首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
5-Aminolevulinic acid synthesis in isolated, intact, developing chloroplasts from greening cucumber (Cucumis sativus) cotyledons was inhibited by broken chloroplast fragments. It was shown that the inhibitory constituent was associated with the thylakoid membrane system. The inhibitor was resistant to boiling, was not a form of ribonuclease, and did not inhibit Mg-chelatase, indicating that massive organelle destruction was not involved. The inhibitor was also found in etioplast and mature chloroplasts; and it was found in barley as well as cucumber. 5-Aminolevulinate synthesis in the dark with exogenous ATP and NADPH, or in the light without added cofactors, were inhibited approximately equally. In the dark, 5-aminolevulinate synthesis and protochlorophyllide synthesis from glutamate were inhibited to about equal extent. The inhibition was decreased when the membranes were washed with aqueous acetone prior to incubation. The inhibition by the unknown factor was compared to the inhibition by gabaculine, 4-amino-5-hexynoic acid, protoheme, and glutathione. The unknown inhibitor appeared to have a number of similarities with protoheme.  相似文献   

2.
The effects of 2,2′-bipyridyl on porphyrin formation differed in illuminated and dark-treated barley leaves. In the dark, bipyridyl treatment increased photoconvertible protochlorophyllide (Pchlide, P650) and decreased the protohaem content. The increase in Pchlide could not be wholly accounted for by a diversion of ‘substrate’ from protohaem synthesis. The rate of Pchlide regeneration was slightly higher in chelator treated leaves which suggests increased δ-aminolaevulinic acid (ALA) synthesis. Only small quantities of Mg-protoporphyrinmonomethylester (Mg-protoME) were detected in etiolated leaves treated with bipyridyl in the dark. Protochlorophyll (P630) synthesis from exogenously supplied ALA was lower in the chelator treatments. The results suggest that only when substantial quantities of ALA are being utilized in dark-grown leaves does a ‘metal’ become limiting in the bipyridyl treated leaves. In the light, bipyridyl inhibited chlorophyll synthesis, again suggesting that when substantial amounts of ALA were being utilized a ‘metal’ becomes rate limiting. Bipyridyl treatment also inhibited ALA production in light-treated leaves. The incorporation of glycine-[14C] into ALA in the presence of bipyridyl was severely restricted compared to the incorporation of glutamate-[14C]. The data suggest two pathways for ALA synthesis; the classical ALA-synthetase which utilizes glycine and is operative in dark-grown leaves and a second enzyme system, which uses glutamate, and is of quantitative importance in the light.  相似文献   

3.
The key regulatory enzyme of chlorophyll biosynthesis in higher plants, the light-dependent NADPH:protochlorophyllide oxidoreductase (POR), is a nuclear-encoded plastid protein. Its post-translational transport into plastids is determined by its substrate. The precursor of POR (pPOR) is taken up and processed to mature size by plastids only in the presence of protochlorophyllide (Pchlide). In etioplasts, the endogenous level of Pchlide saturates the demands for pPOR translocation. During the light-induced transformation of etioplasts into chloroplasts, the Pchlide concentration declined drastically, and isolated chloroplasts rapidly lost the ability to import the precursor enzyme. The chloroplasts' import capacity for the pPOR, however, was restored when their intraplastidic level of Pchlide was raised by incubating the organelles in the dark with delta-aminolevulinic acid, a common precursor of tetrapyrroles. Additional evidence for the involvement of intraplastidic Pchlide in regulating the transport of pPOR into plastids was provided by experiments in which barley seedlings were grown under light/dark cycles. The intraplastidic Pchlide concentration in these plants underwent a diurnal fluctuation, with a minimum at the end of the day and a maximum at the end of the night period. Chloroplasts isolated at the end of the night translocated pPOR, whereas those isolated at the end of the day did not. Our results imply that the Pchlide-dependent transport of the pPOR into plastids might be part of a novel regulatory circuit by which greening plants fine tune both the enzyme and pigment levels, thereby avoiding the wasteful degradation of the imported pPOR as well as photodestruction of free Pchlide.  相似文献   

