首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The 20,000-dalton light chain of turkey gizzard myosin is phosphorylated at two sites. Dual phosphorylation is observed when both intact myosin and isolated light chains are used as substrates. Phosphorylation of the second site is not observed at higher ionic strength (e.g. 0.35 M KCl). The first phosphorylation site (serine 19) is phosphorylated preferentially to the second site. The latter is phosphorylated more slowly than the first site, and its phosphorylation requires relatively high concentrations of myosin light chain kinase. It is suggested that myosin light chain kinase catalyzes the phosphorylation of both sites on the light chain, and several reasons are cited that make it unlikely that a contaminant kinase is involved. The second phosphorylation site is a threonine residue. Based on the results of limited proteolysis of the light chain, it is concluded that the threonine residue is close to serine 19, and possible locations are threonines 9, 10, and 18. At all concentrations of MgCl2, phosphorylation of the second site markedly increases the actin-activated ATPase activity of myosin and accelerates the superprecipitation response of myosin plus actin.  相似文献   

3.
Smooth muscle myosin light chain kinase (MLCK) is known to bind to thin filaments and myosin filaments. Telokin, an independently expressed protein with an identical amino acid sequence to that of the C-terminal domain of MLCK, has been shown to bind to unphosphorylated smooth muscle myosin. Thus, the functional significance of the C-terminal domain and the molecular morphology of MLCK were examined in detail. The C-terminal domain was removed from MLCK by alpha-chymotryptic digestion, and the activity of the digested MLCK was measured using myosin or the isolated 20-kDa light chain (LC20) as a substrate. The results showed that the digestion increased K(m) for myosin 3-fold whereas it did not change the value for LC20. In addition, telokin inhibited the phosphorylation of myosin by MLCK by increasing K(m) but only slightly increased K(m) for LC20. Electron microscopy indicated that MLCK was an elongated molecule but was flexible so as to form folded conformations. MLCK was crosslinked to unphosphorylated heavy meromyosin with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide in the absence of Ca(2+)/calmodulin (CaM), and electron microscopic observation of the products revealed that the MLCK molecule bound to the head-tail junction of heavy meromyosin. These results suggest that MLCK binds to the head-tail junction of unphosphorylated myosin through its C-terminal domain, where LC20 can be promptly phosphorylated through its catalytic domain following the Ca(2+)/CaM-dependent activation.  相似文献   

4.
The smooth muscle isoform of myosin light chain kinase (MLCK) is a Ca2+-calmodulin-activated kinase that is found in many tissues. It is particularly important for regulating smooth muscle contraction by phosphorylation of myosin. This review summarizes selected aspects of recent biochemical work on MLCK that pertains to its function in smooth muscle. In general, the focus of the review is on new findings, unresolved issues, and areas with the potential for high physiological significance that need further study. The review includes a concise summary of the structure, substrates, and enzyme activity, followed by a discussion of the factors that may limit the effective activity of MLCK in the muscle. The interactions of each of the many domains of MLCK with the proteins of the contractile apparatus, and the multi-domain interactions of MLCK that may control its behaviors in the cell are summarized. Finally, new in vitro approaches to studying the mechanism of phosphorylation of myosin are introduced.  相似文献   

5.
Phosphorylation of the regulatory light chain of myosin II by myosinlight chain kinase is important for regulating many contractile processes.Smooth muscle myosin light chain kinase has been shown to be associated withboth actin and myosin filaments in vitro and in vivo. In this report wedefine an actin binding region by using molecular deletions to generaterecombinant mutant proteins that were analyzed by co-sedimentation withF-actin. An actin binding region restricted to residues 2-42 in the animoterminus of the rabbit smooth muscle myosin light chain kinase wasidentified.  相似文献   

6.
Smooth muscle myosin light chain kinase (MLC kinase) was phosphorylated by smooth muscle calmodulin-dependent protein kinase II (CaM protein kinase II). When MLC kinase was free from calmodulin, two sites were phosphorylated. The phosphorylation at the one site was much faster than the other site; however, the phosphorylation at the first site was completely blocked by calmodulin binding to MLC kinase. Phosphorylation of MLC kinase by CaM protein kinase II increased the dissociation constant of MLC kinase for calmodulin about 10 times without changing the Vmax. The location of the phosphorylation sites was identified by isolating and sequencing the tryptic phosphopeptides of MLC kinase. The preferred site was identified as serine 512 and the second site as serine 525. These sites are the same as the sites phosphorylated by cAMP-dependent protein kinase.  相似文献   

