首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A psychrophilic bacterium, Cytophaga sp. strain KUC-1, that abundantly produces a NAD(+)-dependent L-threonine dehydrogenase was isolated from Antarctic seawater, and the enzyme was purified. The molecular weight of the enzyme was estimated to be 139,000, and that of the subunit was determined to be 35,000. The enzyme is a homotetramer. Atomic absorption analysis showed that the enzyme contains no metals. In these respects, the Cytophaga enzyme is distinct from other L-threonine dehydrogenases that have thus far been studied. L-Threonine and DL-threo-3-hydroxynorvaline were the substrates, and NAD(+) and some of its analogs served as coenzymes. The enzyme showed maximum activity at pH 9.5 and at 45 degrees C. The kinetic parameters of the enzyme are highly influenced by temperatures. The K(m) for L-threonine was lowest at 20 degrees C. Dead-end inhibition studies with pyruvate and adenosine-5'-diphosphoribose showed that the enzyme reaction proceeds via the ordered Bi Bi mechanism in which NAD(+) binds to an enzyme prior to L-threonine and 2-amino-3-oxobutyrate is released from the enzyme prior to NADH. The enzyme gene was cloned into Escherichia coli, and its nucleotides were sequenced. The enzyme gene contains an open reading frame of 939 bp encoding a protein of 312 amino acid residues. The amino acid sequence of the enzyme showed a significant similarity to that of UDP-glucose 4-epimerase from Staphylococcus aureus and belongs to the short-chain dehydrogenase-reductase superfamily. In contrast, L-threonine dehydrogenase from E. coli belongs to the medium-chain alcohol dehydrogenase family, and its amino acid sequence is not at all similar to that of the Cytophaga enzyme. L-Threonine dehydrogenase is significantly similar to an epimerase, which was shown for the first time. The amino acid residues playing an important role in the catalysis of the E. coli and human UDP-glucose 4-epimerases are highly conserved in the Cytophaga enzyme, except for the residues participating in the substrate binding.  相似文献   

2.
We found the occurrence of valine dehydrogenase in the cell extract of a psychrophilic bacterium, Cytophaga sp. KUC-1, isolated from Antarctic seawater and purified the enzyme to homogeneity. The molecular mass of the enzyme was determined to be approximately 154 kDa by gel filtration and that of the subunit was 43 kDa by SDS/PAGE: the enzyme was a homotetramer. The enzyme required NAD+ as a coenzyme, and catalyzed the oxidative deamination of L-valine, L-isoleucine, L-leucine and the reductive amination of alpha-ketoisovalerate, alpha-ketovalerate, alpha-ketoisocaproate, and alpha-ketocaproate. The reaction proceeds through an iso-ordered bi-bi mechanism. The enzyme was highly susceptible to heat treatment and the half-life at 45 degrees C was estimated to be 2.4 min. The kcat/Km (micro(-1).s(-1)) values for L-valine and NAD+ at 20 degrees C were 27.48 and 421.6, respectively. The enzyme showed pro-S stereospecificity for hydrogen transfer at the C4 position of the nicotinamide moiety of coenzyme. The gene encoding valine dehydrogenase was cloned into Escherichia coli (Novablue), and the primary structure of the enzyme was deduced on the basis of the nucleotide sequence of the gene encoding the enzyme. The enzyme contains 370 amino-acid residues, and is highly homologous with S. coelicolor ValDH (identity, 46.7%) and S. fradiae ValDH (43.1%). Cytophaga sp. KUC-1 ValDH contains much lower numbers of proline and arginine residues than those of other ValDHs. The changes probably lead to an increase in conformational flexibility of the Cytophaga enzyme molecule to enhance the catalytic activity at low temperatures.  相似文献   

