首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of camel liver microsomes to metabolise a range of common environmental carcinogens including benzo(a)pyrene, dimethylbenzanthracene and aflatoxin B1 has been investigated. The camel liver has shown the ability to metabolise benzo(a)pyrene, dimethylbenzanthracene and aflatoxin B1 to a number of metabolites. The major metabolites of benzo(a)pyrene produced by camel liver enzymes were identified as its mono-hydroxy derivatives and suggest that the metabolic detoxification pathways of carcinogen metabolism are predominant in this species. Benzo(a)pyrene metabolising activity in camel liver required NADPH and was inhibited by CO and alpha-naphthoflavone suggesting the involvement of cytochrome P450 in the metabolism of this carcinogen by camel liver. The cytochrome P450-dependent metabolism of carcinogen and other specific substrates such as ethoxyresorufin and ethoxycoumarin, by camel liver enzymes, was about 50% higher than that of rat liver enzymes. The cytochrome P450-dependent metabolism of a variety of carcinogenic and other substrates by camel liver demonstrated that there are multiple forms of cytochrome P450 enzymes involved in the metabolism of a wide array of xenobiotics and pollutants.  相似文献   

2.
Cytochrome P450 enzymes (P450s) are responsible for the oxidative metabolism of a plethora of endogenous and exogenous substrates. P450s and associated activities have been demonstrated in numerous marine invertebrates belonging to the phyla Cnidaria, Annelida (Polychaeta), Mollusca, Arthropoda (Crustacea) and Echinodermata. P450s of marine invertebrates and vertebrates show considerable sequence divergence and the few orthologs reveal the selective constraint on physiologically significant enzymes. P450s are present in virtually all tissues of marine invertebrates, although high levels usually are found in hepatic-like organs and steroidogenic tissues. High-throughput technologies result in the rapid acquisition of new marine invertebrate P450 sequences; however, the understanding of their function is poor. Based on analogy to vertebrates and insects, it is likely that P450s play a pivotal role in the physiology of marine invertebrates by catalyzing the biosynthesis of signal molecules including steroids such as 20-hydroxyecdysone (the molting hormone of crustaceans). The metabolism of many exogenous compounds including benzo(a)pyrene (BaP), pyrene, ethoxyresorufin, ethoxycoumarin and aniline is mediated by P450 enzymes in tissues of marine invertebrates. P450 gene expression, protein levels and P450 mediated metabolism of xenobiotics are induced by PAHs in some marine invertebrate species. Thus, regulation of P450 enzyme activity may play a central role in the adaptation of animals to environmental pollutants. Emphasis should be put on the elucidation of the function and regulation of the ever-increasing number of marine invertebrate P450s.  相似文献   

3.
The O-deethylation of ethoxyresorufin and the metabolic activation of benzo[a]pyrene to mutagens were determined in hepatic microsomal preparations from control and induced animals. An excellent direct correlation (r = 0.95) has been observed between ethoxyresorufin O-deethylase and the metabolic activation of benzo[a]pyrene to mutagens when the fraction of cytochromes P-450 present as cytochrome P-448 was altered by the administration of phenobarbitone and 3-methylcholanthrene alone or in combination with 9-hydroxyellipticine. The correlation between these activities was maintained following treatment of animals with Arochlor 1254, benzo[a]pyrene, benzo[e]pyrene, 7,12-dimethylbenzo[a]anthracene,2-anthramine and 2-naphthylamine.  相似文献   

