首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glycine decarboxylation and serine synthesis were investigatedto account for photorespiratory CO2 evolution in higher plants.Glycine decarboxylase in leaf mitochondria was found to splitglycine into CO2, NH3 and a C1 unit. Free glyoxylic acid wasnot involved in this process as an intermediate. Serine synthesiswas closely related to decarboxylation of glycine. We inferredthat serine is formed from two molecules of glycine by the combinedaction of glcine decarboxylase and serine hydroxymethyltransferase.Glycine decarboxylation and serine synthesis were stimulatedby NAD, PALP and THFA, and were inhibited by detergents, lipase,sonication, mechanical treatment, thyroxine and thiol compounds,suggesting the importance of structural intactness of the mitochondrialmembrane system. Glycine decarboxylase was present in intacttissues in quantities consistent with glycolate production duringphotosynthesis. We concluded that glycine decarboxylase in mitochondriais principally responsible for CO2 evolution in photorespiration.A control mechanism of photorespiration is discussed based onthe stimulation of glycine decarboxylase by NAD and on inhibitionby NADH. 1 A part of this work was presented at the Annual Meeting (April,1969) of the Japanese Society of Plant Physiologists, Kanazawa,and at the annual Meeting (April, 1970) of the Japanese AgricultualChemical Society, Fukuoka. (Received August 3, 1970; )  相似文献   

2.
In cultured tobacco cells glutamate-U-14C administrated wasreadily converted to -aminobutyrate (GABA) by decarboxylation,however, GABA-1-14C remained unchanged. Glutamate decarboxylasewas found in tobacco cells and reached its maximum activityin the rapidly growing stage during culture. Enzyme activityparalleled formation of GABA from glutamate-U-14C. A high contentof GABA in tobacco cells seems to be due to the rapid decarboxylationof glutamate by glutamate decarboxylase and a slow turn overof GABA. 1 Present address: The Okayama Tobacco Experiment Station, JapanMonopoly Corp., Tamashima, Kurashiki, Japan. (Received November 20, 1971; )  相似文献   

3.
Effect of the age of tobacco leaves on photosynthesis and photorespiration   总被引:1,自引:0,他引:1  
Relationships among the activities of enzymes related to photosynthesisand photorespiration, and 14CO2 photosynthetic products wereinvestigated with individual tobacco leaves attached to thestalk from the bottom to the top. P-glycolate phosphatase ofthe chloroplasts and glycolate oxidase of the peroxisomes hadtheir maximum activities in the 25th leaf from the dicotyledons.Maximum photorespiration was similarly distributed. The highestratio of serine-14C to glycine-14C in the photosynthesates andmaximum glycolate formation were also observed in the 25th leaf.Glutamateglyoxylate aminotransferase, serine hydroxymethyltransferaseand glycine decarboxylase were more active in the upper leaves.RuDP carboxylase had nearly constant activity in all leaves,except for the youngest in which activity decreased. MaximumCO2 photosynthesis and enzyme activity for the C4 dicarboxylicacid cycle occurred in the upper, youngest leaf. Distributionof photosynthetic CO2 fixation among the leaves did not coincidewith RuDP carboxylase activity. The photosynthetic capacityappeared to be better related to the distribution pattern forenzymes of the C4 dicarboxylic acid pathway, i.e. PEP carboxylase,pyruvate Pi dikinase and 3-PGA phosphatase in the upper leaves.The results suggest that the C4 dicarboxylic acid pathway participates,to some extent, in photosynthesis in young leaves of tobacco,a dicotyledonous plant. 1This work was reported at the Annual Meeting (1970) of theJapanese Plant Physiologists in Kobe. 2The Central Research Institute, Japan Monopoly Corporation1-28-3, Nishishinagawa, Shinagawaku, Tokyo, 141 Japan. (Received November 2, 1972; )  相似文献   