4.
Gabaculine and 4-amino-5-hexynoic acid (AHA) up to 3.0 millimolar concentration strongly inhibited 5-aminolevulinic acid (ALA) synthesis in developing cucumber (Cucumis sativus L. var Beit Alpha) chloroplasts, while they hardly affected protochlorophyllide (Pchlide) synthesis. Exogenous protoheme up to 1.0 micromolar had a similar effect. Exogenous glutathione also exhibited a strong inhibitory effect on ALA synthesis in organello but hardly inhibited Pchlide synthesis. Pchlide synthesis in organello was highly sensitive to inhibition by levulinic acid, both in the presence and in the absence of gabaculine, indicating that the Pchlide was indeed formed from precursor(s) before the ALA dehydratase step. The synthesis of Pchlide in the presence of saturating concentrations of glutamate was stimulated by exogenous ALA, confirming that Pchlide synthesis was limited at the formation of ALA. The gabaculine inhibition of ALA accumulation occurred whether levulinic acid or 4,6-dioxohepatonic acid was used in the ALA assay system. ALA overproduction was also observed in the absence of added glutamate and was noticeable after 10-minute incubation. These observations suggest that although Pchlide synthesis in organello is limited by ALA formation, it does not utilize all the ALA that is made in the in organello assay system. Gabaculine, AHA, and probably also protoheme, inhibit preferentially the formation of that portion of ALA that is not destined for Pchlide. A model proposing a heterogenous ALA pool is described.  相似文献   

5.
Formation of the chlorophyll and heme precursor δ-aminolevulinic acid (ALA) from glutamate in soluble extracts of Chlorella vulgaris, Euglena gracilis, and Cyanidium caldarium was stimulated by addition of low molecular weight RNA derived from greening algae or plant tissue. Enzyme extracts were prepared for the ALA formation assay by high-speed centrifugation, partial RNA depletion, and gel filtration through Sephadex G-25. RNA was extracted from greening barley epicotyls, greening cucumber cotyledon chloroplasts, and growing cells of Chlorella, Euglena, Chlamydomonas reinhardtii, and Anacystis nidulans, freed of protein, and fractionated on DEAE-cellulose to yield an active component corresponding to the tRNA-containing fraction. RNA from homologous and heterologous species stimulated ALA formation when added to enzyme extracts, and the degree of stimulation was proportional to the amount of RNA added. Algal enzyme extracts were stimulated by algal RNAs interchangeably, with the exception of RNA prepared from aplastidic Euglena, which did not stimulate ALA production. RNA from greening cucumber cotyledon chloroplasts and greening barley epicotyls stimulated ALA formation in algal enzyme incubations. In contrast, tRNA from Escherichia coli, both nonspecific and glutamate-specific, as well as wheat germ, bovine liver, and yeast tRNA, failed to reconstitute ALA formation. Moreover, E. coli tRNA inhibited ALA formation by algal extracts, both in the presence and absence of added algal RNA. Chlorella extracts were capable of catalyzing aminoacyl bond formation between glutamate and both the activity reconstituting and nonreconstituting RNAs, indicating that the inability of some RNAs to stimulate ALA formation was not due to their inability to serve as glutamyl acceptors. The first step in the ALA-forming reaction sequence has been proposed to be activation of glutamate via aminoacyl bond formation with a specific tRNA, analogous to the first step in peptide bond formation. Our results suggest that the RNA that is required for ALA formation may be functionally distinct from the glutamyl-tRNA species involved in protein synthesis.  相似文献   

6.
Developing chloroplasts isolated from greening cotyledons and isolated etioplasts were capable of synthesizing and accumulating Mg-protoporphyrin IX monoester as well as longer wavelength metalloporphyrins when incubated in the dark, in the presence of air, δ-aminolevulinic acid, and cofactors (coenzyme A, glutathione, adenosine triphosphate, nicotinamide adenine dinucleotide, methyl alcohol, magnesium, potassium, and phosphate). The putative metalloporphyrins exhibited distinct fluorescence emission and excitation properties and were detected by spectrofluorometry in situ and after extraction in organic solvents. The cofactors were previously shown to be required for protochlorophyll, and chlorophyll biosynthesis and grana assembly in vitro. The putative long wavelength metalloporphyrins were suggested earlier to represent intermediates between Mg-protoporphyrin IX monomethyl ester and protochlorophyllide. The isolated plastids were similar in this aspect of their biosynthetic activity to etiolated cotyledons greening in distilled H2O. In contrast to greening cotyledons, however, the biosynthetic activity of the isolated plastids depended on the addition of exogenous cofactors and δ-aminolevulinic acid. This was interpreted as an indication that the isolated plastids were not capable of generating their own δ-aminolevulinic acid and cofactors under the present incubation conditions. Light was not required for the conversion of added ALA to metalloporphyrins in vitro. The metalloporphyrins synthesized in vitro were more highly fluorescent in situ than those of greening cotyledons. In addition to Mg-protoporphyrin IX monoester and longer wavelength metalloporphyrins, isolated etioplasts synthesized and accumulated Zn-protoporphyrin and Zn-protoporphyrin IX monoesterlike compounds.  相似文献   