4.
The cytotoxic effects and biotransformation of harmine and harmaline, which are known β-carboline alkaloids and potent hallucinogens, were studied in freshly isolated rat hepatocytes. The exposure of hepatocytes to harmine caused not only concentration (0–0.50 mM)- and time (0–3 h)-dependent cell death accompanied by the formation of cell blebs and the loss of cellular ATP, reduced glutathione, and protein thiols but also the accumulation of glutathione disulfide. Of the other analogues examined, the cytotoxic effects of harmaline and harmol (a metabolite of harmine) at a concentration of 0.5 mM were less than those of harmine. The loss of mitochondrial membrane potential and generation of oxygen radical species in hepatocytes treated with harmine were greater than those with harmaline and harmol. In the oxygen consumption of mitochondria isolated from rat liver, the ratios of state-3/state-4 respiration of these β-carbolines were decreased in a concentration-dependent manner. In addition, harmine resulted in the induction of the mitochondrial permeability transition (MPT), and the effects of harmol and harmaline were less than those of harmine. At a weakly toxic level of harmine (0.25 mM), it was metabolized to harmol and its monoglucuronide and monosulfate conjugates, and the amounts of sulfate rather than glucuronide predominantly increased with time. In the presence of 2,5-dichloro-4-nitrophenol (50 μM; an inhibitor of sulfotransferase), harmine-induced cytotoxicity was enhanced, accompanied by decrease in the amount of harmol-sulfate conjugate, due to an increase in the amount of unconjugated harmol and the inhibition of harmine loss. Taken collectively, these results indicate that (a) mitochondria are target organelles for harmine, which elicits cytotoxicity through mitochondrial failure related to the induction of the MPT, mitochondrial depolarization, and inhibition of ATP synthesis; and (b) the toxic effects of harmine are greater than those of either its metabolite harmol or its analogue harmaline, suggesting that the onset of harmine-induced cytotoxicity may depend on the initial and/or residual concentrations of harmine rather than on those of its metabolites.  相似文献   

5.
Chronic ethanol ingestion in male rats causes an increase in cytochrome P-450 content and in the activity of microsomal benzo(α)pyrene hydroxylase in the upper intestinal mucosa. Intestinal microsomes from ethanol fed rats also exhibit an enhanced capacity to activate the ubiquitous procarcinogen benzo(α)pyrene to a mutagen. These findings could be of relevance with respect to the increased incidence of cancer in the alcoholic.  相似文献   

6.
The effect of flavone and 7,8-benzoflavone on the metabolism of benzo[a]pyrene to fluorescent phenols by five cytochrome P-450 isozymes obtained from rabbit liver microsomes was determined. Benzo[a]pyrene metabolism was stimulated more than 5-fold by the addition of 600 microM flavone to a reconstituted monooxygenase system consisting of NADPH, cytochrome P-450 reductase, dilauroylphosphatidylcholine, and cytochrome P-450LM3c or cytochrome P-450LM4. In contrast, an inhibitory effect of flavone on benzo[a]pyrene metabolism was observed when cytochrome P-450LM2, cytochrome P-450LM3b, or cytochrome P-450LM6 was used in the reconstituted system. 7,8-Benzoflavone (50-100 microM) stimulated benzo[a]pyrene metabolism by the reconstituted monooxygenase system about 10-fold when cytochrome P-450LM3c was used, but benzo[a]pyrene hydroxylation was strongly inhibited when 7,8-benzoflavone was added to the cytochrome P-450LM6-dependent system. Smaller effects of 7,8-benzoflavone were observed on the metabolism of benzo[a]pyrene by the cytochrome P-450LM2-, cytochrome P-450LM3b-, and cytochrome P-450LM4-dependent monooxygenase systems. These results demonstrate that the activating and inhibiting effects of flavone and 7,8-benzoflavone on benzo[a]pyrene metabolism depend on the type of cytochrome P-450 used in the reconstituted monooxygenase system.  相似文献   

