首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lambert, Rodney K., and Peter D. Paré. Lungparenchymal shear modulus, airway wall remodeling, and bronchialhyperresponsiveness. J. Appl. Physiol.83(1): 140-147, 1997.When airways narrow, either through theaction of smooth muscle shortening or during forced expiration, thelung parenchyma is locally distorted and provides an increasedperibronchial stress that resists the narrowing. Although thisinterdependence has been well studied, the quantitative significance ofairway remodeling to interdependence has not been elucidated. We haveused an improved computational model of the bronchial response tosmooth muscle agonists to investigate the relationships between airwaynarrowing (as indicated by airway resistance), parenchymal shearmodulus, adventitial thickening, and inner wall thickening at lungrecoil pressures of 4, 5, and 8 cmH2O. We have found that, at lowrecoil pressures, decreases in parenchymal shear modulus have asignificant effect that is comparable to that of moderate thickening ofthe airway wall. At higher lung recoil pressures, the effect isnegligible.

  相似文献   

2.
Matheson, Melissa, Ann-Christine Rynell, Melissa McClean,and Norbert Berend. Relationship between airway microvascular leakage, edema, and baseline airway functions. J. Appl. Physiol. 84(1): 77-81, 1998.This study wasdesigned to examine the relationship among microvascular leakage,edema, and baseline airway function. Microvascular leakage was inducedin the airways of anesthetized, tracheostomized New Zealand Whiterabbits (n = 22) by using nebulized N-formyl-methionyl-leucyl-phenylalanine(10 mg) and was measured in the trachea by using the Evans blue dyetechnique. Airway wall thickness was assessed morphometrically in theright main bronchus after Formalin fixation at a pressure of 25 cmH2O. Areas calculated includedthe mucosal wall area, the adventitial wall area, the total wall area,and the percentage of total wall area consisting of blood vessels. Aneutrophil count was also performed by analyzing numbers of cells inboth the mucosal wall area and the adventitial wall area. Airwayfunction was assessed before and 30 min after challenge withN-formyl-methionyl-leucyl-phenylalanineby determining airway resistance, functional residual capacity,specific airway resistance, and flow-volume and pressure-volume curves(after paralysis of the animals with suxamethonium). The concentration of Evans blue dye in tracheal tissue ranged from 31.3 to 131.2 µg.There was a significant correlation between this concentration and boththe adventitial wall area (P < 0.01)and mucosal neutrophil numbers (P < 0.005). There was no correlation between Evans blue concentration andeither blood vessel area or changes in respiratory physiologyparameters before and after challenge. There was no significantdifference between any respiratory physiology measurements before andafter challenge. We conclude that an increase in microvascular leakagecorrelates with airway edema in the adventitia; however, these airwaychanges have no significant effect on airway elastic or resistiveproperties.

  相似文献   

3.
Effects of edema on small airway narrowing   总被引:1,自引:0,他引:1  
Wagner, Elizabeth M. Effects of edema on small airwaynarrowing. J. Appl. Physiol. 83(3):784-791, 1997.Numerous mediators of inflammation have beendemonstrated to cause airway microvascular fluid and proteinextravasation. That fluid extravasation results in airway wall edemaleading to airway narrowing and enhanced reactivity has not beenconfirmed. In anesthetized, ventilated sheep(n = 30), airway vascularfluid extravasation was induced by infusing bradykinin(106 M) through acannulated, blood-perfused bronchial artery. Airway wall edema andluminal narrowing were determined morphometrically. Airway reactivityto methacholine (MCh; 10 µg/ml, intrabronchial artery) was determinedby measuring conducting airway resistance (Raw) by forced oscillation.Raw measurements were made and lung lobes were excised and quick frozenbefore or after a 1-h bradykinin infusion. In 10 airways per lobe(range 0.2- to 2.0-mm relaxed diameter), wall area occupied 32 ± 2% (SE) of the total normalized airway area(n = 9). Bradykinin infusion increasedwall area to 42 ± 5% (P = 0.02);luminal area decreased by <5%; and smooth muscle perimeter, ameasure of smooth muscle constriction, was not altered(n = 5). Raw showed nochange from baseline (1.4 ± 0.4 cmH2O · l1 · s)after bradykinin infusion (n = 10).During MCh challenge, Raw increased by 3.2 ± 04 cmH2O · l1 · s,and this change did not differ after administration of bradykinin. MChchallenge caused similar decreases in smooth muscle perimeter (10%)and luminal area (72 vs. 68%) before and after bradykinin infusion.However, the time constant of recovery of Raw from MCh constriction wasincreased from control (40 ± 3 s) to 57 ± 10 s after bradykinininfusion (P = 0.03). When lung lobeswere excised at the same time after MCh challenge was terminated(n = 5), luminal area was greaterbefore bradykinin infusion than after (86 vs. 78%;P = 0.007), as was smooth muscleperimeter. The results of this study demonstrate that airway wall edemalimits relaxation after induced constriction rather than enhancingconstriction.

