首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three independently-derived, antifolate-resistant Chinese hamster lung cell lines that exhibit low level increases in dihydrofolate reductase (DHFR) activity, i.e., three- to fivefold vs. controls, have been compared with drug-sensitive cells to determine relative DHFR gene content. With a solution hybridization technique that makes use of genomic DNA and a cloned double-stranded Chinese hamster DHFR cDNA probe, it has been found that the enzyme activity increases are associated with an approximately proportionate amplification of DHFR genes. Trypsin-Giemsa staining techniques and hybridizations in situ further show that the amplified DHFR genes are located within abnormally banding regions along chromosome 2q and also suggest that, in each subline, only one chromosome 2 homolog is initially involved in the amplification process.  相似文献   

2.
Initiation of DNA synthesis occurs with high frequency at oriß, a region of DNA from the amplified dihydrofolate reductase (DHFR) domain of Chinese hamster CHOC 400 cells that contains an origin of bidirectional DNA replication (OBR). Recently, sequences from DHFR oriß/OBR were shown to stimulate amplification of cis-linked plasmid DNA when transfected into murine cells. To test the role of oriß/OBR in chromosomal gene amplification, linearized plasmids containing these sequences linked to a DHFR expression cassette were introduced into DHFR- CHO DUKX cells. After selection for expression of DHFR, cell lines that contain a single integrated, unrearranged copy of the linearized expression plasmid were identified and exposed to low levels of the folate analog, methotrexate (MTX). Of seven clonal cell lines containing the vector control, three gained resistance to MTX by 5 to 15-fold amplification of the integrated marker gene. Of 16 clonal cell lines that contained oriß/OBR linked to a DHFR mini-gene, only 6 gained resistance to MTX by gene amplification. Hence, sequences from the DHFR origin region that stimulate plasmid DNA amplification do not promote amplification of an integrated marker gene in all chromosomal contexts. In addition to showing that chromosomal position has a strong influence on the frequency of gene amplification, these studies suggest that the mechanism that mediates the experiment of episomal plasmid DNA does not contribute to the early steps of chromosomal gene amplification.  相似文献   

3.
Expression of human tissue-type plasminogen activator (t-PA) at high levels has been achieved in Chinese hamster ovary (CHO) cells by cotransfection and subsequent coamplification of the transfected sequences. Expression vectors containing the t-PA cDNA gene and dihydrofolate reductase (DHFR) cDNA gene were cotransfected into CHO DHFR-deficient cells. Transformants expressing DHFR were selected by growth in media lacking nucleosides and contained low numbers of t-PA genes and DHFR genes. Stepwise selection of the DHFR+ transformants in increasing concentrations of methotrexate generated cells which had amplified both DHFR genes and t-PA genes over 100-fold. These cell lines expressed elevated levels of enzymatically active t-PA. To optimize both t-PA sequence amplification and t-PA expression, various modifications of the original procedure were used. These included alterations to the DHFR expression vector, optimization of the molar ratio of t-PA to DHFR sequences in the cotransfection, and modification of the methotrexate resistance selection procedure. The structure of the amplified DNA, its chromosomal location, and its stability during growth in the absence of methotrexate are reported.  相似文献   

4.
5.
New sublines of BFFR1 and BFFR3 cells were obtained as a result of prolonged cultivation of Chinese hamster cells of Blld-ii-FAF 28 line (clone 431) in the presence of increasing concentrations of methotrexate (MTX). The lines obtained were resistant to 200 and 300 mcM of MTX, respectively. Amplification of the gene for dihydrofolate reductase (DHFR), similar to normal DHFR gene in restriction patterns, was proved by blot-hybridization of the resistant cells' DNA with 32P-labeled plasmid DHFR-26. Correlation is shown between the extent of gene amplification and resistance of the cell lines. In situ hybridization of the metaphase chromosomes of resistant cells with 3H-DHFR-26 results in preferential binding of the label with the regions of marker chromosomes 2 and 5, containing long, so called differential staining regions which are known to be the places of localization of amplified genes.  相似文献   

6.
We have constructed a genomic DNA library from a methotrexate-resistant Chinese hamster ovary cell line (CHOC 400) in the cosmid vector pHC79. By utilizing a murine dihydrofolate reductase (DHFR) cDNA clone, we have identified 66 DHFR+ clones among the 11,000 colonies screened by colony hybridization. To isolate a recombinant cosmid containing the entire DHFR gene, we have tested these colonies for their ability to rescue a DHFR- Chinese hamster ovary cell line, using the spheroplast fusion method of gene transfer developed by W. Schaffner (Proc. Natl. Acad. Sci. U.S.A. 77:2163-2167, 1980). One clone (cH1) was able to transform DHFR- cells to the DHFR+ phenotype and was shown in hybridization studies to contain all of the gene except a small portion of the 3' untranslated region. We have mapped cosmid cH1 and several overlapping cosmids with a variety of restriction enzymes and have determined the approximate positions of the five (and possibly six) exons within the DHFR gene. Differences between the sizes of homologous genes in hamster cells (24.5 kilobases [kb]) and in mouse cells (31.5 kb) are shown to reside primarily in the length of the 3' intron, which is 8 kb in the hamster gene and 16 kb in length in the mouse gene. Our studies confirm the utility of cosmid libraries for the isolation of large genes, as previously shown by R. de Saint Vincent et al. (Cell 27:267-277, 1981). In addition, a cosmid that contains a functional DHFR gene will be a useful vector for the co-amplification and subsequent overexpression of other cloned genes.  相似文献   

