首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mathematical Immunogenetics I argued for the development of mathematics as a language for immunogenetics. A three-fold factorization of a reaction matrix was seen to be the important form of a model of a first order immunogenetic system. In the present paper, results of the authors on determining this factorization are reworked from a physical perspective and presented in an algorithmic form that can be used to compute a labeling matrix from data. Computer programs to perform these computations are in preparation.  相似文献   

2.
IMGT, the international ImMunoGeneTics information system (http://imgt.cines.fr), is the reference in immunogenetics and immunoinformatics. IMGT standardizes and manages the complex immunogenetic data that include the immunoglobulins (IG) or antibodies, the T cell receptors (TR), the major histocompatibility complex (MHC) and the related proteins of the immune system (RPI), which belong to the immunoglobulin superfamily (IgSF) and the MHC superfamily (MhcSF). The accuracy and consistency of IMGT data and the coherence between the different IMGT components (databases, tools and Web resources) are based on IMGT-ONTOLOGY, the first ontology for immunogenetics and immunoinformatics. IMGT-ONTOLOGY manages the immunogenetics knowledge through diverse facets relying on seven axioms, 'IDENTIFICATION', 'DESCRIPTION', 'CLASSIFICATION', 'NUMEROTATION', 'LOCALIZATION', 'ORIENTATION' and 'OBTENTION', that postulate that objects, processes and relations have to be identified, described, classified, numerotated, localized, orientated, and that the way they are obtained has to be determined. These axioms constitute the Formal IMGT-ONTOLOGY, also designated as IMGT-Kaleidoscope. These axioms have been essential for the conceptualization of the molecular immunogenetics knowledge and for the creation of IMGT. Indeed all the components of the IMGT integrated system have been developed, based on standardized concepts and relations, thus allowing IMGT to bridge biological and computational spheres in bioinformatics. The same axioms can be used to generate concepts for multi-scale level approaches at the molecule, cell, tissue, organ, organism or population level, emphasizing the generalization of the application domain. In that way the Formal IMGT-ONTOLOGY represents a paradigm for the elaboration of ontologies in system biology.  相似文献   

3.
IMGT, the international ImMunoGeneTics information system (http://imgt.cines.fr), is the reference in immunogenetics and immunoinformatics. IMGT standardizes and manages the complex immunogenetic data which include the immunoglobulins (IG) or antibodies, the T cell receptors (TR), the major histocompatibility complex (MHC) and the related proteins of the immune system (RPI) which belong to the immunoglobulin superfamily (IgSF) and the MHC superfamily (MhcSF). The accuracy and consistency of IMGT data and the coherence between the different IMGT components (databases, tools and Web resources) are based on IMGT-ONTOLOGY, the first ontology for immunogenetics and immunoinformatics. IMGT-ONTOLOGY manages the immunogenetics knowledge through diverse facets relying on seven axioms, "IDENTIFICATION", "DESCRIPTION", "CLASSIFICATION", "NUMEROTATION", "LOCALIZATION", "ORIENTATION" and "OBTENTION", that postulate that objects, processes and relations have to be identified, described, classified, numerotated, localized, orientated, and that the way they are obtained has to be determined. These axioms constitute the Formal IMGT-ONTOLOGY, also designated as IMGT-Kaleidoscope. Through the example of the IG molecular synthesis, the concepts generated from the "IDENTIFICATION", "DESCRIPTION", "CLASSIFICATION" and "NUMEROTATION" axioms are detailed with their main instances and semantic relations. The axioms have been essential for the conceptualization of the molecular immunogenetics knowledge and can be used to generate concepts for multi scale approaches at the molecule, cell, tissue, organ, organism or population level, emphasizing the generalization of the application domain. In that way the Formal IMGT-ONTOLOGY represents a paradigm for the elaboration of ontologies in system biology.  相似文献   

4.
The aim of this review is to present a concise overview of all data available on the immunogenetics of Chlamydia trachomatis infections, both sexually transmitted urogenital and ocular infections. Currently, candidate gene approaches are used to identify genes related to the susceptibility to and severity of C. trachomatis infections. The main focus in the review will be on data obtained by the study of human cohorts.  相似文献   

5.
Is MHC enough for understanding wildlife immunogenetics?   总被引:1,自引:0,他引:1  
Along with reproductive success and predation, infectious disease is a major demographic and evolutionary driver of natural populations. To understand the evolutionary impacts of disease, research has focussed on the major histocompatibility complex (MHC), a genetic region involved in antigen presentation. There is a pressing need for the broader research currently conducted on traditional vertebrate models to be transferred to wildlife. Incorporating such knowledge will enable a broader understanding of the levels at which natural selection can act on immunity. We propose two new approaches to wildlife immunogenetics and discuss the challenges of conducting such studies. At a time when novel pathogens are increasingly emerging in natural populations, these new approaches are integral to understanding disease dynamics and assessing epidemic risks.  相似文献   