4.
The metabolic transformation of glycine into serine in the photosyntheticbacterium Chromatium vinosum was accompanied by the evolutionof CO2 due to decarboxylation of glycine. Isonicotinylhydrazideinhibited both 14CO2 evolution and the formation of 14C-serinefrom 14C-glycine. The results indicate that a glycine-serinetransformation reaction takes place which is analogous to thatoccurring in green leaf tissues. Glycine may be metabolisedthrough serine by this reaction. The light stimulation of 14CO2evolution and 14C-serine formation from 14C-glycine by the Chromatiumcells are judged to be results of the light-induced enhancementof 14C-glycine uptake by the bacterial cells. 1This is paper 53 in the series "Structure and Function of ChloroplastProteins" and paper 7 of the series "Biosynthetic Mechanismof Glycolate in Chromatium". Paper 6 of the latter series isRef. 3 by Asami and Akazawa (1978). 2This study was aided by research grants from the Ministry ofEducation, Science and Culture of Japan and the Nissan ScienceFoundation (Tokyo). 3Postdoctoral Fellow (1980) of the Japan Society for the Promotionof Science. (Received May 20, 1980; )  相似文献   

5.
Glycine as a substrate for photorespiration   总被引:1,自引:0,他引:1  
Substrates for photorespiration were examined by feeding 14Clabeled compounds to tobacco and corn leaf segments and by measuring14CO2 evolution in light and darkness. CO2 release in the darkwas rapid, but in light CO2 release was slow due to refixationby photosynthesis. Carboxyl labeled glycine was more rapidlydecarboxylated than were glyoxylate, glycolate or serine. Hydroxypyridinemethanesulfonate, an inhibitor of glycolate oxidase, blocked CO2 releasefrom glycolate but not from glycine. Isonicotynyl hydrazideblocked CO2 release from both glycine and glycolate. DCMU blockedphotosynthetic refixation of the released CO2, consequentlythe rates of CO2 release in light and dark were about equal.It was concluded that CO2 release during photo-respiration camefrom the conversion of 2 molecules of glycine to one serineand one CO2. 14CO2 release from glycine-l-14C in the dark or with DCMU inlight can be used as an assay for photorespiration ability. CO2 release from glycine and glycolate by corn leaf segmentsin the dark proceeded at the rate of that in normal tobaccoleaf. This result, together with other work on O2 exchange andenzymatic analysis, indicates that corn and other plants docarry on photorespiration, but it is not manifested by CO2 releasein light. A yellow tobacco mutant, Consolation 402, had high rates ofphotorespiration by the 14CO2 assay, nearly half (or more) asmany peroxisomes as chloroplasts, and high rates of CO2 releasefrom glycine-l-14C or glycolate-l-14C. A common tobacco, BrightYellow, had lower rates of photorespiration, fewer visible peroxisomes,and slower decarboxylation of glycine and glycolate. The amount of 14CO2 release from glycine-l-14C or glycolate-l-14Cincreased only slightly when the temperature was raised from25 to 35°C. 1Parts of this work were abstracted at the Annual Meeting (April,1969) of Japanese Society of Plant Physiologists, Kanazawa 2Department of Biochemistry, Michigan State University, EastLansing, Michigan, U.S.A. (Received September 3, 1969; )  相似文献   

6.
When the fronds of Eisenia bicyclis were exposed to H14CO3in the light, the radioactive carbon was rapidly incorporatedinto mannitol. Even after illumination of such a short periodas 5 min, about seventy percent of the total radioactivity incorporatedwas found in this compound, and the specific radioactivity ofthis alcohol decreased very rapidly during the subsequent darkincubation. Among various cellular polysaccharides examined,only laminaran showed a similar quick response with respectto the specific radioactivity change. On the basis of thesefindings it was concluded that mannitol and laminaran form storagesubstances in the brown alga, and they are possibly interchangeableas sucrose and starch do in higher plants. 1This work was partly reported at the 27th Annual Meeting ofthe Botanical Society of Japan, Nagoya, 1962, and at the 28thAnnual Meeting of the Botanical Society of Japan, Okayama, 1963. 2Contribution from the Shimoda Marine Biological Station, TokyoKyoiku University, No. 149.  相似文献   