  相似文献   

4.
Brown, Robert H., Wayne Mitzner, Yonca Bulut, and ElizabethM. Wagner. Effect of lung inflation in vivo on airways with smoothmuscle tone or edema. J. Appl.Physiol. 82(2): 491-499, 1997.Fibrousattachments to the airway wall and a subpleural surrounding pressurecan create an external load against which airway smooth muscle mustcontract. A decrease in this load has been proposed as a possible causeof increased airway narrowing in asthmatic individuals. To study theinteraction between the airways and the surrounding lung parenchyma, weinvestigated the effect of lung inflation on relaxed airways, airwayscontracted with methacholine, and airways made edematous by infusion ofbradykinin into the bronchial artery. Measurements were made inanesthetized sheep by using high-resolution computed tomography tovisualize changes in individual airways. During methacholine infusion,airway area was decreased but increased minimally with increases intranspulmonary pressure. Bradykinin infusion caused a 50% increase inairway wall area and a small decrease in airway luminal area. Incontrast to airways contracted with methacholine, the luminal areaafter bradykinin increased substantially with increases intranspulmonary pressure, reaching 99% of the relaxed area at totallung capacity. Thus airway edema by itself did not prevent fulldistension of the airway at lung volumes approaching total lungcapacity. Therefore, we speculate that if a deep inspiration fails torelieve airway narrowing in vivo, this must be a manifestation ofairway smooth muscle contraction and not airway wall edema.

  相似文献   

5.
Wang, C. G., J. J. Almirall, C. S. Dolman, R. J. Dandurand,and D. H. Eidelman. In vitro bronchial responsiveness in twohighly inbred rat strains. J. Appl.Physiol. 82(5): 1445-1452, 1997.We investigatedmethacholine (MCh)-induced bronchoconstriction in explanted airwaysfrom Fischer and Lewis rats. Lung explants, 0.5- to 1.0-mm thick, wereprepared from agarose-inflated lungs of anesthetized 8- to 12-wk-oldmale rats. After overnight culture, videomicroscopy was used to recordbaseline images of the individual airways. Dose-response curves to MChwere then constructed by repeated administration of MCh; airways werereimaged 10 min after each MCh administration. Airway internal luminalarea(Ai)was measured at successive MCh concentrations from109 to101 M. Inaddition to the effective concentration leading to 50% of the achievedmaximal response, we also determined the effective concentrationleading to a 40% reduction inAi.Both the effective concentration leading to 50% of the achievedmaximal response and the concentration leading to a 40% reduction inAiwere significantly lower among Fischer rat airways(P < 0.05). Airway closure was morecommon among Fischer rat airways (17%) than among those of Lewis rats(7.5%). Responsiveness of Fischer rat airways was more heterogeneousthan among Lewis airways; a larger number of Fischer rat airwaysexhibited high sensitivity to MCh. There was no relationship betweenresponsiveness and baselineAiin either strain. In a second experiment, we measured the rate ofcontraction of explanted airways from lungs inflated to 50, 75, and100% of total lung capacity. The average rate of contraction in thefirst 15 s was higher in Fischer rat airways at each inflation volume.These data indicate that the hyperresponsiveness of the Fischer rat reflects the responsiveness of individual airways throughout the airwaytree and are consistent with the notion that in this model hyperresponsiveness is an intrinsic property of airway smooth muscle.