7.
The inducibility of skin and liver microsomal cytochrome P-450 dependent aryl hydrocarbon hydroxylase and other monooxygenases by a mixture of nitropyrenes was assessed and compared with the parent non-nitrated compound, pyrene. A single topical application of nitropyrenes to neonatal rats resulted in highly significant induction of aryl hydrocarbon hydroxylase, ethoxycoumarin O-de-ethylase, and ethoxyresorufin O-de-ethylase activities in skin and liver after 24 hours. Inducibility of the skin and liver enzymes was 3.9-5.7 fold and 1.8-10.3 fold respectively. On the other hand, aminopyrine N-demethylase, benzphetamine N-demethylase and epoxide hydrolase activities in the liver were unaffected by topically applied nitropyrenes. Furthermore, treatment with nitropyrenes produced a 1 nm shift to the blue region in the wavelength maximum of hepatic microsomal cytochrome P-450. Topically applied pyrene produced only marginal or no effects on cutaneous and hepatic enzyme activities. Our results suggest that nitration of pyrene, a relatively ineffective enzyme inducer, produces nitropyrenes which are potent inducers of hepatic and cutaneous monooxygenases and they resemble 3-methylcholanthrene in this inducing effect.  相似文献   

8.
The activities of several representative biotransformation enzymes were determined in male and female spiny mouse tissues. Cytochrome P450 monooxygenase activity toward benzo(a)pyrene was significantly greater in female spiny mouse intestine than in males. Activity toward benzphetamine in both sexes was high in the liver, with little activity in the kidney and intestine. Sulfotransferase activity was high in kidney and intestine of female spiny mice but undetectable in the same tissues in males. Hepatic glutathione s-transferase activity towards 1-chloro-2,4-dinitrobenzene in females was significantly higher than in males. UDP-Glucuronosyltransferase activity toward 1-naphthol in both sexes in the kidney was significantly higher than hepatic and intestinal activity. Intestinal N-acetyltransferase activity towards 2-aminofluorene and β-naphthylamine was significantly greater in females than males. No consistent relation appeared to exist between biotransformation activities in spiny mouse and those in other related rodent species.  相似文献   

9.
Two new cytochrome P-450 forms were purified from liver microsomes of the marine fish Stenotomus chrysops (scup). Cytochrome P-450A (Mr = 52.5K) had a CO-ligated, reduced difference spectrum lambda max at 447.5 nm, and reconstituted modest benzo[a]pyrene hydroxylase activity (0.16 nmol/min/nmol P-450) and ethoxycoumarin O-deethylase activity (0.42 nmol/min/nmol P-450). Cytochrome P-450A reconstituted under optimal conditions catalyzed hydroxylation of testosterone almost exclusively at the 6 beta position (0.8 nmol/min/nmol P-450) and also catalyzed 2-hydroxylation of estradiol. Cytochrome P-450A is active toward steroid substrates and we propose that it is a major contributor to microsomal testosterone 6 beta-hydroxylase activity. Cytochrome P-450A had a requirement for conspecific (scup) NADPH-cytochrome P-450 reductase and all reconstituted activities examined were stimulated by the addition of purified scup cytochrome b5. Cytochrome P-450B (Mr = 45.9K) had a CO-ligated, reduced difference spectrum lambda max at 449.5 nm and displayed low rates of reconstituted catalytic activities. However, cytochrome P-450B oxidized testosterone at several different sites including the 15 alpha position (0.07 nmol/min/nmol P-450). Both cytochromes P-450A and P-450B were distinct from the major benzo[a]pyrene hydroxylating form, cytochrome P-450E, by the criteria of spectroscopic properties, substrate profiles, minimum molecular weights on NaDodSO4-polyacrylamide gels, peptide mapping and lack of cross-reaction with antibody raised against cytochrome P-450E. Cytochrome P-450E shares epitopes with rat cytochrome P-450c indicating it is the equivalent enzyme, but possible homology between scup cytochromes P-450A or P-450B and known P-450 isozymes in other vertebrate groups is uncertain, although functional analogs exist.  相似文献   

