic hormones balance lipogenesis in the fed state. Maternal starvation in late gestation lowers insulin, and lipolysis supervenes. The continued glucose drain by the conceptus aids in converting the maternal liver to a ketogenic organ, and ketone bodies produced from incoming fatty acids are not only utilized by the mother but cross the placenta where they are utilized in several ways by the fetus: as a fuel in lieu of glucose; as an inhibitor of glucose and lactate oxidation with sparing of glucose for biosynthetic disposition; and for inhibition of branched-chain ketoacid oxidation, thereby maximizing formation of their parent amino acids. Ketone bodies are widely incorporated into several classes of lipids including structural lipids as well as lipids for energy stores in fetal tissues, and may inhibit protein catabolism. Finally, it has recently been shown that ketone bodies inhibit the de novo biosynthesis of pyrimidines in fetal rat brain slices. Thus during maternal starvation ketone bodies may maximize chances for survival both in utero and during neonatal life by restraining cell replication and sustaining protein and lipid stores in fetal tissues.  相似文献   

5.
Generation of Ketone Bodies from Leucine by Cultured Astroglial Cells   总被引:5,自引:2,他引:3  
Abstract: To elucidate the significance of branched-chain amino acids (BCAAs) for brain energy metabolism, the capacity to use BCAAs for oxidative metabolism was investigated in astroglia-rich primary cultures derived from newborn rat brain. The cells selectively removed BCAAs from the culture medium, the disappearance following first-order kinetics. The BCAAs disappeared rapidly in spite of the presence of sufficient glucose as substrate for the generation of energy. Taking into consideration that the ketogenic amino acid leucine could be degraded only to acetyl-CoA and acetoacetate, and with the knowledge that astroglial cells have the capacity to secrete ketone bodies, this amino acid was chosen for further metabolic studies. After incubation of the cells with leucine, acetoacetate, d -β-hydroxybutyrate, and α-ketoisocaproate were found to have accumulated in the culture medium. Identification of the radioactive metabolites generated from [4,5-3H]leucine established that the source of the substances released was indeed leucine. These results indicate that, at least in culture, astroglial cells degrade leucine via the known metabolite α-ketoisocaproate, to acetoacetate, which can be further reduced to d -β-hydroxybutyrate. It is hypothesized that upon release from brain astrocytes, the ketone bodies could serve as fuel molecules for neighboring cells such as neurons and oligodendrocytes. In view of these and other results, astrocytes may be considered the brain's fuel processing plants.  相似文献   

6.
Two recent reports propose that the depolarizing action of GABA in the immature brain is an artifact of in vitro preparations in which glucose is the only energy source. The authors argue that this does not mimic the physiological environment because the suckling rats use ketone bodies and pyruvate as major sources of metabolic energy. Here, we show that availability of physiologically relevant levels of ketone bodies has no impact on the excitatory action of GABA in immature cultured hippocampal neurons. Addition of β-hydroxybutyrate (BHB), the primary ketone body in the neonate rat, affected neither intracellular calcium elevation nor membrane depolarizations induced by the GABA-A receptor agonist muscimol, when assessed with calcium imaging or perforated patch-clamp recording, respectively. These results confirm that the addition of ketone bodies to the extracellular environment to mimic conditions in the neonatal brain does not reverse the chloride gradient and therefore render GABA hyperpolarizing. Our data are consistent with the existence of a genuine "developmental switch" mechanism in which GABA goes from having a predominantly excitatory role in immature cells to a predominantly inhibitory one in adults.  相似文献   

7.
Labelled ketone bodies were produced readily from [U-(14)C]palmitate, [2-(14)C]palmitate and [1-(14)C]glycerol by sheep rumen-epithelial and liver tissues in vitro. On a tissue-nitrogen basis, both tissues had similar capacities for ketogenesis. Palmitate was a ketogenic substrate in both rumen-epithelial tissue and liver, and more of its (14)C appeared in ketone bodies than in the (14)CO(2) liberated. Glycerol was actively metabolized to ketone bodies, but more readily underwent complete oxidation to carbon dioxide; this complete oxidation was most pronounced in rumen-epithelial tissue from ketotic ewes. These experiments with labelled compounds confirm earlier observations that rumen-epithelial tissue, like liver, actively forms ketone bodies from long-chain fatty acids and show further that normal rumen-epithelial tissue can convert palmitate into ketone bodies as readily as into carbon dioxide. Free glycerol, which is metabolized only by liver tissue in non-ruminants, is also metabolized by rumen epithelium. The rumen epithelium thus has unique metabolic capacity among extrahepatic tissues.  相似文献   