  相似文献   

6.
Brown, Robert H., Wayne Mitzner, and Elizabeth M. Wagner.Interaction between airway edema and lung inflation onresponsiveness of individual airways in vivo. J. Appl.Physiol. 83(2): 366-370, 1997.Inflammatorychanges and airway wall thickening are suggested to cause increasedairway responsiveness in patients with asthma. In fivesheep, the dose-response relationships of individual airways weremeasured at different lung volumes to methacholine (MCh) before andafter wall thickening caused by the inflammatory mediator bradykininvia the bronchial artery. At 4 cmH2O transpulmonary pressure(Ptp), 5 µg/ml MCh constricted the airways to a maximum of 18 ± 3%. At 30 cmH2O Ptp, MCh resultedin less constriction (to 31 ± 5%). Bradykinin increased airwaywall area at 4 and 30 cmH2O Ptp(159 ± 6 and 152 ± 4%, respectively;P < 0.0001). At 4 cmH2O Ptp, bradykinin decreasedairway luminal area (13 ± 2%; P < 0.01), and the dose-response curve was significantly lower (P = 0.02). At 30 cmH2O, postbradykinin, the maximalairway narrowing was not significantly different (26 ± 5%;P = 0.76). Bradykinin produced substantial airway wall thickening and slight potentiation ofthe MCh-induced airway constriction at low lung volume. At high lung volume, bradykinin increased wall thickness but had no effecton the MCh-induced airway constriction. We conclude that inflammatoryfluid leakage in the airways cannot be a primary cause of airwayhyperresponsiveness.

  相似文献   

7.
Lei, M., H. Ghezzo, M. F. Chen, and D. H. Eidelman.Airway smooth muscle orientation in intraparenchymal airways.J. Appl. Physiol. 82(1): 70-77, 1997.Airway smooth muscle (ASM) shortening is the central eventleading to bronchoconstriction. The degree to which airway narrowingoccurs as a consequence of shortening is a function of both themechanical properties of the airway wall as well as the orientation ofthe muscle fibers. Although the latter is theoretically important, ithas not been systematically measured to date. The purpose of this studywas to determine the angle of orientation of ASM () in normal lungs by using a morphometric approach. We analyzed the airway tree of theleft lower lobes of four cats and one human. All material was fixedwith 10% buffered Formalin at a pressure of 25 cmH2O for 48 h. The fixed materialwas dissected along the airway tree to permit isolation ofgenerations 4-18 in the cats andgenerations 5-22 in the humanspecimen. Each airway generation was individually embedded in paraffin.Five-micrometer-thick serial sections were cut parallel to the airwaylong axis and stained with hematoxylin-phloxine-saffron. Each blockyielded three to five sections containing ASM. To determine , wemeasured the orientation of ASM nuclei relative to the transverse axisof the airway by using a digitizing tablet and a light microscope (×250) equipped with a drawing tube attachment. Inspection of thesections revealed extensive ASM crisscrossing without a homogeneous orientation. The  was clustered between 20° and 20°in all airway generations and did not vary much between generations inany of the cats or in the human specimen. When  was expressedwithout regard to sign, the mean values were 13.2° in the cats and13.1° in the human. This magnitude of obliquity is not likely toresult in physiologically important changes in airway length duringbronchoconstriction.