7.
《Plant science》1988,54(3):185-192
Synthesis of 5-aminolevulinic acid (ALA) in organello was re-examined with developing chloroplasts isolated from greening cucumber (Cucumis sativus L. var. Beit Alpha) cotyledons. In the dark, ALA accumulated in the presence of ATP, reducing power (NADPH and glucose-6-phosphate), glutamate and levulinic acid (or 4,6-dioxoheptanoic acid).Under continuous illumination there was no requirement for added ATP and reducing power, unless DCMU was added or O2 was removed, indicating that ATP and reducing power could be supplied endogenously by photosynthesis in the presence of O2. No mitochondrial involvement could be demonstrated in this system. Under anaerobic conditions in the light oxaloacetic acid (OAA) could replace O2 and permit a high accumulation of ALA. The fact that OAA could replace O2 suggests that an acceptor of non-cyclic electron flow may be required to provide ATP or some other cofactor of ALA synthesis. The phosphorylation uncoupler, 2,4-dinitrophenol, inhibited ALA synthesis. Light-dependent ALA in air was strongly inhibited by methylene blue (MB) and NaN3, but only very slightly by KCN.  相似文献   

8.
The incorporation of radioactive aminolevulinic acid (ALA) into chlorophyll (Chl) a and b , as well as protochlorophyllide (Pchlide) in light-grown barley seedlings ( Hordeum vulgare L. cv. Clipper) transferred to darkness is demonstrated.
In the experiments described, 6-day-old, glasshouse-grown seedlings were transferred to darkness and incubated in [14C]- or [3H]- ALA for 18 h.
Chl a and b were extracted and purified to constant specific radioactivity by HPLC and TLC of their magnesium-free derivatives, pheophytin a and b . The presence of label in the tetrapyrrole ring of the Chls was established by removal of the phytol chain by alkaline hydrolysis and determination of the specific radioactivity of the chlorin e 6 and rhodin g 7 derivatives.
Barley seedlings that had been grown in darkness for 5 days, transferred to light for 20 h, and then returned to darkness in the presence of radioactive ALA also incorporated label into Chl. However, this was only apparent in intact seedlings. Excised leaves from greened etiolated plants did not incorporate ALA into Chl in darkness. This was consistent with the finding of Apel et al. (K. Apel, M. Motzkus and K. Dehesh, 1984. Planta 161: 550–554) and may account for their failure to obtain evidence for a light-independent protochlorophyllide reductase in greening barley.
Although the incorporation of ALA into Chl compared to Pchlide was slight (5%), the presence of label in the tetrapyrrole nucleus of Chl a and b is unequivocal evidence of a light-independent pathway of Chl biosynthesis in barley that has been exposed to light during development. Limited entry of exogenous labelled ALA into the precursor pools leading to the dark reduction of Pchlide is postulated.  相似文献   