3.
Flavobacterium psychrophilum is a fish pathogen that commonly affects salmonids. This bacterium produced an extracellular protease with an estimated molecular mass of 55 kDa. This enzyme, designated Fpp1 (F. psychrophilum protease 1), was purified to electrophoretic homogeneity from the culture supernatant by using ammonium sulfate precipitation, ion-exchange chromatography, hydrophobic chromatography, and size exclusion chromatography. On the basis of its biochemical characteristics, Fpp1 can be included in the group of metalloproteases that have an optimum pH for activity of 6.5 and are inhibited by 1,10-phenanthroline, EDTA, or EGTA but not by phenylmethylsulfonyl fluoride. Fpp1 activity was dependent on calcium ions not only for its activity but also for its thermal stability. In addition to calcium, strontium and barium can activate the protein. The enzyme showed typical psychrophilic behavior; it had an activation energy of 5.58 kcal/mol and was more active at temperatures between 25 and 40 degrees C, and its activity decreased rapidly at 45 degrees C. Fpp1 cleaved gelatin, laminin, fibronectin, fibrinogen, collagen type IV, and, to a lesser extent, collagen types I and II. Fpp1 also degraded actin and myosin, basic elements of the fish muscular system. The presence of this enzyme in culture media was specifically dependent on the calcium concentration. Fpp1 production started early in the exponential growth phase and reached a maximum during this period. Addition of calcium during the stationary phase did not induce Fpp1 production at all. Besides calcium and the growth phase, temperature also seems to play a role in production of Fpp1. In this study we found that production of Fpp1 depends on factors such as calcium concentration, growth phase of the culture, and temperature. The combination of these parameters corresponds to the combination in the natural host during outbreaks of disease caused by F. psychrophilum. Consequently, we suggest that environmental host factors govern Fpp1 production.  相似文献   

4.
Isocitrate lyase (ICL) and malate synthase (MS) of a psychrophilic marine bacterium, Colwellia maris, were purified to electrophoretically homogeneous state. The molecular mass of the ICL was found to be 240 kDa, composed of four identical subunits of 64.7 kDa. MS was a dimeric enzyme composed of 76.3 kDa subunits. N-Terminal amino acid sequences of the ICL and MS were analyzed. Purified ICL had its maximum activity at 20 degrees C and was rapidly inactivated at the temperatures above 30 degrees C, but the optimum temperature for the activity of MS was 45 degrees C. NaCl was found to protect ICL from heat inactivation above 30 degrees C, but the salt did not stabilize MS. Effects of temperatures on the kinetic parameters of both the enzymes were examined. The Km for the substrate (isocitrate) of ICL was decreased with decreasing temperature. On the other hand, the Km for the substrate (glyoxylate) of MS was increased with decreasing temperature. The calculated value of free energy of activation of ICL was on the same level as that of MS.  相似文献   

5.
The malate dehydrogenase (MDH) from Streptomyces aureofaciens was purified to homogeneity and its physical and biochemical properties were studied. Its amino-terminal sequence perfectly matched the amino-terminal sequence of the MDH from Streptomyces atratus whose biochemical characteristics have never been determined. The molecular mass of the native enzyme, estimated by size-exclusion chromatography, was 70 kDa. The protein was a homodimer, with a 38-kDa subunit molecular mass. It showed a strong specificity for NADH and was much more efficient for the reduction of oxaloacetate than for the oxidation of malate, with a pH optimum of 8. Unlike MDHs from other sources, it was not inhibited by excess oxaloacetate. This first complete functional characterization of an MDH from Streptomyces shows that the enzyme is very similar in many respects to other bacterial MDHs with the notable exception of a lack of inhibition by excess substrate.  相似文献   

6.
Malate dehydrogenase (l-malate:NAD+ oxidoreductase, EC 1.1.1.37) has been purified about 480-fold from crude extract of the facultative phototrophic bacterium, Rhodopseudomonas capsulata by only two purification steps, involving Red-Sepharose affinity chromatography. The enzyme has a molecular mass of about 80 kDa and consists of two subunits with identical molecular mass (35 kDa). The enzyme is susceptible to heat inactivation and loses its activity completely upon incubation at 40°C for 10 min. Addition of NAD+, NADH and oxaloacetate, but not l-malate, to the enzyme solution stabilized the enzyme. The enzyme catalyzes exclusively the oxidation of l-malate, and the reduction of oxaloacetate and ketomalonate in the presence of NAD+ and NADH, respectively, as the coenzyme. The pH optima are around 9.5 for the l-malate oxidation, and 7.75–8.5 and 4.3–7.0 for the reduction of oxaloacetate and ketomalonate, respectively. The Km values were determined to be 2.1 mM for l-malate, 48 μM for NAD+, 85 μM for oxaloacetate, 25 μM for NADH and 2.2 mM for ketomalonate. Initial velocity and product inhibition patterns of the enzyme reactions indicate a random binding of the substrates, NAD+ and l-malate, to the enzyme and a sequential release of the products: NADH is the last product released from the enzyme in the l-malate oxidation.  相似文献   