7.
Stimulation of tracheal smooth muscle cells in culture with ionomycin resulted in a rapid increase in cytosolic free Ca2+ concentration ([Ca2+]i) and an increase in both myosin light chain kinase and myosin light chain phosphorylation. These responses were markedly inhibited in the absence of extracellular Ca2+. Pretreatment of cells with 1-[N-O-bis(5-isoquinolinesulfonyl)-N- methyl-L-tyrosyl]-4-phenylpiperazine (KN-62), a specific inhibitor of the multifunctional calmodulin-dependent protein kinase II (CaM kinase II), did not affect the increase in [Ca2+]i but inhibited ionomycin-induced phosphorylation of myosin light chain kinase at the regulatory site near the calmodulin-binding domain. KN-62 inhibited CaM kinase II activity toward purified myosin light chain kinase. Phosphorylation of myosin light chain kinase decreased its sensitivity to activation by Ca2+ in cell lysates. Pretreatment of cells with KN-62 prevented this desensitization to Ca2+ and potentiated myosin light chain phosphorylation. We propose that the Ca(2+)-dependent phosphorylation of myosin light chain kinase by CaM kinase II decreases the Ca2+ sensitivity of myosin light chain phosphorylation in smooth muscle.  相似文献   

8.
It has been shown that skeletal and smooth muscle myosin heads binding to actin results in the movement of smooth muscle tropomyosin, as revealed by a change in fluorescence resonance energy transfer between a fluorescence donor on tropomyosin and an acceptor on actin (Graceffa, P. (1999) Biochemistry 38, 11984-11992). In this work, tropomyosin movement was similarly monitored as a function of unphosphorylated and phosphorylated smooth muscle myosin double-headed fragment smHMM. In the absence of nucleotide and at low myosin head/actin ratios, only phosphorylated heads induced a change in energy transfer. In the presence of ADP, the effect of head phosphorylation was even more dramatic, in that at all levels of myosin head/actin, phosphorylation was necessary to affect energy transfer. It is proposed that the regulation of tropomyosin position on actin by phosphorylation of myosin heads plays a key role in the regulation of smooth muscle contraction. In contrast, actin-bound caldesmon was not moved by myosin heads at low head/actin ratios, as uncovered by fluorescence resonance energy transfer and disulfide cross-linking between caldesmon and actin. At higher head concentration caldesmon was dissociated from actin, consistent with the multiple binding model for the binding of caldesmon and myosin heads to actin (Chen, Y., and Chalovich, J. M. (1992) Biophys. J. 63, 1063-1070).  相似文献   

9.
Site-directed mutagenesis of smooth muscle myosin light chain kinase was applied to define its autoinhibitory domain. Mutants were all initiated at Leu-447 but contained varying lengths of C-terminal sequence. Those containing the complete C-terminal sequence to Glu-972 possessed kinase activities that were calmodulin-dependent. Removal of the putative inhibitory domain by truncation to Thr-778 resulted in generation of a constitutively active (calmodulin-independent) species. Thus, the inhibitory domain lies to the C-terminal side of Thr-778. Truncation to Lys-793 and to Trp-800 also resulted in constitutively active mutants, although the specific activity of the latter was less than the other mutants. None of the truncated mutants bound calmodulin. For each mutant, the Km values with respect to ATP and to the 20,000-dalton light chain were similar to values obtained with the native enzyme. The presence of the inhibitory domain was detected by activation of kinase activity following limited proteolysis with trypsin. Using this procedure, it was determined that the inhibitory domain was manifest only in the mutant truncated to Trp-800 and was absent from that ending at Lys-793. These results indicate that a critical region of the inhibitory domain is contained within the sequence Tyr-794 to Trp-800. This region overlaps with the calmodulin-binding site for five residues. Our assignment of the inhibitory sequence is consistent with autoinhibition via a pseudosubstrate domain.  相似文献   