10.
The pre- and postnatal development of monooxygenases in the liver and adrenal gland of marmoset monkeys (Callithrix jacchus) was investigated. Cytochrome P450 was detected in the fetal adrenal gland, but aldrin epoxidase, ethoxycoumarin O-deethylase, and ethoxyresorufin O-deethylase activities were below detection limits. Although fetal hepatic cytochrome P450 was not detected, low activities of aldrin epoxidase and ethoxycoumarin O-deethylase, but no ethoxyresorufin O-deethylase, could be detected in fetal liver. These enzymes attained adult marmosets activities when the offspring were approximately 2 months of age.  相似文献   

11.
The metabolism of (3H)-benzo(a)pyrene and the activities of enzymes involved in its metabolism were studied in rat lung and liver in vitamin A deficiency. Deficiency of vitamin A resulted a significant decrease in the overall metabolism of benzo(a)pyrene in the liver in vitro, whereas no significant difference was evident in the lung. The ethyl acetate-soluble metabolites of benzo(a)pyrene formed by lung and liver preparations were unaltered qualitatively by vitamin A deficiency. However, quantitative analysis revealed that vitamin A deficiency decreased the yield of dihydrodiols, quinones and phenols in liver, and dihydrodiols in lung. The hepatic cytochrome P-450 content, arylhydrocarbon hydroxylase and uridine diphosphate-glucuronosyl transferase activities were reduced, whereas glutathione S-transferase activity was increased in the vitamin A deficient animals. Contrary to this, pulmonary cytochrome P-450 content was above the control values (p less than 0.01) and no alteration in pulmonary arylhydrocarbon hydroxylase activity was observed in vitamin A deficient rats. Uridine diphosphate-glucuronosyltransferase and glutathione S-transferase activities were impaired in lung by inducing vitamin A deficiency. However, no significant difference was evident in the overall metabolism of benzo(a)pyrene by lung supernatants from the two groups.  相似文献   

12.
1. Relationship between quinone recycling, glucuronidation and benzo(a)pyrene (BaP) oxygenation was investigated in uninduced mouse liver microsomes--native and modified by Fe3+.FeEDTA and/or superoxide (O2-.)-initiated lipid peroxidation. 2. A functional coupling between glucuronidation of reduced quinones and BaP metabolism, not discernible during BaP metabolism by native uninduced microsomes, was demonstrable in the presence of a model quinone, vitamin K3 (menadione). 3. Menadione inhibited BaP oxygenation in microsomal preparations, by siphoning off electrons from cytochrome P-450, while addition of UDPGA reversed this effect by glucuronidation of menadiol. 4. Fe3+.FeEDTA and/or O2-.-initiated lipid peroxidation decreased, to different extent, the microsomal enzymatic activities involved in quinone metabolism. The most sensitive was quinone reductase activity, which was reduced by 77%. Under peroxidative conditions menadione was a less effective inhibitor of BaP metabolism. 5. The important role of the balance between quinone reductase and UDP-glucuronyltransferase activities in the coupling with BaP oxygenation is discussed. A mechanism by which vitamin K3 could exert a regulatory effect on BaP metabolism is proposed.  相似文献   

13.
A fluorescence -activated cell sorter (FACS-II) was used to examine biochemical parameters in a heterogeneous population of cultured human lymphocytes. Incubation of cells in the presence of benz(a)anthracene (BA) during culture was employed to induce the enzyme system which metabolizes carcinogens. Carcinogen metabolism was assayed directly by measuring the phenolic metabolites of cells exposed to benzo(a)pyrene (BP). Metabolism of benzo(a)pyrene was measured in single cells and was determined to be greater in the larger cells than in the smaller cells of the cultures. For a given size of cells, the enzyme activity was greater in those exposed to benz(a)anthracene during culture. In some studies, viable cells were first sorted by size and subpopulations assayed for the o-deethylation of the compound, ethoxyresorufin, which measures more specifically the activity of cytochrome P-448. Larger cells had higher levels of enzyme activity than smaller cells in agreement with the direct determinations above. It is possible to measure carcinogen metabolism in other tissues by using the techniques described here.  相似文献   