  相似文献   

8.
Martinez-Salas, José, Richard Mendelssohn, William M. Abraham, Bernard Hsiao, and Tahir Ahmed. Inhibition of allergic airway responses by inhaled low-molecular-weight heparins:molecular-weight dependence. J. Appl.Physiol. 84(1): 222-228, 1998.Inhaled heparin prevents antigen-induced bronchoconstriction and inhibitsanti-immunoglobulin E-mediated mast cell degranulation. We hypothesizedthat the antiallergic action of heparin may be molecular weightdependent. Therefore, we studied the effects of three differentlow-molecular-weight fractions of heparin [medium-, low-, andultralow-molecular-weight heparin (MMWH, LMWH, ULMWH,respectively)] on the antigen-induced acute bronchoconstrictorresponse (ABR) and airway hyperresponsiveness (AHR) in allergic sheep.Specific lung resistance was measured in 22 sheep before and afterairway challenge with Ascarissuum antigen, without and afterpretreatment with inhaled fractionated heparins at doses of0.31-5.0 mg/kg. Airway responsiveness was estimated before and 2 hpostantigen as the cumulative provocating dose of carbachol in breathunits that increased specific lung resistance by 400%. Allfractionated heparins caused a dose-dependent inhibition of ABR andAHR. ULMWH was the most effective fraction, with the inhibitory dosecausing 50% protection (ID50)against ABR of 0.5 mg/kg, whereasID50 values of LMWH and MMWH were1.25 and 1.8 mg/kg, respectively. ULMWH was also the most effective fraction in attenuating AHR; theID50 values for ULMWH, LMWH, andMMWH were 0.5, 2.5, and 4.7 mg/kg, respectively. These data suggestthat 1) fractionatedlow-molecular-weight heparins attenuate antigen-induced ABR and AHR;2) there is an inverse relationship between the antiallergic activity of heparin fractions and molecular weight; and 3) ULMWH is the mosteffective fraction preventing allergic bronchoconstriction and airwayhyperresponsiveness.

  相似文献   

9.
Mitchell, R. W., E. Rühlmann, H. Magnussen, N. M. Muñoz, A. R. Leff, and K. F. Rabe. Conservation ofbronchiolar wall area during constriction and dilation of humanairways. J. Appl. Physiol. 82(3):954-958, 1997.We assessed the effect of smooth musclecontraction and relaxation on airway lumen subtended by the internalperimeter(Ai)and total cross-sectional area (Ao)of human bronchial explants in the absence of the potential lungtethering forces of alveolar tissue to test the hypothesis thatbronchoconstriction results in a comparable change ofAi andAo.Luminal area (i.e.,Ai) andAowere measured by using computerized videomicrometry, and bronchial wallarea was calculated accordingly. Images on videotape were captured;areas were outlined, and data were expressed as internal pixel numberby using imaging software. Bronchial rings were dissected in 1.0- to1.5-mm sections from macroscopically unaffected areas of lungs frompatients undergoing resection for carcinoma, placed in microplate wellscontaining buffered saline, and allowed to equilibrate for 1 h.Baseline, Ao[5.21 ± 0.354 (SE)mm2], andAi(0.604 ± 0.057 mm2) weremeasured before contraction of the airway smooth muscle (ASM) withcarbachol. MeanAinarrowed by 0.257 ± 0.052 mm2in response to 10 µM carbachol (P = 0.001 vs. baseline). Similarly, Aonarrowed by 0.272 ± 0.110 mm2in response to carbachol (P = 0.038 vs. baseline; P = 0.849 vs. change inAi).Similar parallel changes in cross-sectional area forAiandAowere observed for relaxation of ASM from inherent tone of otherbronchial rings in response to 10 µM isoproterenol. We demonstrate aunique characteristic of human ASM; i.e., both luminal and totalcross-sectional area of human airways change similarly on contractionand relaxation in vitro, resulting in a conservation of bronchiolarwall area with bronchoconstriction and dilation.

  相似文献   

10.
Our laboratory has previously demonstrated that maximal bronchoconstriction produces a greater degree of airway narrowing in immature than in mature rabbit lungs (33). To determine whether these maturational differences could be related to airway structure, we compared the fraction of the airway wall occupied by airway smooth muscle (ASM) and cartilage, the proportion of wall area internal to ASM, and the number of alveolar attachments to the airways, from mature and immature (6-mo- and 4-wk-old, respectively) rabbit lungs that were formalin fixed at total lung capacity. The results demonstrate that the airway walls of immature rabbits had a greater percentage of smooth muscle, a lower percentage of cartilage, and fewer alveolar attachments compared with mature rabbit airways; however, we did not find maturational differences in the airway wall thickness relative to airway size. We conclude that structural differences in the airway wall may contribute to the greater airway narrowing observed in immature rabbits during bronchoconstriction.  相似文献   