10.
Activation of myosin light chain kinase is a prerequisite for smooth muscle activation. In this study, short peptide analogs of the phosphorylation site of the myosin light chain were studied for their effects on several contractile protein systems. The peptides inhibited phosphorylation of isolated ventricular and smooth muscle myosin light chains by smooth muscle myosin light chain kinase, but they were only weak inhibitors of phosphorylation of intact myosin and actomyosin. The peptides were also unable to block force development or myosin light chain phosphorylation in glycerol permeabilized fibers of swine carotid media. Apparently, the association of the myosin light chain with myosin changes its conformation such that substrate analogs which are potent inhibitors of the phosphorylation of isolated myosin light chains by myosin light chain kinase are ineffective at blocking phosphorylation of the intact molecule.  相似文献   

11.
Smooth muscle myosin light chain kinase is phosphorylated in vitro by protein kinase C purified from human platelets. When myosin light chain kinase which has calmodulin bound is phosphorylated by protein kinase C, 0.8-1.1 mol of phosphate is incorporated per mol of myosin light chain kinase with no effect on its enzyme activity. Phosphorylation of myosin light chain kinase with no calmodulin bound results in the incorporation of 2-2.4 mol of phosphate and significantly decreases the rate of myosin light chain kinase activity. The decrease in myosin light chain kinase activity is due to a 3.3-fold increase in the concentration of calmodulin necessary for the half-maximal activation of myosin light chain kinase. The sites phosphorylated by protein kinase C and the catalytic subunit of cAMP-dependent protein kinase were compared by two-dimensional peptide mapping following extensive tryptic digestion of phosphorylated myosin light chain kinase. The single site phosphorylated by protein kinase C when calmodulin is bound to myosin light chain kinase (site 3) is different from that phosphorylated by the catalytic subunit of cAMP-dependent protein kinase (site 1). The additional site that is phosphorylated by protein kinase C when calmodulin is not bound appears to be the same site phosphorylated by the catalytic subunit of cAMP-dependent protein kinase (site 2). These studies confirm the important role of site 2 in binding calmodulin to myosin light chain kinase. Sequential studies using both protein kinase C and the catalytic subunit of cAMP-dependent protein kinase suggest that the phosphorylation of site 1 also plays a part in decreasing the affinity of myosin light chain kinase for calmodulin.  相似文献   

12.
M P Walsh 《Biochemistry》1985,24(14):3724-3730
Myosin light chain kinase plays a central role in the regulation of smooth muscle contraction. The activity of this enzyme is controlled by protein-protein interaction (the Ca2+-dependent binding of calmodulin) and by phosphorylation catalyzed by cAMP-dependent protein kinase. The effects of these two regulatory mechanisms on the conformation of myosin light chain kinase and the locations of the phosphorylation sites, the calmodulin-binding site, and the active site have been probed by limited proteolysis. Phosphorylated and nonphosphorylated myosin light chain kinases were subjected to limited digestion by four proteases having different peptide bond specificities (trypsin, chymotrypsin, Staphylococcus aureus V8 protease, and thrombin), both in the presence and in the absence of bound calmodulin. The digests were compared in terms of gel electrophoretic pattern, distribution of phosphorylation sites, and Ca2+ dependence of kinase activity. A 24 500-dalton chymotryptic peptide containing both sites of phosphorylation was purified and tentatively identified as the amino-terminal peptide. The following conclusions can be drawn: neither phosphorylation nor calmodulin binding induces dramatic changes in the conformation of the kinase; the kinase contains two regions that are particularly susceptible to proteolytic cleavage, one located approximately 25 000 daltons from the amino terminus and the other near the center of the molecule; the two phosphorylation sites are located within 24 500 (probably 17 500) daltons of the amino terminus; the active site is located close to the center of the molecule; the calmodulin-binding site is located in the amino-terminal half of the molecule, between the sites of phosphorylation and the active site, and this region is very susceptible to cleavage by trypsin.  相似文献   