9.
European larch (Larix decidua Mill.) and Norway spruce [Picea abies (L.) Karst.] synthesize chlorophyll (Chl) in darkness. This paper compares Chl accumulation in 14-d-old dark-grown seedlings of L. decidua and P. abies after shortterm (24 h) feeding with 5-aminolevulinic acid (ALA). We used two ALA concentrations (1 and 10 mM) fed to cotyledons of both species in darkness and in continuous light. The dark-grown seedlings of L. decidua accumulated Chl only in trace amounts and the seedlings remained etiolated. In contrast, P. abies seedlings grown in darkness were green and had significantly higher Chl content. After ALA feeding, higher protochlorophyllide (Pchlide) content was observed in L. decidua than in P. abies cotyledons incubated in darkness. Although short-term ALA feeding stimulated the synthesis of Pchlide, Chl content did not change significantly in cotyledons incubated in darkness. The Chl accumulation in cotyledons fed with ALA was similar to the rate of Chl accumulation in the controls. Higher Chl accumulation was reported in control samples after illumination: 86.9% in L. decidua cotyledons and 46.4% in P. abies cotyledons. The Chl content decreased and bleaching occurred in cotyledons incubated with ALA in light due to photooxidation. Analyses of Chlbinding proteins (D1 and LHCIIb) by Western blotting proved differences between Chl biosynthesis in L. decidua and P. abies seedlings in the dark and in the light. No remarkable increase was found in protein accumulation (D1 and LHCIIb) after ALA application. Our results showed interspecific difference in Chl synthesis between two gymnosperms. Shortterm ALA feeding did not stimulate Chl synthesis, thus ALA synthesis was not the rate-limiting step in Chl synthesis in the dark.  相似文献   

10.
The last steps of chlorophyll (Chl) biosynthesis were studied at different light intensities and temperatures in dark‐germinated ginkgo (Ginkgo biloba L.) seedlings. Pigment contents and 77 K fluorescence emission spectra were measured and the plastid ultrastructure was analysed. All dark‐grown organs contained protochlorophyllide (Pchlide) forms with similar spectral properties to those of dark‐grown angiosperm seedlings, but the ratios of these forms to each other were different. The short‐wavelength, monomeric Pchlide forms were always dominating. Etioplasts with small prolamellar bodies (PLBs) and few prothylakoids (PTs) differentiated in the dark‐grown stems. Upon illumination with high light intensities (800 μmol m?2 s?1 photon flux density, PFD), photo‐oxidation and bleaching occurred in the stems and the presence of 1O2 was detected. When Chl accumulated in plants illuminated with 15 μmol m?2 s?1 PFD it was significantly slower at 10°C than at 20°C. At room temperature, the transformation of etioplasts into young chloroplasts was observed at low light, while it was delayed at 10°C. Grana did not appear in the plastids even after 48 h of greening at 20°C. Reaccumulation of Pchlide forms and re‐formation of PLBs occurred when etiolated samples were illuminated with 200 μmol m?2 s?1 PFD at room temperature for 24 h and were then re‐etiolated for 5 days. The Pchlide forms appeared during re‐etiolation had similar spectral properties to those of etiolated seedlings. These results show that ginkgo seedlings are very sensitive to temperature and light conditions during their greening, a fact that should be considered for ginkgo cultivation.  相似文献   

11.
The enzyme catalysing the reduction of protochlorophyllide (Pchlide) to chlorophyllide (Chlide), NADPH:Pchlide oxidoreductase (POR; EC 1.6.99.1), is a nuclear-encoded protein that is post-translationally imported to the plastid. In barley and Arabidopsis thaliana , the reduction of Pchlide is controlled by two different PORs, PORA and PORB. To characterise the possible Pchlide dependency for the import reaction, radiolabelled precursor proteins of barley PORA and PORB (pPORA and pPORB, respectively) were used for in vitro assays with isolated plastids of barley and pea with different contents of Pchlide. To obtain plastids with different endogenous levels of Pchlide, several methods were used. Barley plants were grown in darkness or in greenhouse conditions for 6 days. Alternatively, greenhouse-grown pea plants were incubated for 4 days in darkness before plastid isolation, or chloroplasts isolated from greenhouse-grown plants were incubated with Δ -aminolevulinic acid (ALA), an early precursor in the Chl biosynthesis resulting in elevated Pchlide contents in the plastids. Both barley pPORA and pPORB were effectively imported into barley and pea chloroplasts isolated from the differentially treated plants, including those isolated from greenhouse-grown plants. The absence or presence of Pchlide did not significantly affect the import capacity of barley pPORA or pPORB. Assays performed on stroma-enriched fractions from chloroplasts and etioplasts of barley indicated that no post-import degradation of the proteins occurred in the stroma, irrespective of whether the incubation was performed in darkness or in light.  相似文献   