6.
This review of the immunogenetics of cord blood transplantation attempts to highlight the connections between classical studies and conclusions of the tissue transplantation field as a scholarly endeavor, exemplified by the work of Professor Hoecker, with the motivations and some recent and key results of clinical cord blood transplantation. The authors review the evolution of understanding of transplantation biology and find that the results of the application of cord blood stem cells to Transplantation Medicine are consistent with the careful experiments of the pioneers in the field, from the results of tumor and normal tissue transplants, histocompatibility immunogenetics, to cell and molecular biology. Recent results of the National Cord Blood Program of the New York Blood Center describe the functioning in cord blood transplantation of factors, well known in transplantation immunogenetics, like the Fl anti-parent effect and the tolerance-like status of donors produced by non-inherited maternal HLA antigens. Consideration of these factors in donor selection strategies can improve the prognosis of transplantation by characterizing "permissibility" in HLA-incompatible transplantation thereby increasing the probability of survival and reducing the likelihood of leukemic relapse.  相似文献   

7.
IMGT-Choreography for immunogenetics and immunoinformatics   总被引:1,自引:0,他引:1  
IMGT, the international ImMunoGeneTics information system (http://imgt.cines.fr), was created in 1989 at Montpellier, France. IMGT is a high quality integrated knowledge resource specialized in immunoglobulins (IG), T cell receptors (TR), major histocompatibility complex (MHC) of human and other vertebrates, and related proteins of the immune system (RPI) which belong to the immunoglobulin superfamily (IgSF) and MHC superfamily (MhcSF). IMGT provides a common access to standardized data from genome, proteome, genetics and three-dimensional structures. The accuracy and the consistency of IMGT data are based on IMGT-ONTOLOGY, a semantic specification of terms to be used in immunogenetics and immunoinformatics. IMGT-ONTOLOGY has been formalized using XML Schema (IMGT-ML) for interoperability with other information systems. We are developing Web services to automatically query IMGT databases and tools. This is the first step towards IMGT-Choreography which will trigger and coordinate dynamic interactions between IMGT Web services to process complex significant biological and clinical requests. IMGT-Choreography will further increase the IMGT leadership in immunogenetics and immunoinformatics for medical research (repertoire analysis of the IG antibody sites and of the TR recognition sites in autoimmune and infectious diseases, AIDS, leukemias, lymphomas, myelomas), veterinary research (IG and TR repertoires in farm and wild life species), genome diversity and genome evolution studies of the adaptive immune responses, biotechnology related to antibody engineering (single chain Fragment variable (scFv), phage displays, combinatorial libraries, chimeric, humanized and human antibodies), diagnostics (detection and follow up of residual diseases) and therapeutical approaches (grafts, immunotherapy, vaccinology). IMGT is freely available at http://imgt.cines.fr.  相似文献   

8.
This review summarizes the previous and current literature on the immunogenetics of idiopathic inflammatory myopathy (IIM) and updates the research progress that has been made over the past decade. A substantial part of the genetic risk for developing adult- and juvenile-onset IIM lies within the major histocompatibility complex (MHC), and a tight relationship exists between individual human leukocyte antigen alleles and specific serological subtypes, which in turn dictate clinical disease phenotypes. Multiple genetic regions outside of the MHC are increasingly being identified in conferring IIM disease susceptibility. We are still challenged with the task of studying a serologically and clinically heterogeneous disorder that is rarer by orders of magnitude than the likes of rheumatoid arthritis. An ongoing and internationally coordinated IIM genome-wide association study may provide further insights into IIM immunogenetics.  相似文献   

9.

Background  

It is hypothesized that common, complex diseases may be due to complex interactions between genetic and environmental factors, which are difficult to detect in high-dimensional data using traditional statistical approaches. Multifactor Dimensionality Reduction (MDR) is the most commonly used data-mining method to detect epistatic interactions. In all data-mining methods, it is important to consider internal validation procedures to obtain prediction estimates to prevent model over-fitting and reduce potential false positive findings. Currently, MDR utilizes cross-validation for internal validation. In this study, we incorporate the use of a three-way split (3WS) of the data in combination with a post-hoc pruning procedure as an alternative to cross-validation for internal model validation to reduce computation time without impairing performance. We compare the power to detect true disease causing loci using MDR with both 5- and 10-fold cross-validation to MDR with 3WS for a range of single-locus and epistatic disease models. Additionally, we analyze a dataset in HIV immunogenetics to demonstrate the results of the two strategies on real data.  相似文献   