14.
Naphthalene or benzo(a)pyrene (100 nmol) was instilled into the closed rat intestinal loop in situ and the appearance of the free compound and its metabolites was determined in portal blood. Naphthalene appeared mostly unchanged in blood whereas benzo(a)pyrene was extensively metabolized by mucosal cells. The results suggest that absorption and metabolism are competing processes in the gut.  相似文献   

15.
Menadione is known to decrease the mixed function oxidase mediated metabolism of a number of substrates in microsomal systems. The present study examines the effect of menadione on benzo(a)pyrene metabolism in whole cells, microsomes and a semi-purified reconstituted mixed function oxidase system. Menadione has a high affinity for the NADPH dependent cytochrome P-450 reductase and acts as a competitive inhibitor of cytochrome P-450 reductase in the metabolism of benzo(a)pyrene. This is the mechanism of inhibition of aryl hydrocarbon hydroxylase by menadione in reconstituted systems. In a whole cell system and at low concentrations of menadione, depletion of reduced pyridine nucleotides is the initial inhibitory event.  相似文献   

16.
The metabolism of benzo[a]pyrene in randomly proliferating and confluent cultures of human skin fibroblast cells was compared with cell cultures in early S phase of the cell cycle after a G1 block. When each cell population was exposed to [G-3H]benzo[a]pyrene for 24 hours and the organic soluble metabolites in the extracellular medium and intracellular components were analyzed by HPLC, a quantitative increase in metabolism was observed in the confluent cell populations. The amount of organic soluble metabolites in the extracellular medium of the confluent dense cultures was 2.7 times the amount found in randomly proliferating cultures and 1.5 times that of the synchronized cultures. The trans-7,8- and 9,10 dihydrodiols and 3-hydroxy benzo[a]pyrene were the major metabolites formed. Small amounts of the sulphate conjugate, 9-hydroxy-benzo[a]pyrene and the tetrols were also detected. Cytoplasmic as well as nuclear extracts from the confluent cell cultures also contained higher amounts of metabolites compared to those from the randomly proliferating and S-phase cells. The levels of DNA modification by metabolically activated benzo[a]pyrene did not differ among the randomly proliferating, confluent and S-phase cells. However, the S-phase cells exhibited approximately 50-fold increase in the frequency of transformation compared to the randomly proliferating cells. Confluent cells were not transformed by benzo[a]pyrene. These data suggest that factors other than random modification of DNA by the carcinogen might have a significant role in the expression of a transformed phenotype and that metabolism and transformation are not directly related. Furthermore, confluent dense cultures with a heightened capability for metabolism of benzo[a]pyrene were more active in the detoxification of benzo[a]pyrene than in the production of the metabolites associated with cellular transformation.Abbreviations BaP benzo[a]pyrene - BaP-4,5-diol trans-4,5 dihydroxy-4,5-dihydrobenzo[a]pyrene - BaP-7,8-diol trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene - Bap-9,10-diol trans-9,10-dihydroxy-9,10 dihydrobenzo[a]pyrene - CM complete medium - HNF human neonatal foreskin - HPLC high pressure liquid chromatography - PAH polycyclic aromatic hydrocarbon - PDL population doubling - RP randomly proliferating  相似文献   