13.
Competition experiments using 9-anthroylcholine, a fluorescent dye that undergoes calmodulin-dependent binding by smooth muscle myosin light chain kinase [Malencik, D. A., Anderson, S. R., Bohnert, J. L., & Shalitin, Y. S. (1982) Biochemistry 21, 4031], demonstrate a strongly stabilizing interaction between the adenosine 5'-triphosphate and myosin light chain binding sites operating within the enzyme-calmodulin complex but probably not in the free enzyme. The interactions in the latter case may be even slightly destabilizing. The fluorescence enhancement in solutions containing 5.0 microM each of the enzyme and calmodulin is directly proportional to the maximum possible concentration of bound calcium on the basis of four calcium binding sites. Evidently, all four calcium binding sites of calmodulin contribute about equally to the enhanced binding of 9-anthroylcholine by the enzyme. Fluorescence titrations on solutions containing 1.0 microM enzyme plus calmodulin yield a Hill coefficient of 1.2 and K = 0.35 +/- 0.08 microM calcium. Three proteolytic fragments of smooth muscle myosin light chain kinase, apparent products of endogenous proteolysis, were isolated and characterized. All three possess calmodulin-dependent catalytic activity. Their interactions with 9-anthroylcholine, in both the presence and absence of calmodulin, are similar to those of the native enzyme. However, the stabilities of their complexes with calmodulin vary. The corresponding dissociation constants range from 2.8 nM for the native enzyme and 8.5 nM for the 96K fragment to approximately 15 nM for the 68K and 90K fragments [0.20 N KCl, 50 mM 3-(N-morpholino)propanesulfonic acid, and 1 mM CaCl2, pH 7.3, 25 degrees C]. A coupled fluorometric assay, modified from a spectrophotometric assay for adenosine cyclic 3',5'-phosphate dependent protein kinase [Cook, P. F., Neville, M. E., Vrana, K. E., Hartl, F. T., & Roskoski, R. (1982) Biochemistry 21, 5794], has provided the first continuous recordings of myosin light chain kinase phosphotransferase activity. The results show that smooth muscle myosin light chain kinase is a responsive enzyme, whose activity adjusts rapidly to changes in solution conditions.  相似文献   

14.
J Morita  R Takashi  M Ikebe 《Biochemistry》1991,30(39):9539-9545
The 20,000-dalton light chain of smooth muscle myosin was exchanged with exogenous light chain in a solution containing 0.5 M NaCl and 10 mM EDTA at 40 degrees C. The light chain was almost completely exchanged within 30 min under the above conditions. The exchange was markedly inhibited either below 37 degrees C or in the presence of Mg2+ concentrations higher than 10 microM. The 20,000-dalton light chain was selectively labeled of a single thiol (Cys-108) with 5-[[2-[(iodoacetyl)amino]ethyl]amino-naphthalene-1-sulfonic acid (1,5-IAEDANS). The labeled light chain was exchanged stoichiometrically into myosin and was used as a probe to investigate the conformation of smooth muscle myosin. The resulting myosin hybrids showed enzymatic properties virtually identical with those of the control, untreated myosin; i.e., actin-activated ATPase activity was dependent on the 20,000-dalton light-chain phosphorylation catalyzed by myosin light chain kinase, and the 10S-6S conformational transition of myosin correlating with the changes in ATPase was also affected either by the light-chain phosphorylation or by the change in the ionic strength. Steady-state fluorescence antisotropy measurements were performed by varying the temperature. The Perrin-Weber plots were constructed in order to obtain information about the average rotational mobility of the probe and to estimate the rotational correlation time for the AEDANS-myosin head. The fluorescence probe on the 20,000-dalton light chain was found to be quite immobile as indicated by its limiting anisotropy (A0 = 0.33).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The 20,000-dalton myosin light chain of intact pig carotid arteries was found to be rapidly labeled when the arterial muscle was incubated in physiological salt solution at 37 degrees C containing [32P]orthophosphate. Light chain phosphorylation in the intact muscle had a marked requirement for Ca2+ and was dependent upon the passive tension applied to the muscle. Norepinephrine- or KCl-induced contractures were associated with concomitant increases in light chain phosphorylation.  相似文献   

16.
A 5.6-kilobase cDNA clone has been isolated which includes the entire coding region for the myosin light chain kinase from rabbit uterine tissue. This cDNA, expressed in COS cells, encodes a Ca2+/calmodulin-dependent protein kinase with catalytic properties similar to other purified smooth muscle myosin light chain kinases. A module (TLKPVGNIKPAE), repeated sequentially 15 times, has been identified near the N terminus of this smooth muscle kinase. It is not present in chicken gizzard or rabbit skeletal muscle myosin light chain kinases. This repeat module and a subrepeat (K P A/V) are similar in amino acid content to repeated motifs present in other proteins, some of which have been shown to associate with chromatin structures. Immunoblot analysis after sodium dodecyl sulfate-polyacrylamide gel electrophoresis, used to compare myosin light chain kinase present in rabbit, bovine, and chicken smooth and nonmuscle tissues, showed that within each species both tissue types have myosin light chain kinases with indistinguishable molecular masses. These data suggest that myosin light chain kinases present in smooth and nonmuscle tissues are the same protein.  相似文献   