10.
In this article we define vaccinomics as the integration of immunogenetics and immunogenomics with systems biology and immune profiling. Vaccinomics is based on the use of cutting edge, high-dimensional (so called "omics") assays and novel bioinformatics approaches to the development of next-generation vaccines and the expansion of our capabilities in individualized medicine. Vaccinomics will allow us to move beyond the empiric "isolate, inactivate, and inject" approach characterizing past vaccine development efforts, and toward a more detailed molecular and systemic understanding of the carefully choreographed series of biological processes involved in developing viral vaccine-induced "immunity." This enhanced understanding will then be applied to overcome the obstacles to the creation of effective vaccines to protect against pathogens, particularly hypervariable viruses, with the greatest current impact on public health. Here we provide an overview of how vaccinomics will inform vaccine science, the development of new vaccines and/or clinically relevant biomarkers or surrogates of protection, vaccine response heterogeneity, and our understanding of immunosenescence.  相似文献   

11.
Graves' disease (GD) is the most common cause of thyrotoxicosis and often involves the orbits. Graves' ophthalmopathy (GO), also known as Thyroid Eye Disease (TED), can be clinically significant and advance to sight-threatening stages. Our knowledge of the immunogenetic pathophysiology of GO is rapidly expanding. The present review is an attempt to summarize the current state of knowledge on the immunogenetics of GO. First we briefly review the epidemiology and clinical importance of GO, and then we describe in detail the macromolecular pathogenesis and finally immunogenetics of GO. Discrepancies between the results from various reports and the limitations of the available data are discussed. In particular, there is a scarcity of data from non-Asian populations. While several studies have demonstrated significant associations between polymorphisms in certain genes (especially CTLA-4, HLA-DRB-1, and TNF-α), there is a need for studies that investigate the relationship between polymorphisms and both serum and local concentrations of the resulting proteins. A complete understanding of GO susceptibility and pathogenesis has not been yet possible due to a number of important knowledge gaps that need to be filled by future research.  相似文献   

12.
Of the many minor histocompatibility (H) Ags that have been detected in mice, the ability to induce graft vs host disease (GVHD) after bone marrow transplantation is restricted to a limited number of immunodominant Ags. One such murine Ag, B6dom1, is presented by the H2-Db MHC class I molecule. We present biochemical evidence that the natural B6dom1 peptide is indistinguishable from AAPDNRETF, and we show that this peptide can be isolated from a wide array of tissues, with highest levels from the lymphoid organs and lung. Moreover, we employ a novel, somatic cell selection technique involving CTL-mediated immunoselection coupled with classical genetics, to show that B6dom1 is encoded by the H7 minor H locus originally discovered approximately 40 years ago. These studies provide a molecular genetic framework for understanding B6dom1, and exemplify the fact that mouse minor H loci that encode immunodominant CTL epitopes can correspond to classical H loci originally identified by their ability to confer strong resistance to tumor transplantation. Additionally, these studies demonstrate the utility of somatic cell selection approaches toward resolving H Ag immunogenetics.  相似文献   

13.
IMGT, the International ImMunoGeneTics information system ( http://imgt.cines.fr ), was created in 1989 by the Laboratoire d'ImmunoGénétique Moléculaire (LIGM) (Université Montpellier 2 and CNRS) at Montpellier, France, in order to standardize and manage the complexity of immunogenetics data. IMGT is recognized as the international reference in immunogenetics and immunoinformatics. IMGT is a high quality integrated knowledge resource, specialized in (i) the immunoglobulins (IG), T cell receptors (TR), major histocompatibility complex (MHC) of human and other vertebrates; (ii) proteins that belong to the immunoglobulin superfamily (IgSF) and to the MHC superfamily (MhcSF); and (iii) related proteins of the immune systems (RPI) of any species. IMGT provides a common access to standardized data from genome, proteome, genetics, and three-dimensional (3D) structures for the IG, TR, MHC, IgSF, MhcSF, and RPI. IMGT interactive on-line tools are provided for genome, sequence, and 3D structure analysis. IMGT Web resources comprise 10,000 HTML pages of synthesis and knowledge (IMGT Scientific chart, IMGT Repertoire, IMGT Education, etc.) and external links (IMGT Bloc-notes and IMGT other accesses).  相似文献   

14.
Genomewide association studies (GWAS) have proven a powerful hypothesis-free method to identify common disease-associated variants. Even quite large GWAS, however, have only at best identified moderate proportions of the genetic variants contributing to disease heritability. To provide cost-effective genotyping of common and rare variants to map the remaining heritability and to fine-map established loci, the Immunochip Consortium has developed a 200,000 SNP chip that has been produced in very large numbers for a fraction of the cost of GWAS chips. This chip provides a powerful tool for immunogenetics gene mapping.  相似文献   