12.
Treatment of barley seeds (Hordeum vulgare L.) with streptomycin, an inhibitor of plastid protein synthesis, resulted in growth of the albino phenotype seedlings with ribosome-deficient undifferentiated plastids and chlorophyll (Chl) level as low as 0.1% of that in control plant leaves. A major effect of the antibiotic was almost complete suppression of the ability of plants to synthesize 5-aminolevulinic acid (ALA) intended for Chl biosynthesis. The activity of synthesis of ALA intended for heme porphyrin biosynthesis in etiolated and greening seedlings and in light-grown albinophenotype plants was insensitive to light and cytokinins. In the upper parts of leaves of streptomycin-treated plants, exhibiting 60% Chl deficit, the cells with three types of chloroplasts could be observed: normally developed chloroplasts, chloroplasts composed of single thylakoids and grana, and completely undifferentiated plastids. In this Chl-deficient tissue, ALA synthesis was found to be stimulated by kinetin but much less than in leaves of the control plants. The endogenous cytokinin content in etiolated and greening seedlings treated with streptomycin was almost the same as it was in untreated control seedlings. The cytokinin level in the white tissue of plants grown in the light was on average twice as high as that in green leaves of the control plants. The capability of kinetin to stimulate the synthesis of ALA used for Chl biosynthesis was found to correlate with the Chl content and organization of the chloroplast internal structure. This correlation confirms the hypothesis that the normally developed internal structure of plastids is essential for the adequate phytohormone response in plants.  相似文献   

13.
Nobel PS 《Plant physiology》1968,43(5):781-787
A light-induced shrinkage of chloroplasts in vivo could be detected with chloroplasts isolated within 2 minutes of harvesting pea plants. As determined both by packed volume and Coulter counter, the mean volume of chloroplasts from plants in the dark was 39 μ3, whereas it was 31 μ3 for chloroplasts from plants in the light. Upon illumination of the plants, the half-time for the chloroplast shrinkage in vivo was about 3 minutes, and the half-time for the reversal in the dark was about 5 minutes. A plant growth temperature of 20° was optimal for the volume change. The chloroplast shrinkage was half-maximal for a light intensity of 400 lux incident on the plants and was light-saturated near 2000 lux. The light-absorbing pigment responsible for the volume change was chlorophyll. This light-induced shrinkage resulted in a flattening and slight indenting of the chloroplasts. This chloroplast flattening upon illumination of the plants may accompany an increase in the photosynthetic efficiency of chloroplasts.  相似文献   

14.
Cytokinin (CK) levels in cotyledons of Cucurbita pepo L. (zucchini) were investigated through the processes of post-germination, greening, natural senescence and subsequent rejuvenation. The concentrations of the physiologically active CK bases, ribosides and nucleotides, as well as the cis -isomers of zeatin derivatives, decreased between the first and fifth weeks of cultivation under controlled light conditions. At the same time, the levels of storage CK O -glucosides and physiologically inactive CK 7- and 9-glucosides increased with senescence. With plant decapitation and subsequent cotyledon rejuvenation, not only the chlorophyll content but also the levels of physiologically active CKs, nucleotides and cis -zeatin derivatives increased. The levels of O -glucosides, however, decreased. When 1-week-old seedlings were transferred to the dark, there was a progressive reduction in cotyledon chlorophyll content, deterioration of chloroplast ultrastructure and a decrease in physiologically active CKs and their nucleotides. In contrast with natural senescence, the storage CK O -glucosides decreased under dark conditions, suggesting different metabolic regulation of endogenous CK levels during natural and dark-induced senescence of zucchini cotyledons. The chlorophyll loss of dark-treated cotyledons could be partially reversed, even after 5 days, with return to light conditions. During this recovery, physiologically active CKs and their nucleotides again increased, whereas the storage CK O -glucosides and cis -zeatins decreased. The present results suggest that dark-induced destruction and subsequent restoration of chloroplasts during light shifts are controlled by changes in the levels of physiologically active CKs and their nucleotides.  相似文献   

15.
John D. Mills  Geoffrey Hind 《BBA》1979,547(3):455-462
Intense illumination of isolated, intact, spinach chloroplasts triggers the well known proton-pumping Mg2+ ATPase activity of coupling factor, which can be assayed in subsequently lysed chloroplasts by monitoring ATP-driven quenching of 9-aminoacridine fluorescence. The light-triggered ATPase activity decays slowly in the dark and is inhibited by N,N′-dicyclohexylcarbodiimide. After osmotic lysis and washing of the chloroplasts, preillumination no longer triggers maximal proton-pumping ATPase until methylviologen and dithiothreitol are added to the medium. It is suggested that intact organelles contain soluble or loosely bound cofactors necessary for light-triggering of coupling factor ATPase. On osmotic lysis, these endogenous cofactors are diluted or inactivated and must be replaced by addition of a dithiol reagent and an electron acceptor.  相似文献   