7.
The alpha-amylase excreted by the antarctic bacterium Alteromonas haloplanctis was purified and the corresponding amy gene was cloned and sequenced. N- and C-terminal amino acid sequencing were used to establish the primary structure of the mature A. haloplanctis alpha-amylase which is composed of 453 amino acids with a predicted Mr of 49,340 and a pI of 5.5. Three Ca2+ ions are bound per molecule and its activity is modulated by chloride ions. Within the four consensus sequences, Asp-174, Glu-200, and Asp-264 are the proposed catalytic residues. The psychrotrophic A. haloplanctis alpha-amylase is characterized by a high amylolytic activity at low temperatures, a reduced apparent optimal temperature, and typical thermodynamic activation parameters A. haloplanctis alpha-amylase has also a low thermal stability as demonstrated by the temperature effect on both activity and secondary structure. It is suggested that structure flexibility and lower sensitivity of secondary structure to temperature variations in the low temperature range are the main structural adaptations of the psychrotrophic enzyme. The unusual stacking of small amino acids around the catalytic residues is proposed as a factor inducing active site flexibility and concomitant high activity of the enzyme at low temperatures.  相似文献   

8.
The gene encoding alanine dehydrogenase (AlaDH; EC 1.4.1.1) from the marine psychrophilic bacterium strain PA-43 was cloned, sequenced, and overexpressed in Escherichia coli. The primary structure was deduced on the basis of the nucleotide sequence. The enzyme subunit contains 371 amino acid residues, and the sequence is 90% and 77% identical, respectively, to AlaDHs from Shewanella Ac10 and Vibrio proteolyticus. The half-life of PA-43 AlaDH at 52 degrees C is 9 min, and it is thus more thermolabile than the AlaDH from Shewanella Ac10 or V. proteolyticus. The enzyme showed strong specificity for NAD(+) and l-alanine as substrates. The apparent K(m) for NAD(+) was temperature dependent (0.04 mM-0.23 mM from 15 degrees C to 55 degrees C). A comparison of the PA-43 deduced amino acid sequence to the solved three-dimensional structure of Phormidium lapideum AlaDH showed that there were likely to be fewer salt bridges in the PA-43 enzyme, which would increase enzyme flexibility and decrease thermostability. The hydrophobic surface character of the PA-43 enzyme was greater than that of P. lapideum AlaDH, by six residues. However, no particular modification or suite of modifications emerged as being clearly responsible for the psychrophilic character of PA-43 AlaDH.  相似文献   

9.
This review describes psychrophilic and psychrotolerant microorganisms, which are abundant in different kinds of environments. Their ecophysiological properties and strategies for survival are reviewed in relation to their occurrences in marine and terrestrial environments, with special reference to the deep-sea, the sea ice and the permafrost soils.  相似文献   

10.
Abstract Malate dehydrogenase from the syntrophic propionate-oxidizing bacterium strain MPOB was purified 42-fold. The native enzyme had an apparent molecular mass of 68 kDa and consisted of two subunits of 35 kDa. The enzyme exhibited maximum activity with oxaloacetate at pH 8.5 and 60 °C. The K m for oxaloacetate was 50 μM and for NADH 30 μM. The K m values for l-malate and NAD were 4 and 1.1 mM, respectively. Substrate inhibition was found at oxaloacetate concentrations higher than 250 μM. The N-terminal amino acid sequence of the enzyme was similar to the sequences of a variety of other malate dehydrogenases from plants, animals and micro-organisms.  相似文献   

11.
Membrane-bound NAD(P)-independent malate dehydrogenase (EC 1.1.99.16) was purified to homogeneity from the membrane of thermotolerant Acetobacter sp. SKU 14, an isolate from Thailand. The enzyme was solubilized from the membrane fraction of glycerol-grown cells with 1% Triton X-100 in the presence of 0.1 M KCl, and purified to homogeneity through steps of column chromatographies on DEAE-Sephadex A-50 and DEAE-Toyopearl in the presence of 0.1% Triton X-100. The purified enzyme showed a single protein band in both native-PAGE and SDS-PAGE. The enzyme was a homodimer with a molecular mass of 60 kDa subunit and had noncovalently bound FAD as the cofactor. The enzyme was stable over pH 5 and had its maximum activity at pH 11.0 when ferricyanide was used as an electron acceptor. The enzyme activity was elevated by the addition of ammonium ions. The substrate specificity was very strict to only L-malate, of which the apparent Km was 10 mM and over 20 compounds involving D-malate were not oxidized by the enzyme.  相似文献   