15.
SLAⅠ类基因最新命名进展   总被引:2,自引:2,他引:0  
李波  李华  李学伟  于辉  李彬 《遗传》2006,28(5):606-610


介绍了国际动物遗传学会(ISAG)SLA命名委员会2004年制定的依据基因测序及进化树分析的SLAⅠ类基因系统命名法,详细叙述了对SLAⅠ类基因座、等位基因组、等位基因及单倍型的命名规则,其中概括介绍了命名新等位基因对基因序列的具体要求。SLAⅠ类基因系统命名法对于人类移植免疫学、猪免疫遗传及抗病育种具有重要意义。  相似文献   

16.
IMGT, the International ImMunoGeneTics database.   总被引:2,自引:0,他引:2       下载免费PDF全文
IMGT, the international ImMunoGeneTics database, is an integrated database specialising in Immunoglobulins (Ig), T cell Receptors (TcR) and Major Histocompatibility Complex (MHC) of all vertebrate species, created by Marie-Paule Lefranc, CNRS, Montpellier II University, Montpellier, France (lefranc@ligm.crbm.cnrs-mop.fr). IMGT includes three databases: LIGM-DB (for Ig and TcR), MHC/HLA-DB and PRIMER-DB (the last two in development). IMGT comprises expertly annotated sequences and alignment tables. LIGM-DB contains more than 23 000 Immunoglobulin and T cell Receptor sequences from 78 species. MHC/HLA-DB contains Class I and Class II Human Leucocyte Antigen alignment tables. An IMGT tool, DNAPLOT, developed for Ig, TcR and MHC sequence alignments, is also available. IMGT works in close collaboration with the EMBL database. IMGT goals are to establish a common data access to all immunogenetics data, including nucleotide and protein sequences, oligonucleotide primers, gene maps and other genetic data of Ig, TcR and MHC molecules, and to provide a graphical user friendly data access. IMGT has important implications in medical research (repertoire in autoimmune diseases, AIDS, leukemias, lymphomas), therapeutical approaches (antibody engineering), genome diversity and genome evolution studies. IMGT is freely available at http://imgt.cnusc.fr:8104  相似文献   

17.
18.
IMGT, the international ImMunoGeneTics database, freely available at http://imgt.cines.fr:8104, was created in 1989 at the Université Montpellier II, CNRS, Montpellier, France, and is a high quality integrated information system specialising in immunoglobulins, T cell receptors and major histocompatibility complex molecules of human and other vertebrates. IMGT provides researchers and clinicians with a common access to all nucleotide, protein, genetic and structural immunogenetics data. This information is of high value for medical and veterinary research, biotechnology related to antibody and T cell receptor engineering, genome diversity and evolution studies of the immune response.  相似文献   

19.
Malaria parasites are a major cause of human mortality in tropical countries and a potential threat for wildlife, as witnessed by the malaria-induced extinction of naive Hawaiian avifauna. Identifying resistance mechanisms is therefore crucial both for human health and wildlife conservation. Patterns of malaria resistance are known to be highly polygenic in both humans and mice, with marked contributions attributed to major histocompatibility (Mhc) genes. Here we show that specific Mhc variants are linked to both increased resistance and susceptibility to malaria infection in a wild passerine species, the house sparrow (Passer domesticus). In addition, links between host immunogenetics and resistance to malaria involved population-specific alleles, suggesting local adaptation in this host-parasite interaction. This is the first evidence for a population-specific genetic control of resistance to malaria in a wild species.  相似文献   

20.
MOTIVATION: The discovery of patterns shared by several sequences that differ greatly is a basic task in sequence analysis, and still a challenge. Several methods have been developed for detecting patterns. Methods commonly used for motif search include the Gibbs sampler, Expectation-Maximization (EM) algorithm and some intuitive greedy approaches. One cannot guarantee the optimality of the result produced by the Gibbs sampler in a single run. The deterministic EM methods tend to get trapped by local optima. Solutions found by greedy approaches are rarely sufficiently good. RESULTS: A simple model describing a motif or a portion of local multiple sequence alignment is the weight matrix model, in which a motif is characterized with position-specific probabilities. Two substitution matrices are proposed to relate the sequence similarity with the weight matrix. Combining the substitution matrix and weight matrix, we examine three typical sets of protein sequences with increasing complexity. At a low score threshold for pair similarity, sliding windows are compared with a seed window to find the score sum, which provides a measure of statistical significance for multiple sequence comparison. Such a similarity analysis reveals many aspects of motifs. Blocks determined by similarity can be used to deduce a primary weight matrix or an improved substitution matrix. The algorithm successfully obtains the optimal solution for the test sets by just greedy iteration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号