17.
Catechins, major polyphenol constituents of green tea, are potent chemopreventive agents against cancers caused by chemical carcinogens in rodents. The effects of four epicatechin derivatives, epigallocatechin gallate (EGCG), epicatechin gallate (ECG), epigallocatechin (EGC) and epicatechin (EC), on the metabolic activation of benzo[a]pyrene (B[a]P), 2-amino-1-methyl-6-phenylimidazo-[4,5-b]pyridine (PhIP) and aflatoxin B(1) (AFB(1)) by human cytochrome P450 (CYP) were examined. B[a]P, PhIP and AFB(1) were activated by respective human CYP1A1, CYP1A2 and CYP3A4 expressed in the membrane fraction of genetically engineered Salmonella typhimurium (S. typhimurium) TA1538 cells harboring the human CYP and human NADPH-CYP reductase (OR), when the membrane fraction was added to S. typhimurium TA98. Galloylated catechins, ECG and EGCG inhibited the mutagenic activation potently, while EGC and EC showed relatively weak inhibitory effects. Catechins also inhibited the oxidations of typical substrates catalyzed by human CYPs, namely ethoxycoumarin O-deethylation by CYP1A1, ethoxyresorufin O-deethylation by CYP1A2 and midazolam 1'-hydroxylation by CYP3A4. The IC(50) values of catechins for the inhibition of human CYP were roughly the same as those seen in the mutagenic activation. EGCG inhibited other forms of human CYP such as CYP2A6, CYP2C19 and CYP2E1, indicating the non-specific inhibitory effects of EGCG toward human CYPs. Furthermore, EGCG inhibited human NADPH-cytochrome CYP reductase (OR) with a K(i) value of 2.5 microM. These results suggest that the inhibition of the enzyme activity of CYP is accounted for partially by the inhibition of OR.  相似文献   

18.
Sulfation of harmol by isolated hepatocytes was dependent on an exogenous source of sulfate. Inorganic sulfate ion stimulated sulfation by over ten fold. Analysis of the stimulation of harmol sulfation by sulfate indicated a Km of 239 μM and a Vmax of 1.1 μmoles harmol sulfate/min/106 cells. Cysteine also stimulated the rate of harmol sulfation but was less effective than sulfate ion. Lithium chloride inhibited harmol sulfation. Sulfation was unaffected by several metabolic alterations which inhibited harmol glucuronidation. Fasting for 24 hours, and incubation with ethanol or linoleic acid, did not influence the rate of sulfation but inhibited glucuronidation by 50 percent.  相似文献   

19.
Compounds that are known to increase the hepatic microsomal cytochrome P-450 dependent monooxygenases were administered to adult female rats, alone or in combination, to determine whether their effects on certain substrate oxidations were additive. 3-Methylcholanthrene (3-MC) and pregnenolone-16 alpha-carbonitrile (PCN), known to induce different forms of cytochrome P-450, when administered together increased benzo[a]pyrene oxidation to the same level as observed following 3-MC treatment alone. Phenobarbital (Pb) and PCN when administered concomitantly increased benzo[a]pyrene, amino-pyrine, and ethylmorphine metabolism to the same extent as seen following PCN administration alone. Both compounds are known to induce different forms of cytochrome P-450. Nonadditive effects were also observed with Pb and spironolactone, as well as with Pb and trans-stilbene oxide. Treatment of adult male rats with either PCN or 3-MC resulted in significantly smaller increases in benzo[a]pyrene oxidation than observed in adult female rats. These results suggest that oxidative metabolism in hepatic microsomes is not the sum of activities of a number of cytochrome P-450s, but may represent the activity of a single predominant hemeprotein. In addition, it appears that the oxidation of substrate by a particular cytochrome P-450, in intact microsomes, is greatly influenced by the presence of another form.  相似文献   

20.
The fractionation of the liver of goldfish (Carassius auratus) was studied, and the properties of the microsomal fraction were examined. The microsomal fraction contained cytochrome P-450 and catalyzed the oxidation of aminopyrine, aniline, 7-ethoxycoumarin and benzo(a)pyrene. The oxidation activities were significantly lower than those of rat liver microsomes. The titration of cytochrome P-450 by potassium cyanide indicated the presence of multiple forms of cytochrome P-450 in goldfish liver microsomes. Feeding of goldfish with 3-methylcholanthrene-containing food greatly induced benzo(a)pyrene hydroxylation activity of the liver microsomes. The Soret peak of the carbon monoxide compound of cytochrome P-450 was shifted from 450 to 448 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号