11.
To examine the role of airway wall thickening in the bronchial hyperresponsiveness observed after exposure to cigarette smoke, we compared the airway dimensions of guinea pigs exposed to smoke (n = 7) or air (n = 7). After exposure the animals were anesthetized with urethan, pulmonary resistance was measured, and the lungs were removed, distended with Formalin, and fixed near functional residual capacity. The effects of lung inflation and bronchoconstriction on airway dimensions were studied separately by distending and fixing lungs with Formalin at total lung capacity (TLC) (n = 3), 50% TLC (n = 3), and 25% TLC (n = 3) or near residual volume after bronchoconstriction (n = 3). On transverse sections of extraparenchymal and intraparenchymal airways the following dimensions were measured: the internal area (Ai) and internal perimeter (Pi), defined by the epithelium, and the external area (Ae) and external perimeter (Pe), defined by the outer border of smooth muscle. Airway wall area (WA) was then calculated, WA = Ae - Ai. Ai, Pe, and Ae decreased with decreasing lung volume and after bronchoconstriction. However, WA and Pi did not change significantly with lung volume or after bronchoconstriction. After cigarette smoke exposure airway resistance was increased (P less than 0.05); however, there was no difference in WA between the smoke- and air-exposed groups when the airways were matched by Pi. We conclude that Pi and WA are constant despite changes in lung volume and smooth muscle tone and that airway hyperresponsiveness induced by cigarette smoke is not mediated by increased airway wall thickness.  相似文献   

12.
Bates, Jason H. T., Thomas F. Schuessler, Carrie Dolman, andDavid H. Eidelman. Temporal dynamics of acute isovolume bronchoconstriction in the rat. J. Appl.Physiol. 82(1): 55-62, 1997.The time course oflung impedance changes after intravenous injection of bronchial agonisthave produced significant insights into the mechanisms ofbronchoconstriction in the dog (J. H. T. Bates, A.-M. Lauzon, G. S. Dechman, G. N. Maksym, and T. F. Shuessler. J. Appl.Physiol. 76: 616-626, 1994). We studied the timecourse of acute induced bronchoconstriction in five anesthetizedparalyzed open-chest rats injected intravenously with a bolus ofmethacholine. For the 16 s immediately after injection, we held thelung volume constant while applying small-amplitude flow oscillationsat 1.48, 5.45, and 19.69 Hz simultaneously, which provided us withcontinuous estimates of lung resistance(RL) and elastance(EL) at eachfrequency. This procedure was repeated at initial lung inflationpressures of 0.2, 0.4, and 0.6 kPa. BothRL andEL increased progressively aftermethacholine administration; however, the rate of change ofEL increased dramatically asfrequency was increased, whereas RL remained relativelyindependent of frequency. We interpret these findings in terms of athree-compartment model of the rat lung, featuring two parallelalveolar compartments feeding into a central airway compartment. Modelsimulations support the notions that both central airway shunting andregional ventilation inhomogeneity developed to a significant degree inour constricted rats. We also found that the rates of increase in bothRL andEL were greatly enhanced as theinitial lung inflation pressure was reduced, in accord with the notionthat parenchymal tethering is an important mechanism limiting theextent to which airways can narrow when their smooth muscle isstimulated to contract.