7.
Shoots of intact peanut and sunflower seedlings evolved CO2in the light which was enriched more than 10 per mille in 13Ccompared with simultaneous CO2 evolution from the roots. Carbondioxide collected from tobacco leaves in the light was 10 permille enriched in 13C compared with that collected in the dark.Anaerobic conditions inhibited photorespiration but did notchange isotopic ratios of dark respiration. 1 Department of Biology, Fresno State College, Fresno, California93710, U. S. A. 2 Deceased. (Received February 29, 1972; )  相似文献   

8.
Photorespiration rates under air-equilibrated conditions (0.04%CO2 and 21% O2) were measured in Chlamydomonas reinhardtii wild-type2137, a phosphoglycolate-phosphatase-deficient (pgp1) mutantand a suppressor double mutant (7FR2N) derived from the pgp1mutant. In both cells grown under 5% CO2 and adapted air for24 h in the suppressor double mutant, the maximal rate of photorespiration(phosphoglycolate synthesis) was only about half of that ineither the wild type or the pgp1 mutant (18-7F) cells. In theprogeny, the reduced rate of photorespiration was accompaniedby increased photosynthetic affinity for inorganic carbon andthe capacity for growth under air whether accompanied by thepgp1 background or not. Tetrad analyses suggested that thesethree characteristics all resulted from a nuclear single-genemutation at a site unlinked to the pgp1 mutation. The decreasein photorespiration was, however, not due to an increase inthe CO2/O2 relative specificity of ribulose-1,5-bisphosphatecarboxylase/oxygenase of 7FR2N or of any other suppressor doublemutants tested. The relationship between the decrease in therate of photorespiration and the CO2-concentrating mechanismis discussed. 3 Current address: Institute of Botany, Academy of Sciences,Patamdar Shosse, 40, Baku, 370073, Azerbaijan. 4 Current address: Department of Management and InformationScience, Jobu University, 270-1, Shinmachi, Tano, Gunma, 370-1393Japan.  相似文献   

9.
High activity of phosphoenolpyruvate (PEP)-carboxykinase, orADP: oxalacetate (OAA) carboxy-lyase activity (a kind of EC4. 1. 1. 32) was discovered in enzyme extracts or partiallypurified preparations obtained from the brown algae, Eiseniabicyclis, Dictyota dichotoma, Spatoglossum pacificum; and Hizikiafusiformis. Enzyme activities were determined by measuring theradioactivity incorporated in the products of dark 14CO2-fixationand by spectrophotometric determinations. Except for the lowactivity of "malic enzyme" (EC 1. 1. 1.40), no activities ofother carboxylases, i.e. PEP-carboxylase, PEP-carboxytransphosphorylase,and pyruvate carboxylase could be detected in algal extractsprepared under various conditions. Malate dehydrogenase (EC1. 1. 1. 37), fumarase (EC 4. 2. 1. 2), and glutamic: oxalacetictransaminase (EC 2. 6. 1. 1) were also detected. The algal PEP-carboxykinase required ADP and Mn2+ for maximumactivity in the carboxylation reaction; and ATP and Mn2+, butnot GTP, for maximum activity in both the decarboxylation andOAA-14CO2-exchange reactions. The optimum pH of purified PEP-carboxykinase was in the regionof 7.0 to 7.3 in both the carboxylation and decarboxylationreactions, and its Km values for HCO3, PEP, and ADP were10 mM, 0.3 mM, and 0.07 mM, respectively, in the carboxylationreaction, and values for OAA and ATP were 0.05 mM and 0.4 mM,respectively, in the decarboxylation reaction. Furthermore,the decarboxylation reaction was markedly inhibited by 20 mMHCO3. The physiological role of PEP-carboxykinase as the enzyme responsiblefor the entrance reaction of the dark CO2-fixation is discussed. 1 Contributions from the Shimoda Marine Biological Station ofTokyo Kyoiku University, No. 236. This work was supported inpart by a Grant-in-Aid for Co-operative Research from the Ministryof Education, Japan and Matsunaga Science Foundation (to T.Ikawa). 2 Present address: Department of Antibiotics, the National Instituteof Health, Shinagawa, Tokyo, Japan. (Received February 22, 1972; )  相似文献   