7.
8.
A new series of double-selection plasmids containing recombinant genes expressing the neomycin phosphotransferase (NEO) of transposon Tn5 and mouse dihydrofolate reductase (DHFR) in mammalian cells is described. Activity of the recombinant DHFR gene varied more than 50-fold, depending on the location of the simian virus 40 72 base-pair repeat or enhancer, which is part of the promoter of the NEO unit. A NEO-DHFR module with the enhancer located at the 3' end of the DHFR gene was inserted into a plasmid containing four tandem head-to-tail copies of the hepatitis B virus (HBV) genome and the new plasmid was used to transform DHFR- Chinese hamster ovary cells. In one of the cell lines obtained, an unrearranged copy of the HBV tetramer could be amplified 300-fold by increasing selective pressure with methotrexate, resulting in a proportional increase of the synthesis of HBV surface antigen. Four different mRNAs detected in the amplified cell line probably encode HBV core protein, pre-S and surface antigens, and the X protein. As a result of the DNA amplification, synthesis of HBV proteins is no longer restricted to resting cells. Integrated plasmid sequences appear to be stable during the amplification process.  相似文献   

9.
A Hussain  D Lewis  M Yu  P W Melera 《Gene》1992,112(2):179-188
Simian virus 40 promoter-enhancer-based mammalian expression plasmids using dihydrofolate reductase (DHFR)-encoding cDNA sequences originally isolated from two methotrexate (MTX)-resistant, DHFR-overproducing Chinese hamster lung cell lines were constructed. One, designated pSVA75, contains a DHFR cDNA that encodes leucine (Leu22) and corresponds to the wild type (wt), MTX-sensitive form of the enzyme [Melera et al., J. Biol. Chem. 263 (1988) 1978-1990]. The other plasmid, pSVA3, contains a cDNA that encodes a novel mutant form of the enzyme in which Leu22 has been changed to Phe [Melera et al., Mol. Cell Biol. 4 (1984) 38-48]. The resulting DHFR displays a 20-fold-enhanced resistance to inhibition by MTX, but maintains the catalytic activity of the wt enzyme [Albrecht et al., Cancer Res. 32 (1972) 1539-1546]. Transfection of DHFR- Chinese hamster ovary cells with either plasmid demonstrated that both were able to reconstitute the DHFR+ phenotype with equal efficiency (i.e., greater than 2.5 x 10(-3), indicating that both the wt and mutant enzymes were catalytically active in transfected cells. In addition, the mutant form of the enzyme was found to act as a dominant selectable marker when transfected into diploid DHFR+ cells, and to allow selection of resistant clones at low MTX concentrations (125 nM MTX) with a frequency of greater than 8 x 10(-4). Moreover, transfected clones were found to amplify their exogenous DHFR sequences to reasonably high levels (42-fold) at relatively low (888 nM) MTX concentrations, suggesting that substantial amplification of DHFR DNA and cotransfected sequences as well, can be achieved with this vector.  相似文献   

10.
11.
Hamster mitochondrial DNA is cleaved into two fragments (4.2 and 11.4 kilobase pairs of DNA (kb)) by the restriction enzyme, Eco RI. Recombinant DNA molecules formed in vitro between an Escherichia coli plasmid, Co1E1 - Ampr, and Eco RI-digested hamster mitochondrial DNA were transformed into E. coli K12. The translation products of the parent plasmid, Co1E1 - Ampr, and recombinant plasmid DNAs containing (i) the 4.2 kb mitochondrial DNA fragment and (ii) the 11.4 kb fragment were characterized on sodium dodecyl sulfate-polyacrylamide gels using bacterial mini-cell lysates. The Co1E1 - Ampr plasmid specifies at least six polypeptides whose structural genes comprise 56% of the plasmid DNA. Insertion of hamster mitochondrial DNA at the Eco RI site of the plasmid alters the relative rate of synthesis of these six polypeptides and induces the occurrence of a new band on sodium dodecyl sulfate-polyacrylamide gels which is probably not specified by the inserted mitochondrial DNA sequences.  相似文献   