8.
The high energy demands of the heart are met primarily by the mitochondrial oxidation of fatty acids and glucose. However, in heart failure there is a decrease in cardiac mitochondrial oxidative metabolism and glucose oxidation that can lead to an energy starved heart. Ketone bodies are readily oxidized by the heart, and can provide an additional source of energy for the failing heart. Ketone oxidation is increased in the failing heart, which may be an adaptive response to lessen the severity of heart failure. While ketone have been widely touted as a “thrifty fuel”, increasing ketone oxidation in the heart does not increase cardiac efficiency (cardiac work/oxygen consumed), but rather does provide an additional fuel source for the failing heart. Increasing ketone supply to the heart and increasing mitochondrial ketone oxidation increases mitochondrial tricarboxylic acid cycle activity. In support of this, increasing circulating ketone by iv infusion of ketone bodies acutely improves heart function in heart failure patients. Chronically, treatment with sodium glucose co-transporter 2 inhibitors, which decreases the severity of heart failure, also increases ketone body supply to the heart. While ketogenic diets increase circulating ketone levels, minimal benefit on cardiac function in heart failure has been observed, possibly due to the fact that these dietary regimens also markedly increase circulating fatty acids. Recent studies, however, have suggested that administration of ketone ester cocktails may improve cardiac function in heart failure. Combined, emerging data suggests that increasing cardiac ketone oxidation may be a therapeutic strategy to treat heart failure.  相似文献   

9.
Cerebral Metabolic State During the Ethanol Withdrawal Reaction in the Rat   总被引:2,自引:0,他引:2  
Abstract: A severe ethanol withdrawal reaction was induced in rats by means of repeated intragastric intubation during a 4-day period. At the peak of the withdrawal reaction cerebral cortical tissue was frozen in situ for analysis of glycogen, glucose, phosphocreatine, creatine, ATP, ADP, AMP, lactate, pyruvate, GAB A, β-hydroxybutyrate, acetoacetate, cAMP and cGMP. Blood glucose concentration was also measured. The level of brain glycogen was decreased during ethanol withdrawal. Brain glucose concentration was increased, probably secondary to the increase in blood glucose concentration. The calculated NADH/NAD+ ratio was slightly increased during the withdrawal and brain ATP concentration and adenine nucleotide pool size were decreased. The adenylate energy charge remained unchanged. The overall changes in the metabolites were in agreement with the previously shown metabolic activation during ethanol withdrawal. The brain concentrations of ketone bodies (β-hydroxybutyrate and acetoacetate) during withdrawal did not deviate from controls, indicating that no abnormal ketone metabolism had developed as a consequence of the long-lasting ethanol intoxication. No changes were observed in the concentrations of GABA, cAMP, or cGMP in the rat cerebral cortex during ethanol withdrawal.  相似文献   

10.
Normal development of both human and rat brain is associated with a switch in metabolic fuel from a combination of glucose and ketone bodies in the immature brain to a nearly total reliance on glucose in the adult. The delivery of glucose, lactate, and ketone bodies from the blood to the brain requires specific transporter proteins, glucose and monocarboxylic acid transporter proteins (GLUTs and MCTs), respectively. Developmental expression of the GLUTs in rat brain, i.e., 55-kDa GLUT1 in the blood-brain barrier (BBB), 45-kDa GLUT1 and GLUT3 in vascular-free brain, corresponds to maturational increases in cerebral glucose uptake and utilization. It has been suggested that MCT expression peaks during suckling and sharply declines thereafter, although a comparable detailed study has not been done. This study investigated the temporal and regional expression of MCT1 and MCT2 mRNA and protein in the BBB and the nonvascular brain during postnatal development in the rat. The results confirmed maximal MCT1 mRNA and protein expression in the BBB during suckling and a decline with maturation, coincident with the switch to glucose as the predominant cerebral fuel. However, nonvascular MCT1 and MCT2 levels do not reflect changes in cerebral energy metabolism, suggesting a more complex regulation. Although MCT1 assumes a predominantly glial expression in postweanling brain, the concentration remains fairly constant, as does that of MCT2 in neurons. The maintenance of nonvascular MCT levels in the adult brain implies a major role for these proteins, in concert with the GLUTs in both neurons and astrocytes, to transfer glycolytic intermediates during cerebral energy metabolism.  相似文献   