10.
The pattern for primary products of CO2-fixation and the chloroplaststructure of Amaranthus retrqflexus L., a species which incorporatescarbon dioxide into C4 dicarboxylic acids as the primary productof photosynthesis, were compared in various chlorophyll containingtissues,i.e., foliage leaves, stems, cotyledons and pale-greencallus induced from stem pith. Despite some morphological differencesin these assimilatory tissues, malate and aspartate were identifiedas the major compounds labelled during a 10 sec fixation of14CO2 in all tissues. Whereas, aspartate was the major componentin C4-dicarboxylic acids formed in foliage leaves, malate predominatedas the primary product in stems, cotyledons and the pale-greencallus. The percentage of 14C-radioactivity incorporated intoPGA and sugar-P esters increased and 14C-sucrose was detectedin the prolonged fixation of 14CO2 in the light, not only infoliage leaves, but also in stems and cotyledons. 1 This work was supported by a Grant for Scientific ResearchNo. 58813, from the Ministry of Education, Japan. 2 Present address: Institute of Applied Microbiology, Universityof Tokyo, Tokyo, Japan. 3 Present address: Department of Biochemistry, University ofGeorgia, Athens 30601. Georgia, U. S. A. (Received July 10, 1971; )  相似文献   

11.
Protoplasts were isolated enzymatically from haploid tobaccoleaves, then cultured in synthetic media. Cultured protoplastsstarted their first division within a few days after inoculationand subsequently developed into small colonies. After severalreinoculations, these colonies differentiated shoots and roots.Finally, haploid flowering plants were obtained. 1 Present address: Sericultural Experiment Station, Suginami-ku,Tokyo, Japan. 2 Passed away on July 29, 1971. (Received October 9, 1971; )  相似文献   

12.
In a study on metabolic consumption of photosynthetic electronsand dissipation of excess light energy under water stress, O2and CO2 gas exchange was measured by mass spectrometry in tomatoplants using 18O2 and 13CO2. Under water stress, gross O2 evolution(EO), gross O2 uptake (UO), net CO2 uptake (PN), gross CO2 uptake(TPS), and gross CO2 evolution (EC) declined. The ratio PN/EOfell during stress, while the ratios UO/EO and EC/TPS rose.Mitochondrial respiration in the light, which can be measureddirectly by 12CO2 evolution during 13CO2 uptake at 3000 µll–1 13CO2, is small in relation to gross CO2 evolutionand CO2 release from the glycolate pathway. It is concludedthat PSII, the Calvin cycle and mitochondrial respiration aredown-regulated under water stress. The percentages of photosyntheticelectrons dissipated by CO2 assimilation, photorespiration andthe Mehler reaction were calculated: in control leaves morethan 50 % of the electrons were consumed in CO2 assimilation,23 % in photorespiration and 13 % in the Mehler reaction. Undersevere stress the percentages of electrons dissipated by CO2assimilation and the Mehler reaction declined while the percentageof electrons used in photorespiration doubled. The consumptionof electrons in photorespiration may reduce the likelihood ofdamage during water deficit.  相似文献   

13.
Acetate-1-14C was fed to excised leaves of normal and potassiumdeficient rice plants. The rate of respiratory evolution of14CO2 was increased by a potassium deficiency. Malonate, glyoxylateor malate supplied enhanced the metabolism of acetate-l-14C.These results suggest an accelerated turn of the TCA cycle inpotassium deficient leaves. Malate synthetase activity was notrecognized in either normal or deficient leaves. However, condensingenzyme activity was higher in deficient leaves than in normalones. An addition of DNP to the leaves increased 14CO2 productionfrom acetate-l-14C though its effect was smaller in deficientleaves than it was in normal ones. This result may suggest anincrease in the turnover rate of ATP or loose coupling of electrontransfer with oxidative phosphorylation in deficient leaves.Chromatographic separation of cold acidsoluble nucleotides hasshown that the ATP level was lowered by a potassium deficiency,though the ADP level was not affected. 1Present address: Sericultural Experiment Station, Suginami-Ku,Tokyo  相似文献   