  相似文献   

13.
Nagase, Takahide, Tomoko Aoki, Teruaki Oka, YoshinosukeFukuchi, and Yasuyoshi Ouchi. ET-1-induced bronchoconstriction ismediated via ETB receptor in mice.J. Appl. Physiol. 83(1): 46-51, 1997.Endothelin (ET)-1 is one of the most potent agonists of airwaysmooth muscle and can act via two different ET receptor subtypes, i.e.,ETA andETB. To determine the effects ofET-1 on in vivo pulmonary function and which ET receptors are involved in murine lungs, we investigated 1)the effects of ET and sarafotoxin S6c (S6c), a selectiveETB agonist, on pulmonary functionand 2) the effects of BQ-123 andBQ-788, specific ETA- andETB-receptor antagonists, onET-1-induced bronchoconstriction. ICR mice were anesthetized and mechanically ventilated (frequency = 2.5 Hz, tidalvolume = 8 ml/kg, positive end-expiratory pressure = 3 cmH2O). Intravenous ET-1, ET-2,and ET-3 increased lung resistance similarly and equipotently, whereasS6c elicited a greater degree of bronchoconstriction. Mice were thenpretreated with saline (Sal), BQ-123 (0.2, 1, and 5 mg/kg), or BQ-788(0.2, 1, and 5 mg/kg) before administration of ET-1(107 mol/kg iv). No dose ofBQ-123 blocked ET-1-induced constriction, whereas pretreatment witheach dose of BQ-788 significantly inhibited ET-1-induced responses.There were significant differences in morphometrically assessed airwayconstriction between Sal and BQ-788 and between BQ-123 and BQ-788,whereas no significant difference was observed between Sal and BQ-123.There were no significant morphometric differences in the airway wallarea among the three groups. These observations suggest that theETB- but notETA-receptor subtype may mediatethe changes in murine pulmonary function in response to ET-1. Inaddition, the ETB-receptorantagonist reduces ET-1-induced airway narrowing by affecting airwaysmooth muscle contraction in mice.

  相似文献   

14.
Thorpe, C. William, and Jason H. T. Bates. Effect ofstochastic heterogeneity on lung impedance during acutebronchoconstriction: a model analysis. J. Appl.Physiol. 82(5): 1616-1625, 1997.In a previousstudy (J. H. T. Bates, A. M. Lauzon, G. S. Dechman, G. N. Maksym, and T. F. Schuessler. J. Appl.Physiol. 76: 616-626, 1994), we investigated theacute changes in isovolume lung mechanics immediately after a bolusinjection of histamine. We found that dynamic resistance and elastanceincreased progressively in the 80-s period after injection, whereas theestimated tissue hysteresivity reached a stable plateau after ~25 s.In the present study, we developed a computer model of the lung toinvestigate the mechanisms responsible for these observations. Themodel conforms to Horsfield's morphometry, with the addition ofcompliant airways and structural damping tissue units. Using thismodel, we simulated the time course of acute bronchoconstriction afterintravenous administration of a bolus of bronchial agonist.Heterogeneity was induced by randomly varying the values of the maximalairway smooth muscle contraction and the tissue response to theagonist. Our results demonstrate that much of the increase in lungimpedance observed in our previous study can be produced purely by theeffects of airway heterogeneity. However, we were only able toreproduce the plateauing of hysteresivity by assigning a minimum radius to each airway, beyond which it would immediately snap completely shut.We propose that airway closure played an important role in ourexperimental observations.

  相似文献   

15.
Methacholine causes reflex bronchoconstriction   总被引:1,自引:0,他引:1  
To determine whether methacholine causes vagally mediated reflexconstriction of airway smooth muscle, we administered methacholine tosheep either via the bronchial artery or as an aerosol via tracheostomyinto the lower airways. We then measured the contraction of anisolated, in situ segment of trachealis smooth muscle and determinedthe effect of vagotomy on the trachealis response. Administeringmethacholine to the subcarinal airways via the bronchial artery(0.5-10.0 µg/ml) caused dose-dependent bronchoconstriction andcontraction of the tracheal segment. At the highest methacholine concentration delivered, trachealis smooth muscle tension increased anaverage of 186% over baseline. Aerosolized methacholine (5-7 breaths of 100 mg/ml) increased trachealis tension by 58% and airwaysresistance by 183%. As the bronchial circulation in the sheep does notsupply the trachea, we postulated that the trachealis contraction wascaused by a reflex response to methacholine in the lower airways.Bilateral vagotomy essentially eliminated the trachealis response andthe airways resistance change after lower airways challenge (either viathe bronchial artery or via aerosol) with methacholine. We concludethat 1) methacholine causes asubstantial reflex contraction of airway smooth muscle and2) the assumption may not be validthat a response to methacholine in humans or experimental animalsrepresents solely the direct effect on smooth muscle.