11.
Abstract: Docosahexaenoate is important for normal neural development. It can be derived from α-linolenate, but carbon from α-linolenate is also recycled into de novo lipid synthesis. The objective of this study was to quantify the amount of α-linolenate used to produce docosahexaenoate versus lipids synthesized de novo that accumulate in the brain of the developing rat. A physiological dose of carbon-13-labeled α-linolenate was injected into the stomachs of mother-reared 6-day-old rat pups. Total lipids of brain, liver, and gut were extracted from rats killed 3 h to 30 days after dosing. Carbon-13 enrichment was determined by isotope ratio mass spectrometry. Carbon-13-enriched α-linolenate was not detected in the brain at any time point, and its levels in liver and gut exceeded detection limits at most time points, so tracer mass was quantified mainly for three end products—docosahexaenoate, palmitate, and cholesterol. Carbon-13-enriched cholesterol, palmitate, docosahexaenoate, and water-soluble metabolites were detected in brain, liver, and gut. Enrichment (in micrograms of carbon-13 per organ) in brain cholesterol exceeded that in brain docosahexaenoate by four- to 16-fold over the duration of the study. Enrichment in brain palmitate exceeded that in brain docosahexaenoate by three- to 30-fold over the first 8 days of the study. These results indicate that carbon from α-linolenate is not exclusively conserved for synthesis of longer n-3 polyunsaturates but is a readily accessible carbon source for de novo lipogenesis during early brain development in the suckling rat. Owing to a high rate of β-oxidation and carbon recycling, dependence on α-linolenate as the sole source of docosahexaenoate may incur a potential risk of providing insufficient docosahexaenoate for the developing brain.  相似文献   

12.
Ketone bodies make an important contribution to brain energy production and biosynthetic processes when glucose becomes scarce. Although it is generally assumed that the liver supplies the brain with ketone bodies, recent evidence shows that cultured astrocytes are also ketogenic cells. Moreover, astrocyte ketogenesis might participate in the control of the survival/death decision of neural cells in at least two manners: first, by scavenging non-esterified fatty acids the ketogenic pathway would prevent the detrimental actions of these compounds and their derivatives (e.g. ceramide) on brain structure and function. Second, ketone bodies may exert pro-survival actions per se by acting as cellular substrates, thereby preserving neuronal synaptic function and structural stability. These findings support the notion that ketone bodies produced by astrocytes may be used in situ as substrates for neuronal metabolism, and raise the possibility that astrocyte ketogenesis is a neuroprotective pathway.  相似文献   

13.
The purpose of these studies was to determine if the utilization of ketone bodies as a carbon source for lipogenesis could account for the decreased ketone body production by livers of obese Zucker rats, as well as contribute to the enhanced rates of fatty acid synthesis observed in these animals. Ketone body production was decreased from 822 mumol/liver in the lean to 538 mumol/liver in the obese genotype (P less than 0.05). The incorporation of ketone bodies into fatty acids was significantly greater in the obese rat liver (lean, 1.95 mumol of ketone bodies/liver, versus obese, 35.22 mumol/liver; P less than 0.025). The relative contribution of this pathway to the overall rate of fatty acid synthesis was not affected by genotype and accounted for only 3 to 4% of the fatty acids synthesized. The incorporation of ketone bodies into digitonin precipitable sterols was similar in the two genotypes (lean, 4.5 mmol/liver, versus obese 4.7 mumol/liver; NS). This accounted for 9.2 and 6.3% of the total sterol synthesis in lean and obese rat livers, respectively. The total incorporation of ketone bodies into lipid was 7.5 mumols in the lean rat livers and 42.0 mumoles in the obese (P less than 0.025). The net increase was 35 mumoles incorporated, whereas the net decrease in ketogenesis was 284 mumoles. Thus, although ketone body carbon utilization for lipid synthesis was increased in the liver of the obese rats, this pathway could only account for a fraction of the genotypic difference in ketone body production and was of relatively minor importance as a source of carbon for hepatic fatty acid synthesis in both lean and obese rats.  相似文献   