16.
17.
Chloroplasts of guard cells and coleoptiles have been implicated in the sensory transduction of blue light. The present study was aimed at establishing whether the chloroplast of the hypocotyl from Arabidopsis, another blue light-responding organ, has similar characteristics to that of sensory-transducing guard cell and coleoptile chloroplasts. Results showed that the phototropic curvature and arch length induced by blue light in Arabidopsis seedlings matched the distribution of mature chloroplasts in the bending hypocotyl. The bending arch consistently included the region of the hypocotyl containing mature chloroplasts, and never extended beyond that region. Manipulation of the extent of greening of dark-grown hypocotyls by varying red light pretreatments elicited blue light-stimulated curvatures and arch lengths that depended on the duration of the red light pretreatment and on the distribution of mature chloroplasts in the hypocotyl. Albino psd2 mutants of Arabidopsis, which lack mature chloroplasts, are devoid of phototropic sensitivity under conditions in which wild-type seedlings show large curvatures. The star mutant of Arabidopsis has a delayed greening and a delayed phototropic response as compared with wild type. Measurements of photosynthetic oxygen evolution and carbon fixation, dark respiration, and light-dependent zeaxanthin formation in the hypocotyl showed features similar to those of guard cells and coleoptiles, and distinctly different from those of mesophyll tissue. These results indicate that the hypocotyl chloroplast has characteristics similar to those associated with guard cell and coleoptile chloroplasts, and that phototropic bending of Arabidopsis hypocotyls appears to require mature chloroplasts.  相似文献   

18.
19.
When dark-grown cucumber (Cucumis sativus L.) seedlings previously exposed to white light for 20 hours were returned to darkness, the ability of isolated chloroplasts to synthesize 5-aminolevulinic acid dropped by approximately 70% within 1 hour. The seedlings were then exposed to light, and the synthetic ability of the isolated chloroplasts was determined. Restoration of the synthetic capacity was promoted by continuous white or red light of moderate intensity. Intermittent red light was also effective. Blue and far-red light did not restore the synthetic capability. Blue light given after a red pulse did not enhance the effect of the red light. Far-red light given immediately after each red pulse prevented the stimulation due to intermittent red light. Restoration of the biosynthetic activity by in vivo light treatments was inhibited by cycloheximide indicating the requirement for translation on 80 S ribosomes for the in vivo light response. These findings suggest that the majority of the plastidic 5-aminolevulinic acid synthesis is under phytochrome regulation.  相似文献   

20.
Cytokinin promotes morphological and physiological processes including the tetrapyrrole biosynthetic pathway during plant development. Only a few steps of chlorophyll (Chl) biosynthesis, exerting the phytohormonal influence, have been individually examined. We performed a comprehensive survey of cytokinin action on the regulation of tetrapyrrole biosynthesis with etiolated and greening barley seedlings. Protein contents, enzyme activities and tetrapyrrole metabolites were analyzed for highly regulated metabolic steps including those of 5-aminolevulinic acid (ALA) biosynthesis and enzymes at the branch point for protoporphyrin IX distribution to Chl and heme. Although levels of the two enzymes of ALA synthesis, glutamyl-tRNA reductase and glutamate 1-semialdehyde aminotransferase, were elevated in dark grown kinetin-treated barley seedlings, the ALA synthesis rate was only significantly enhanced when plant were exposed to light. While cytokinin do not stimulatorily affect Fe-chelatase activity and heme content, it promotes activities of the first enzymes in the Mg branch, Mg protoporphyrin IX chelatase and Mg protoporphyrin IX methyltransferase, in etiolated seedlings up to the first 5 h of light exposure in comparison to control. This elevated activities result in stimulated Chl biosynthesis, which again parallels with enhanced photosynthetic activities indicated by the photosynthetic parameters F V/F M, J CO2max and J CO2 in the kinetin-treated greening seedlings during the first hours of illumination. Thus, cytokinin-driven acceleration of the tetrapyrrole metabolism supports functioning and assembly of the photosynthetic complexes in developing chloroplasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号