  相似文献   

16.
Yang, X. X., W. S. Powell, M. Hojo, and J. G. Martin.Hyperpnea-induced bronchoconstriction is dependent ontachykinin-induced cysteinyl leukotriene synthesis. J. Appl. Physiol. 82(2): 538-544, 1997.The purposeof the study was to test the hypothesis that tachykinins mediatehyperpnea-induced bronchoconstriction indirectly by triggeringcysteinyl leukotriene (LT) synthesis in the airways. Guinea pigs(350-600 g) were anesthetized with xylazine and pentobarbital sodium and received hyperpnea challenge (tidal volume 3.5-4.0 ml,frequency 150 breaths/min) with either humidified isocapnic gas(n = 6) or dry gas(n = 7). Dry gas challenge wasperformed on animals that received MK-571(LTD4 antagonist; 2 mg/kg iv; n = 5), capsaicin(n = 4), neurokinin (NK) antagonists[NK1 (CP-99994) + NK2 (SR-48968) (1 mg/kg iv);n = 6], or theH1 antihistamine pyrilamine (2 mg/kg iv; n = 5). We measured thetracheal pressure and collected bile for 1 h before and 2 h afterhyperpnea challenge. We examined the biliary excretion of cysteinylLTs; the recovery of radioactivity in bile after instillation of 1 µCi [3H]LTC4intratracheally averaged 24% within 4 h(n = 2). The major cysteinyl LTidentified was LTD4 (32% recoveryof radioactivity). Cysteinyl LTs were purified from bile of animalsundergoing hyperpnea challenge by using reverse-phase high-pressureliquid chromatography and quantified by radioimmunoassay. There was asignificant increase in the peak value of tracheal pressure afterchallenge, indicating bronchoconstriction in dry gas-challenged animalsbut not after humidified gas challenge. MK-571, capsaicin, and NKantagonists prevented the bronchoconstriction; pyrilamine didnot. Cysteinyl LT levels in the bile after challenge weresignificantly increased from baseline in dry gas-challenged animals(P < 0.05) and were higher than inthe animals challenged with humidified gas or dry gas-challengedanimals treated with capsaicin or NK antagonists (P < 0.01). The results indicatethat isocapnic dry gas hyperpnea-induced bronchoconstriction is LTmediated and the role of tachykinins in the response is indirectthrough release of LTs. Endogenous histamine does not contribute to theresponse.

  相似文献   

17.
Shen, X., M. F. Wu, R. S. Tepper, and S. J. Gunst. Mechanisms for the mechanical response ofairway smooth muscle to length oscillation. J. Appl.Physiol. 83(3): 731-738, 1997.Airway smoothmuscle tone in vitro is profoundly affected by oscillations in musclelength, suggesting that the effects of lung volume changes on airwaytone result from direct effects of stretch on the airway smooth muscle.We analyzed the effect of length oscillation on active force andlength-force hysteresis in canine tracheal smooth muscle at differentoscillation rates and amplitudes during contraction with acetylcholine.During the shortening phase of the length oscillation cycle, the activeforce generated by the smooth muscle decreased markedly below theisometric force but returned to isometric force as the muscle waslengthened. Results indicate that at rates comparable to those duringtidal breathing, active shortening and yielding of contractile elementscontributes to the modulation of force during length oscillation;however, the depression of force during shortening cannot be accountedfor by cross-bridge properties, shortening-induced cross-bridgedeactivation, or active relaxation. We conclude that the depression ofcontractility may be a function of the plasticity of the cellularorganization of contractile filaments, which enables contractileelement length to be reset in relation to smooth muscle cell length asa result of smooth muscle stretch.