14.
We have investigated fatty acid oxidation and development profiles of palmitoyl-CoA synthetase and carnitine palmitoyltransferase in homogenates of developing rat brain. Palmitate showed a peak rate of oxidation between 10 days and the time of weaning, after which activity declined to adult levels. Acetate oxidation increased until Day 10, plateaued until Day 18 when it increased sharply and remained elevated through Day 25 before declining to the adult level. Leucine oxidation also showed a late peak as compared with palmitate. Palmitoyl-CoA synthetase activity was highest in late fetal development and in the newborn after which activity declined gradually to adult levels. Carnitine palmitoyltransferase activity peaked at 10–15 days of age similar to the profile obtained for long chain fatty acid oxidation. During the period of peak fatty acid oxidation, cytochrome oxidase activity increased twofold but the developmental increase in fatty acid oxidation and enzyme levels was much greater than the increase in mitochondrial number. These data suggest that during periods of high fat intake in the suckling rat the brain has an increased capacity for long chain fatty acid oxidation and that in addition to ketone bodies and leucine, fatty acids may be utilized as an alternative substrate in developing brain.  相似文献   

15.
The brains of 18-day-old rats utilize glucose and ketone bodies. The rates of acetyl-CoA formation from these substrates and of glycolysis were determined in vivo from the labelling of intermediary metabolites after intraperitoneal injection of d-[2-(14)C]glucose, l(+)-[3-(14)C]- and l(+)-[U-(14)C]-lactate and d(-)-3-hydroxy[(14)C]butyrate. Compartmental analysis was used in calculating rates to allow for the rapid exchange of blood and brain lactate, the presence in brain of at least two pools each of glucose and lactate, and the incomplete equilibration of oxaloacetate with aspartate and of 2-oxoglutarate with glutamate. Results were as follows. 1. Glucose and ketone bodies labelled identical pools of tricarboxylate-cycle metabolites, and were in every way alternative substrates. 2. The combined rate of oxidation of acetyl-CoA derived from pyruvate (and hence glucose) and ketone bodies was 1.05mumol/min per g. 3. Ketone bodies contributed 0.11-0.53mumol/min per g in proportion to their concentration in blood, with a mean rate of 0.30mumol/min per g at 1.24mm. 4. Pyruvate and ketone bodies were converted into lipid at 0.018 and 0.008mumol/min per g respectively. 5. Glycolysis, at 0.48mumol/min per g, was more rapid in most rats than pyruvate utilization by oxidation and lipid synthesis, resulting in a net output of lactate from brain to blood. 6. Rates of formation of brain glutamate, glutamine and aspartate were also measured. Further information on the derivation of the models has been deposited as Supplementary Publication SUP 50034 (18 pages) at the British Library, Lending Division (formerly the National Lending Library for Science and Technology), Boston Spa, Yorks. LS23 7QB, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1973) 131, 5.  相似文献   

16.
Acetoacetyl-CoA synthetase (AACS) is the key enzyme in the anabolic utilization of ketone bodies (KBs) for denovo lipid synthesis, a process that bypasses citrate and ATP citrate lyase. This review shows that AACS is a highly regulated, cytosolic, and lipogenic enzyme and that many tissues can readily use KBs for denovo lipid synthesis. AACS has a low micromolar Km for acetoacetate, and supply of acetoacetate should not limit its activity in the fed state. In many tissues, AACS appears to be regulated in conjunction with the need for cholesterol, but in adipose tissue, it seems tied to fatty acid synthesis. KBs are readily utilized as substrates for lipid synthesis in lipogenic tissues, including liver, adipose tissue, lactating mammary gland, skin, intestinal mucosa, adrenals, and developing brain. In numerous studied cases, KBs served several-fold better than glucose as substrates for lipid synthesis, and when present, KBs suppressed the utilization of glucose for lipid synthesis. Here, it is hypothesized that a physiological role for the utilization of KBs for lipid synthesis is a metabolic process of lipid interconversion. Fatty acids are converted to KBs in liver, and then, the KBs are utilized to synthesize cholesterol and other long-chain fatty acids in liver and nonhepatic tissues. The conversion of fatty acids to cholesterol via the KBs may be a particularly important example of lipid interconversion. Utilizing KBs for lipid synthesis is glucose sparing and probably is important with low carbohydrate diets. Metabolic situations and tissues where this pathway may be important are discussed.  相似文献   