17.
18.
Substrate determinants for rabbit and chicken skeletal muscle myosin light chain kinases were examined with synthetic peptides. Both skeletal muscle myosin light chain kinases had similar phosphorylation kinetics with synthetic peptide substrates. Average kinetic constants for skeletal muscle myosin light chain heptadecapeptide, (formula; see text) where S(P) is phosphoserine, were Km, 2.3 microM and Vmax, 0.9 mumol/min/mg of enzyme. Km values were 122 and 162 microM for skeletal muscle peptides containing A-A for basic residues at positions 2-3 and 6-7, respectively. Average kinetic constants for smooth muscle myosin light chain peptide, (formula; see text), were Km, 1.4 microM and Vmax 27 mumol/min/mg of enzyme. Average Km values for the smooth muscle peptide, residues 11-23, were 10 microM which increased 6- and 11-fold with substitutions of alanine at residues 12 and 13, respectively. Vmax values decreased and Km values increased markedly by substitution of residue 16 with glutamate in the 11-23 smooth muscle tridecapeptide. Basic residues located 3 and 6-7 residues toward the NH2 terminus from phosphoserine in smooth muscle myosin light chain and 6-8 and 10-11 residues toward the NH2 terminus from phosphoserine in skeletal muscle myosin light chain appear to be important substrate determinants for skeletal muscle myosin light chain kinases. These properties are different from myosin light chain kinase from smooth muscle.  相似文献   

19.
To examine the functional role of the essential light chain (ELC) in the phosphorylation-dependent regulation of smooth muscle myosin, we replace the native light chain in smooth muscle myosin with bacterially expressed chimeric ELCs in which one or two of the four helix-loop-helix domains of chicken gizzard ELC were substituted by the corresponding domains of scallop (Aquipecten irradians) ELC. All of these myosins, regardless of the ELC mutations or regulatory light chain (RLC) phosphorylation, showed normal subunit constitutions and NH(4)(+)/EDTA-ATPase activities, both of which were similar to those of native myosin. None of the ELC mutations changed the actin-activated ATPase activity of myosin in the absence of RLC phosphorylation. However, in the presence of RLC phosphorylation, the substitution of domain 1 or 2 in the ELC significantly decreased the actin-activated ATPase activity, whereas the substitution of both of these domains did not change the activity. In contrast to myosin, the domain 2 substitution in the ELC did not affect the actin-activated ATPase activity of single-headed myosin subfragment 1. These results suggest an interhead interaction between domains 1 and 2 of ELCs which is required to attain the full actin-activated ATPase activity of smooth muscle myosin in the presence of RLC phosphorylation.  相似文献   

20.
Protein kinase C incorporates phosphate into two sites of myosin light chain kinase (MLC-kinase) in the absence of calmodulin. Phosphorylation is all but abolished in the presence of Ca2+ and calmodulin, suggesting that both sites of phosphorylation are close to the calmodulin binding site. The phosphorylation of MLC-kinase results in an approximately 10-fold increase in the dissociation constant of MLC-kinase for calmodulin. Following phosphorylation (2 mol/mol of enzyme) of MLC-kinase by protein kinase C, an additional 2 mol of phosphate can be incorporated into the MLC-kinase apoenzyme by the cAMP-dependent protein kinase. Different maps of phosphopeptides were obtained by tryptic hydrolysis from MLC-kinase preparations phosphorylated by each kinase. The phosphorylation sites for the cAMP-dependent kinase were located in a fragment of approximately 25,000 daltons. In contrast the phosphorylation sites for protein kinase C are found in a much smaller tryptic peptide. These results suggest that the phosphorylation sites on MLC-kinase are different for protein kinase C and for cAMP-dependent protein kinase. However, phosphorylation in both regions results in a reduced affinity for calmodulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号