12.
Overlapping recombinant lambda 1059 phages carrying regions of the dhfr locus from the amplified Chinese hamster ovary (CHO) cell clone MK42 have been isolated. In addition, dhfr cDNAs from this cell line have been cloned into plasmid pBR322. Restriction analysis of these recombinant molecules has led to a map of the Chinese hamster dhfr gene. This gene has a minimum size of 26 kb and contains six exons as defined by hybridization to a combination of mouse and CHO cDNA probes. The latter probes reveal 3' exonic sequences that are not present in mouse cDNA. The CHO dhfr gene thus extends about 700 bp further 3' than in the mouse, consistent with the larger size of the hamster mRNA. At least five intervening sequences are present, of approximate sizes: 0.3, 2.5, 8.6, 2.6 and 9.4 kb. Four sequences from highly repeated families are situated in introns within the dhfr gene. The overall structure of this gene is strikingly similar to that of the mouse. Evolutionary conservation of interrupted gene structure among mammals thus extends to genes that code for household enzymes as well as specialized or structural proteins.  相似文献   

13.
We have transfected a Chinese hamster ovary cell line (CHO 6) with a plasmid that inducibly expresses the Eco RI restriction endonuclease gene in the presence of cadmium sulfate (CdSO4). Expression of Eco RI results in DNA double-strand breaks, which can lead to chromosome aberrations. The new line, designated CHO 10, also has a low level of constitutive expression of Eco RI in the absence of CdSO4 without any cytogenetic effect. This suggested that these cells may be efficient at repairing low levels of DNA double-strand breaks. To test this, both cell lines were exposed to ionizing radiation, and aberration yields were analyzed with or without induction of Eco RI. CHO 10 cells showed increased radiosensitivity after G1 irradiation, but after G2 exposure, only doses greater than or equal to 0.4 Gy caused more damage in CHO 10 cells. We conclude that CHO 10 cells can tolerate constitutive expression of Eco RI, but that when the cells are subjected to additional stress, in this case ionizing radiation, they become very sensitive to DNA double-strand breaks.  相似文献   

14.
15.
Using cloned DNA complementary to mouse dihydrofolate reductase (DHFR) mRNA, the organization of the hamster DHFR gene has been determined in two baby hamster kidney (BHK) cell lines, A5 and B1. A5 cells are highly methotrexate-resistant, containing 200-fold more copies of the DHFR gene than do the parental B1 cells. The DHFR gene has the same organization in A5 and B1 cells, suggesting that it has not been altered by the amplification process. The BHK DHFR gene spans a maximum of 10.7 kb and contains at least three introns. Thus the BHK DHFR gene is much smaller than the mouse DHFR gene, which has a minimum size of 42 kb and at least five introns. This striking size difference is probably due to much smaller introns in the BHK DHFR gene.  相似文献   

16.
17.
Expression of human interleukin 2 (IL-2) at high levels has been achieved in Chinese hamster ovary (CHO) cells by amplification of transfected sequences. Plasmids containing the human IL-2 cDNA or genomic DNA and mouse dihydrofolate reductase (DHFR) cDNA were transfected into DHFR-negative CHO cells. Transformants expressing DHFR were selected in media lacking nucleosides, and cells which amplified both DHFR and IL-2 genes were obtained by exposure to increasing methotrexate (MTX) concentrations. These cell lines constitutively expressed elevated levels of IL-2 at a concentration of 2 mg/liter. These cell lines continued to produce IL-2 stably through at least 1 month, even in the absence of MTX.  相似文献   

18.
Stable expression of a full-length cDNA encoding chicken fast muscle Ca2+ transport ATPase was obtained in a Chinese hamster lung cell line (DC-3F), using a dual-promoter expression vector (pH beta FCaA3) in which the ATPase was cloned downstream of a human beta-actin gene promoter, and a mutant dihydrofolate reductase cDNA (A3/DHFR) was cloned downstream of an SV40 promoter-enhancer. Owing to its essentially normal catalytic activity and modest (20-fold) resistance to the antifolate methotrexate (MTX), the A3/DHFR mutant enzyme served as an efficient dominant selection marker in transfected cell populations challenged with MTX and, within a broad range of drug concentrations, allowed subsequent amplification and overexpression of vector sequences. In stable transfectants, the expressed ATPase was targeted to intracellular membranes, and the microsomal fractions from those cells exhibited high rates of Ca2+ transport. In comparative experiments using transient expression in COS1 cells, the level of ATPase per transfected cell was greater, but less than 5% of the transfected population exhibited ATPase expression. Furthermore, as opposed to the stable lines, the transiently expressing cells could not be propagated. Overall, the yield of ATPase was 12-16 and 4-6 micrograms per milligram of microsomal protein in the stable and the transient expression systems, respectively. The advantages of the stably transfected cell lines therefore lie in the homogeneity of ATPase expression and its distribution in cells and microsomes, in the large yield of microsomes obtained by continuous cell propagation, and in the reproducible functional characteristics of the microsomes. Moreover, the microsomes derived from stably transfected cell lines provide a convenient system for studies of Ca2+ transport and ATPase partial reaction, eliminating the need to conduct repetitive transient transfections to obtain sufficient amounts of enzyme for functional studies.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号