17.
The effect of hyperphenylalaninaemia on the metabolism of ketone bodies in vivo and in vitro by developing rat brain was investigated. The incorporation in vivo of [14C]acetoacetate into cerebral lipids was decreased by both chronic (for 3 days) and acute (for 6h) hyperphenylalaninaemia induced by injecting phenylalanine into 1-week-old rats. In studies in vitro it was observed that the incorporation of the radioactivity from [14C]acetoacetate and 3-hydroxy[14C]butyrate into cerebral lipids was inhibited by phenyl-pyruvate, but not by phenylalanine. Phenylpyruvate also inhibited the incorporation of 3H from 3H2O into lipids by brain slices metabolizing either 3-hydroxybutyrate or acetoacetate in the presence of glucose. These findings suggest that the decrease in the incorporation in vivo of [14C]acetoacetate into cerebral lipids in hyperphenylalaninaemic rats is most likely caused by phenylpyruvate and not by phenylalanine. Phenylpyruvate as well as phenylalanine had no inhibitory effects on ketone-body-catabolizing enzymes, namely 3-hydroxybutyrate dehydrogenase, 3-oxo acid CoA-transferase and acetoacetyl-CoA thiolase, in rat brain. Phenylpyruvate but not phenylalanine inhibited the activity of the 2-oxoglutarate dehydrogenase complex from rat and human brain. These findings suggest that the metabolism of ketone bodies is impaired in brains of untreated phenylketonuric patients, and in turn may contribute to the diminution of mental development and function associated with phenylketonuria.  相似文献   

18.
The concentration of ketone bodies in blood of suckling rabbits during the first 6 days following birth was higher than that found in the adult. In the liver the activities of the enzymes of ketone body synthesis were higher than in the adult during the same period. In the heart and leg muscle the activities of the enzymes of ketone body utilization were lower than those found in the adult. It is suggested that the capacity of the muscles of the developing rabbit to utilize ketone bodies is not greater than that of the adult and ketone bodies produced by the liver could contribute as fuel for oxidation and/or synthesis to the brain of the newborn rabbit.  相似文献   

19.
Brain cells are metabolically flexible because they can derive energy from both glucose and ketone bodies (acetoacetate and beta-hydroxybutyrate). Metabolic control theory applies principles of bioenergetics and genome flexibility to the management of complex phenotypic traits. Epilepsy is a complex brain disorder involving excessive, synchronous, abnormal electrical firing patterns of neurons. We propose that many epilepsies with varied etiologies may ultimately involve disruptions of brain energy homeostasis and are potentially manageable through principles of metabolic control theory. This control involves moderate shifts in the availability of brain energy metabolites (glucose and ketone bodies) that alter energy metabolism through glycolysis and the tricarboxylic acid cycle, respectively. These shifts produce adjustments in gene-linked metabolic networks that manage or control the seizure disorder despite the continued presence of the inherited or acquired factors responsible for the epilepsy. This hypothesis is supported by information on the management of seizures with diets including fasting, the ketogenic diet and caloric restriction. A better understanding of the compensatory genetic and neurochemical networks of brain energy metabolism may produce novel antiepileptic therapies that are more effective and biologically friendly than those currently available.  相似文献   

20.
Tsai YC  Chou YC  Wu AB  Hu CM  Chen CY  Chen FA  Lee JA 《Life sciences》2006,78(12):1385-1391
In researches of ketone bodies, D-3-hydroxybutyrate (D-3HB) is usually the major one which has been investigated; in contrast, little attention has been paid to L-3-hydroxybutyrate (L-3HB), because of its presence in trace amounts, its dubious metabolism, and a lack of knowledge about its sources. In the present study we determined the distributions of enantiomers of 3-hydroxybutyrate (3HB) in rat brain, liver, heart, and kidney homogenates, and we found the heart homogenate contained an enriched amount of L-3HB (37.67 microM/mg protein) which generated a significant ratio of 66/34 (D/L). The ratio was altered to be 87/13 in the diabetic rat heart homogenate. We subsequently found this changed ratio of D/L-3HB may contribute to reduce glucose utilization in cardiomyocytes. Glucose utilization by cardiomyocytes with 5 mM of D-3HB was decreased to 61% of the control, but no interference was observed when D-3HB was replaced with L-3HB, suggesting L-3HB is not utilized for the energy fuel as other ketone bodies are. In addition, the reduced glucose utilization caused by D-3HB gradually recovered in a dose-dependent manner with administration of additional L-3HB. The results gave the necessity of taking L-3HB together with D-3HB into account with regard to glucose utilization, and L-3HB may be a helpful substrate for improving inhibited cardiac pyruvate oxidation caused by hyperketonemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号