12.
Mannitol 2-dehydrogenase (MDH) catalyzes the pyridine nucleotide dependent reduction of fructose to mannitol. Lactobacillus intermedius (NRRL B-3693), a heterofermentative lactic acid bacterium (LAB), was found to be an excellent producer of mannitol. The MDH from this bacterium was purified from the cell extract to homogeneity by DEAE Bio-Gel column chromatography, gel filtration on Bio-Gel A-0.5m gel, octyl-Sepharose hydrophobic interaction chromatography, and Bio-Gel Hydroxyapatite HTP column chromatography. The purified enzyme (specific activity, 331 U/mg protein) was a heterotetrameric protein with a native molecular weight (MW) of about 170 000 and subunit MWs of 43 000 and 34 500. The isoelectric point of the enzyme was at pH 4.7. Both subunits had the same N-terminal amino acid sequence. The optimum temperature for the reductive action of the purified MDH was at 35 degrees C with 44% activity at 50 degrees C and only 15% activity at 60 degrees C. The enzyme was optimally active at pH 5.5 with 50% activity at pH 6.5 and only 35% activity at pH 5.0 for reduction of fructose. The optimum pH for the oxidation of mannitol to fructose was 7.0. The purified enzyme was quite stable at pH 4.5-8.0 and temperature up to 35 degrees C. The K(m) and V(max) values of the enzyme for the reduction of fructose to mannitol were 20 mM and 396 micromol/min/mg protein, respectively. It did not have any reductive activity on glucose, xylose, and arabinose. The activity of the enzyme on fructose was 4.27 times greater with NADPH than NADH as cofactor. This is the first highly NADPH-dependent MDH (EC 1.1.1.138) from a LAB. Comparative properties of the enzyme with other microbial MDHs are presented.  相似文献   

13.
Catalase from Bacillus sp. N2a (BNC) isolated from Antarctic seawater was purified to homogeneity. BNC has a molecular mass of about 230 kDa and is composed of four identical subunits of 56 kDa. The catalase showed optimal activity at 25 degrees C and at a pH range of 6-11. The enzyme could be inhibited by azide, hydroxylamine, and mercaptoethanol. These characteristics suggested that BNC is a small-subunit monofunctional catalase. The activation energy of BNC was 13 kJ/mol and the apparent kcat/Km values were 3.6 x 10(6) and 4 x 10(6) L.mol(-1).s(-1) at 4 and 25 degrees C, respectively. High catalytic efficiency of BNC at low temperatures enables this bacterium to scavenge H2O2 efficiently. BNC exhibited activation energy, catalytic efficiency, and thermostability comparable with some mesophilic homologues. Such similarity of enzymatic characteristics to mesophilic homologues, although uncommon among the cold-adapted enzymes in general, has also been observed in other psychrophilic small-subunit monofunctional catalases.  相似文献   

14.
Malate dehydrogenase from Escherichia coli has been crystallized with polyethylene glycol and citrate buffer at pH 5.7. The enzyme was obtained from an E. coli strain in which the chromosomal malate dehydrogenase gene was contained on a pBR322 vector. Two types of crystals have been observed; a monoclinic C2 form and an orthorhombic C222(1) form, which is found infrequently. Monoclinic crystals were used as seeds in several rounds of crystallization until large crystals suitable for diffraction analysis were available. A complete X-ray data set to 2.0 A has been collected.  相似文献   

15.
《Insect Biochemistry》1984,14(3):359-368
A purification scheme for the cytoplasmic form of malate dehydrogenase (s-MDH) of Drosophila melanogaster is presented which is superior to any previously reported method. In addition, this scheme can also be used to obtain alcohol dehydrogenase (ADH) and FDP aldolase. Gel filtration experiments reveal an oligomeric molecular weight of 69,000 for s-MDH, and polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate indicates subunit molcular weights of 32,100 for s-MDH, 24,600 for ADH and 34,000 for FDP aldolase. The amino acid composition of Drosophila melanogaster s-MDH and FDP aldolase are reported.  相似文献   

16.
Summary Chinese hamster x American mink somatic cell hybrids were obtained and examined for chromosome content and expression of mink malate dehydrogenase, NADP (MOD-1; EC 1.1.1.40), malate dehydrogenase, NAD (MOR-1; EC 1.1.1.37), glucose-6-phosphate dehydrogenase (G6PD; EC 1.1.1.49) and hypoxanthine phosphoribosyltransferase (HPRT; EC 2.4.2.8). All the hybrid clones examined were found to segregate mink chromosomes. A clone panel containing 25 clones was set up. The possibilities and limitations of this panel for mink gene mapping are analysed. Using this panel, it is feasible to rapidly map genes located on chromosomes 1–13 and to provisionally assign genes located on chromosome 14 and the X. Based on the data obtained, the genes for MOD-1 and MOR-1 were firmly assigned to mink chromosomes 1 and 11, respectively, and the genes for G6PD and HPRT were provisionally assigned to the X.  相似文献   