14.
Soybean plants [Glycine max (L.) Merr. cv. AGS129], two andthree weeks after depodding and defoliation, respectively, wereused to examine the possibility of end-product regulation onthe carbon exchange rate and activities of enzymes involvedin sucrose metabolism in leaves. Removal of one and two lateralleaflets per trifoliate leaf reduced the total leaf area by20% and 47%, respectively. Removal of one pod per node reducedthe total pod number by 23% per plant. Dry weights of roots,stems and petioles decreased with reductions in leaf area. Bycontrast, removal of pods resulted in an increase in these parameters.The carbon exchange rate and transpiration rate of leaves increasedwith defoliation and decreased with depodding. The intercellularconcentration of CO2 in leaves was reduced by defoliation andincreased by depodding. Furthermore, defoliation increased thelevel of leaf chlorophyll in leaves while depodding decreasedit. Removal of pods decreased the activities of sucrose-phosphatesynthase and -amylase but increased that of sucrose synthase.A significant positive correlation was found between the activityof leaf sucrose-phosphate synthase and both the carbon exchangerate and the sucrose content of leaves. Thus, manipulation ofthe sink and source in soybean plants influenced the relationshipbetween sucrose metabolism and the carbon exchange rate in intactleaves. 3Faculty of Agriculture, Okayama University, Tsusimanaka Okayama,700 Japan 4Faculty of Agriculture, Saga University, Honjo-machi, Saga,840 Japan 1Present address: Faculty of Agriculture, Sriwijaya University,J1 Raya Indralaya, OK1 30662, Indonesia 2Present address: Faculty of Agriculture, Saga University, Honjo-machi,Saga, 840 Japan  相似文献   

15.
Polysome formation in Pinus resinosa at initiation of seed germination   总被引:1,自引:0,他引:1  
Ribonucleic acid systems present in dormant embryos of red pine(Pinus resinosa Ait.) were studied. Sucrose gradient centrifugationwas used to isolate ribosomes of dormant embryos and embryosimbibed for various times in the light. In dormant embryos,ribosomes existed as monomers. After imbibition, a gradual decreasein the monomers was observed, with subunits and polymers ofribosomes detected within 4 hr. When poly U was added to homogenatesof dormant embryos, formation of polysomes was observed aftera 15-min incubation at 25°C. However, artificial polysomeformation required some factors from heavy particles in thehomogenates. 1 Contribution from the Missouri Agricultural Experiment Station,Journal Series No. 7079. 2 Present address: Government Forest Experiment Station, Meguro,Tokyo, Japan. (Received April 20, 1971; )  相似文献   

16.
  1. 14CO2 fixation into organic acids in tips and proximal sectionsof both corn and barley roots was studied as a function of thenature and concentration of the salt in the external solution.
  2. In comparison with the level of 14CO2 fixation by vacuolateproximal sections in KCI, incorporation was markedly enhancedin K2SO4 and diminished in CaCk. By contrast, non-vacuolateroot tips were indifferent to the type of external salt withrespect to UCO2 incorporation into organic acids.
  3. The effectof salt type on organic acid formation from 14CO2was most pronouncedat relatively high concentrations.
  4. The conclusion was reachedthat organic acid synthesis in responsetoexcess cation uptakeis the result of cation movement into thevacuole, and thattransport into the vacuole is mediated bythe low-affinity componentof the dual mechanisms involved inion absorption.
1Present address: Government Forst Experiment Station, Meguro,Tokyo.  相似文献   