  相似文献   

18.
Kaczka, David W., Edward P. Ingenito, Bela Suki, and KennethR. Lutchen. Partitioning airway and lung tissue resistances inhumans: effects of bronchoconstriction. J. Appl.Physiol. 82(5): 1531-1541, 1997.The contributionof airway resistance(Raw) and tissue resistance(Rti) to totallung resistance(RL)during breathing in humans is poorly understood. We have recentlydeveloped a method for separating Rawand Rti from measurements ofRLand lung elastance (EL)alone. In nine healthy, awake subjects, we applied a broad-band optimalventilator waveform (OVW) with energy between 0.156 and 8.1 Hz thatsimultaneously provides tidal ventilation. In four of the subjects,data were acquired before and during a methacholine (MCh)-bronchoconstricted challenge. TheRLandELdata were first analyzed by using a model with a homogeneous airwaycompartment leading to a viscoelastic tissue compartment consisting oftissue damping and elastance parameters. Our OVW-based estimates ofRaw correlated well with estimatesobtained by using standard plethysmography and were responsive toMCh-induced bronchoconstriction. Our data suggest thatRti comprises ~40% of totalRLat typical breathing frequencies, which corresponds to ~60% ofintrathoracic RL. During mildMCh-induced bronchoconstriction, Rawaccounts for most of the increase inRL. At high doses of MCh, therewas a substantial increase in RLat all frequencies and inEL athigher frequencies. Our analysis showed that bothRaw andRti increase, but most of the increaseis due to Raw. The data also suggestthat widespread peripheral constriction causes airway wall shunting toproduce additional frequency dependence inEL.

  相似文献   

19.
Shen, X., V. Bhargava, G. R. Wodicka, C. M. Doerschuk, S. J. Gunst, and R. S. Tepper. Greater airway narrowing in immature thanin mature rabbits during methacholine challenge. J. Appl. Physiol. 81(6): 2637-2643, 1996.It hasbeen demonstrated that methacholine (MCh) challenge produces a greaterincrease in lung resistance in immature than in mature rabbits (R. S. Tepper, X. Shen, E. Bakan, and S. J. Gunst.J. Appl. Physiol. 79: 1190-1198, 1995). To determine whether this maturational difference in the response to MCh was primarily related to changes in airway resistance (Raw) or changes in tissue resistance, we assessed airway narrowing in1-, 2-, and 6-mo-old rabbits during intravenous MCh challenge (0.01-5.0 mg/kg). Airway narrowing was determined frommeasurements of Raw in vivo and from morphometric measurements on lungsections obtained after rapidly freezing the lung after the MChchallenge. The fold increase in Raw was significantly greater for 1- and 2-mo-old animals than for 6-mo-old animals. Similarly, the degree of airway narrowing assessed morphometrically was significantly greaterfor 1- and 2-mo-old animals than for 6-mo-old animals. The foldincrease in Raw was highly correlated with the degree of airwaynarrowing assessed morphometrically(r2 = 0.82, P < 0.001). We conclude that thematurational difference in the effect of MCh on lung resistance isprimarily caused by greater airway narrowing in the immature rabbits.

  相似文献   

20.
On the mechanism of mucosal folding in normal and asthmatic airways   总被引:4,自引:0,他引:4  
Wiggs, Barry R., Constantine A. Hrousis, Jeffrey M. Drazen,and Roger D. Kamm. On the mechanism of mucosalfolding in normal and asthmatic airways. J. Appl.Physiol. 83(6): 1814-1821, 1997.Previous studies have demonstrated that the airwaywall in asthma and chronic obstructive pulmonary disease is markedly thickened. It has also been observed that when the smooth muscle constricts the mucosa buckles, forming folds that penetrate into theairway lumen. This folding pattern may influence the amount of luminalobstruction associated with smooth muscle activation. A finite-elementanalysis of a two-layer composite model for an airway is used toinvestigate the factors that determine the mucosal folding pattern andhow it is altered as a result of changes in the thickness or stiffnessof the different layers that comprise the airway wall. Resultsdemonstrate that the most critical physical characteristic is thethickness of the thin inner layer of the model. Thickening of thisinner layer likely is represented by the enhanced subepithelialcollagen deposition seen in asthma. Other findings show a high shearstress at or near the epithelial layer, which may explain thepronounced epithelial sloughing that occurs in asthma, and steepgradients in pressure that could cause significant shifts of liquidbetween wall compartments or between the wall and luminal or vascularspaces.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号