17.
There is a considerable potential of cold-active biocatalysts for versatile industrial applications. A psychrophilic bacterial strain, Shewanella arctica 40-3, has been isolated from arctic sea ice and was shown to exhibit pullulan-degrading activity. Purification of a monomeric, 150-kDa pullulanase was achieved using a five-step purification approach. The native enzyme was purified 50.0-fold to a final specific activity of 3.0 U/mg. The enzyme was active at a broad range of temperature (10–50 °C) and pH (5–9). Optimal activity was determined at 45 °C and pH 7. The presence of various metal ions is tolerated by the pullulanase, while detergents resulted in decreased activity. Complete conversion of pullulan to maltotriose as the sole product and N-terminal amino acid sequence indicated that the enzyme is a type-I pullulanase and belongs to rarely characterized pullulan-degrading enzymes from psychrophiles.  相似文献   

18.
A cryptic plasmid found at high copy number was isolated from Flavobacterium sp. KP1, a psychrophilic Gram-negative bacterium, cloned, and sequenced. The sequence will appear in the DDBJ/EMBL/GenBank databases under the accession number AB007196. The pFL1 plasmid is 2311 nucleotides in length with 32.7% GC content, and shows a distinctive nucleotide sequence without homology to other plasmids of similar length. The plasmid contains two open reading frames of significant length, ORFI and ORFII. ORFI encodes a protein similar to the replication proteins found in Gram-negative bacterial plasmids, Bacteroides fragilis plasmid pBI143 and Zymomonas mobilis plasmid pZM2. The putative translation product of ORFII shows homologies with plasmid recombination proteins found mainly in Gram-positive bacterial plasmids such as Staphylococcus aureus plasmid pT181.  相似文献   

19.
A Clostridium strain PXYL1 was isolated from a cold-adapted cattle manure biogas digester at 15 degrees C. It could grow at temperatures as low as 5 degrees C up to 50 degrees C with highest specific growth rate at 20 degrees C and is a psychrotroph. It produced extracellular hydrolytic enzymes namely xylanase, endoglucanase, beta-xylosidase, beta-glucosidase and filter paper cellulase, all of which had maximal activity at 20 degrees C. The induction of xylanase was highest on birch wood xylan (37 IU(mg protein)(-1)) compared with xylose (1.11 IU(mg protein)(-1)), cellobiose (1.43 IU(mg protein)(-1)) and glucose (no activity). The xylanase was thermolabile with a half-life of 30 min at 40 degrees C and 8 min at 50 degrees C but stable for over 2 h at 20 degrees C. The crude enzyme released reducing sugars (1.25 g l(-1)) from finger millet flour at 20 degrees C, while commercial food-grade xylanases showed no hydrolysis at this temperature. This is the first report of a Clostridium strain growing at 20 degrees C and producing an array of xylanolytic and cellulolytic enzymes, possessing low temperature optima of 20 degrees C, which may facilitate degradation of plant fibre under low-temperature conditions.  相似文献   

20.
Heparinase (EC 4.2.2.7) isolated from Flavobacterium heparinum was purified to homogeneity by a combination of hydroxylapatite chromatography, repeated gel filtration chromatography, and chromatofocusing. Homogeneity was established by the presence of a single band on both sodium dodecyl sulfate and acid-urea gel electrophoretic systems. Amino acid analysis shows that the enzyme contains relatively high amounts of lysine residues (9%) consistent with its cationic nature (pI 8.5) but contains only 4 cysteine residues/polypeptide. The molecular weight of heparinase was estimated to be 42,900 +/- 1,000 daltons by gel filtration and 42,700 +/- 1,200 daltons by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme is very specific, acting only on heparin and heparan monosulfate out of 12 similar polysaccharide substrates tested. It has an activity maximum at pH 6.5 and 0.1 M NaCl and a stability maximum at pH 7.0 and 0.15 M NaCl. The Arrhenius activation energy was found to be 6.3 kcal/mol. However, the enzyme is very sensitive to thermal denaturation and loses activity very rapidly at temperatures over 40 degrees C. Kinetic studies of the heparinase reaction at 37 degrees C gave a Km of 8.04 X 10(-6) M and a Vm of 9.85 X 10(-5) M/min at a protein concentration of 0.5 microgram/ml. By adapting batch procedures of hydroxylapatite and QAE (quaternary aminoethyl)-Sephadex chromatography, gram quantities of heparinase that is nearly free of catalytic enzyme contaminants can be purified in 4-5 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号