17.
The effect of ethylene on the uptake, decarboxylation and basipetaltransport of IAA-1-14C, IAA-2-14C and NAA-1-14C in cotton stemsections (Gossypium hirsutum L., var. Stoneville 213) was studied.A reduction in the capacity of cotton stem sections to transportauxin basipetally appears in sections excised from plants exposedto ethylene for only 3 hr and increases with fumigation time. In addition to reducing transport, increasing ethylene pretreatmentperiods from 3 to 15 hr also progressively reduced the uptakeof 14C and increased the release of 14C as 14CO2 from IAA-1-14C.The effect of ethylene on the decarboxylation of IAA-1-14C wassignificant when expressed as either the cpm of 14C releasedper hr per mg dry weight or the cpm released per hr per mm2in contact with the IAA donor. Comparative experiments usingIAA-1-14C and IAA-2-14C demonstrated that the effect of ethyleneon the decarboxylation of IAA was primarily a cut surface effectwhich apparently contributes to the reduction of IAA uptakeby ethylene. Although ethylene significantly reduced the transport of NAA-1-14C,uptake was significantly increased rather than decreased aswith IAA-1-14C while decarboxylation was unaffected. Ethylene pretreatment caused no significant changes in the dryweight or the cross-sectional area of the absorbing surfaceof the transport tissue. 1A contribution of the Texas Agricultural Experiment Station.Supported in part by Grant GB-5640, National Science Foundationand grants from the Cotton Producers Institute and the NationalCotton Council of America. 2Present address: Central Research Department, E. I. Du PontDe Nemours and Company, Wilmington, Delaware 19898, U. S. A. (Received May 29, 1969; )  相似文献   

18.
  1. In the presence of NADP+ and Mg++, the bundle sheath strandsisolated from corn (Zea mays) leaves by cellulase treatmentsdecarboxylated malate in the light at an initial rate (200 µmoles/mgchl.hr), which was sufficient to account for photosyntheticCO2 fixation in intact leaves. This rate gradually slowed downand then stopped. The final level of the malate decarboxylatedwas approximately equal to the amount of NADP+ added.
  2. Rapidand continued decarboxylation of malate was observed whenNADP+,3-phosphoglyceric acid and ATP (and Mg++) were addedtogether.The addition of ADP instead of ATP showed a similareffect.Light did not show any effect on the malate decarboxylationin the presence of ATP or ADP.
  3. When malate was added to thebundle sheath strands in the presenceof exogenous NADP+ NADP+was rapidly reduced. The reductionstopped after 2 min when,73% of the added NADP+ was reduced.The further addition of3-phosphoglyceric acid and ATP broughtabout a decrease in theNADPH-level, which rose again to attaina new steady level.
  4. The transfer of radioactivity from (1-14C-3-phosphoglycericacid to dihydroxyacetone phosphate in the bundle sheath strandsin the presence of ATP and NADP+ was greatly enhanced by theaddition of malate.
  5. In the presence of ribose 5-phosphateand ATP, the rate of 14C-transferfrom (4-14C)-malate to theintermediates of the reductive pentosephosphate cycle was equalto that of 14CO2 fixation in the light.
All these results support the current view that in the bundlesheath cells of C4 plants belonging to the NADP-malic enzyme-group,the decarboxylation of malate is coupled to the fixation ofthe released CO2 and the reduction of 3-phosphoglyceric acidformed as a result of CO2 fixation. 1 Part of this research was reported at the 40th Annual Meetingof the Botanical Society of Japan Osaka, December, 1975. 3 Present address: Laboratory of Chemistry, Faculty of Medicine,Teikyo University, 359 Otsuka, Hachioji-City, Tokyo 173, Japan. (Received April 30, 1977; )  相似文献   

19.
Effects of Sodium on Photosynthesis in Panicum coloratum   总被引:2,自引:0,他引:2  
Foliar application of NaCl to sodium-deficient Panicum coloratumstimulated photosynthesis, as did application via roots. Effectsof sodium on photosynthetic responses to internal concentrationsof CO2 under different light intensities and initial productsof 14CO2 fixation suggested that CO2 fixation and aminationof oxalacetate were limited by sodium deficiency. 2 Present address: Institute for Life Science Research, NihonNohyaku Co., Ltd., Kawachi-Nagano, Osaka, 586 Japan.  相似文献   

20.
An investigation was made to determine the effective time forCO2 treatment in overcoming self-incompatibility in Brassica.CO2 was effective when supplied to a self-pollinated flowerwhile hundreds of pollen grains were germinating on the stigma.Since the effective time coincides with the attachment of pollentubes to papilla cells, it is thought that CO2 produces a metabolicchange in these cells during attachement. 1Part of a thesis submitted for the Dr. of Agr. degree by thesenior author at Tohoku University. 2Present address: Faculty of Agriculture, Kobe University, Nada-ku,Kobe, Japan. (Received December 7, 1972; )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号