首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclodextrin glucanotransferases (CGTases; EC 2.4.1.19) from newly isolated mesophilic, thermophilic, alkalophilic, and halophilic bacilli, as well as from thermoactinomycetes, were purified to homogeneity, and some of their physicochemical and biochemical characteristics (cyclizing, disproportionating, and hydrolytic activities) were studied. Cyclodextrin (CD) production in the presence and absence of compounds favoring formation of complexes had certain specific features. We were able to demonstrate that CGTases of mesophilic and thermophilic strains form mixtures of -, -, and -CDs, whereas the enzymes from halophilic and alkalophilic microorganisms preferentially catalyze the formation of -CD.  相似文献   

2.
Cyclodextrin glycosyltransferases (CGT-ase, 1.4-alpha-glucanotransferase, cyclizing, EC 2.4.1.19) produced by some thermophilic, alkalophilic and mesophilic bacterial strains, were isolated and characterized. It was shown that thermophilic and mesophilic CGT-ases represent a mixture of alpha-, beta- and gamma-cyclodextrins (CD), alpha-cyclodextrin being the predominant component. Alkalophilic enzymes produce only beta-CD and are able to produce CD not only from starch but also from maltose, melibiose, maltotriose, amylose and amylopectin. The optimal conditions for the catalytic activity of the enzymes were determined. It was found that calcium, magnesium and zinc ions have a beneficial effect on the specific activity of these enzymes. The amino acid composition of the enzymes was studied.  相似文献   

3.
Cyclodextrin glucanotransferases (CGTases, EC 2.4.1.19), produced by mesophilic, thermophilic, alkaliphilic, and halophilic bacilli, were used for the transglycosylation of stevioside to remove bitterness and aftertaste, with cyclodextrins (CDs) being used as donors. It was shown that CGTases produced by extremophiic microorganisms are effective biocatalysts. Optimal temperature and pH of these enzymes were at pH 6.5-7.5 and 45 degrees C, respectively. The optimal stevioside-to-CD ratio and total concentration of dry matter for the synthesis of best-taste product were 1:1 (w/w) and 11.6%, respectively.  相似文献   

4.
Cyclodextrin glucanotransferases (CGTase, EC 2.4.1.19) produced by mesophilic, thermophilic, and halophilic bacilli, as well as maltase (EC 3.2.1.20) produced by various strains of Saccharomyces cerevisiae have been applied for transglycosylation of L-ascorbic acid using starch, maltodextrin, gamma-cyclodextrin, and maltose as donors of glucosyl residue. The CGTases produced by thermophilic strains are the most efficient. The degree of transglucosylation is more than 60%.  相似文献   

5.
Cyclodextrin glucanotransferases (CGTs, EC 2.4.1.19) from mesophilic, thermophilic, and halophilic bacteria and maltase (EC 3.2.1.20) from the yeast Saccharomyces cerevisiae were used for transglycosylation of ascorbic acid with starch, maltodextrin, γ-cyclodextrin, and maltose. These compounds served as donors of glucosyl residues. CGT from thermophilic strains was shown to be the most potent in this respect (the degree of transglycosylation was as high as 60%).  相似文献   

6.
Cyclodextrin glucanotransferases (CGTases, EC 2.4.1.19) produced by mesophilic, thermophilic, alkaliphilic, and halophilic bacilli were used for transglycosylating stevioside and rebaudiosides A with the use of starch as a donor. CGTases produced by B. stearothermophilus B-5076 B. macerans BIO-4m were the most effective biocatalysts. This method can be successfully used for direct transglycosylation of stevia extract without purification of its individual components.  相似文献   

7.
Combined enzymatic modification of stevioside and rebaudioside A   总被引:1,自引:0,他引:1  
Cyclodextrin glucanotransferases (CGTases, EC 2.4.1.19) produced by mesophilic, thermophilic, alkaliphilic, and halophilic bacilli were used for transglycosylating stevioside and rebaudiosides A with the use of starch as a donor. CGTases produced by Bacillus stearothermophilus B-5076 B. Macerans BIO-4m were the most effective biocatalysts. This method can be used successfully for direct transglycosylation of stevia extract without purification of its individual components.  相似文献   

8.
Cyclodextrin glucanotransferases (CGTases, EC 2.4.1.19) produced by mesophilic, thermophilic, alkaliphilic, and halophilic bacilli were used for transglycosylating stevioside (in order to remove bitterness and aftertaste), with cyclodextrins (CDs) being used as donors. It was shown that CGTases produced by extremophilic microorganisms are effective biocatalysts. Optimum temperature and pH of these enzymes were 45°C and pH 6.5–7.5, respectively. The optimum stevioside-to-CD ratio and total concentration of dry matter for the synthesis of the best-tasting product were 1 : 1 (w/w) and 11.6%, respectively.  相似文献   

9.
Cyclodextrin glucanotransferase (beta-CGTase) of alkalophilic Bacillus sp. #1011 degrades starch to mainly beta-cyclodextrin (beta-CD). This enzyme is considered to contain an extra-polypeptide in its COOH-terminal region in addition to its NH2-terminal domain which exhibits the starch-degrading activity. To analyze the functions of this extra-polypeptide in the beta-CGTase, two mutated enzymes, in which DNA regions encoding 10 or 13 amino acids from the COOH-terminus were deleted, were obtained. The mutated enzymes degraded starch to glucose, maltooligosaccharides and alpha-CD, in addition to beta-CD. Furthermore, the pH stability of the mutated enzymes in the alkaline pH range (pH 9-11) was reduced.  相似文献   

10.
The evolution of cyclodextrin glucanotransferase product specificity   总被引:1,自引:0,他引:1  
Cyclodextrin glucanotransferases (CGTases) have attracted major interest from industry due to their unique capacity of forming large quantities of cyclic α-(1,4)-linked oligosaccharides (cyclodextrins) from starch. CGTases produce a mixture of cyclodextrins from starch consisting of 6 (α), 7 (β) and 8 (γ) glucose units. In an effort to identify the structural factors contributing to the evolutionary diversification of product specificity amongst this group of enzymes, we selected nine CGTases from both mesophilic, thermophilic and hyperthermophilic organisms for comparative product analysis. These enzymes displayed considerable variation regarding thermostability, initial rates, percentage of substrate conversion and ratio of α-, β- and γ-cyclodextrins formed from starch. Sequence comparison of these CGTases revealed that specific incorporation and/or substitution of amino acids at the substrate binding sites, during the evolutionary progression of these enzymes, resulted in diversification of cyclodextrin product specificity. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Hans Leemhuis acknowledges financial support from the Netherlands Organization for Scientific Research (NWO).  相似文献   

11.
Cyclodextrin glucanotransferases (CGTases) are industrially important enzymes that produce cyclic α-(1,4)-linked oligosaccharides (cyclodextrins) from starch. Cyclodextrin glucanotransferases are also applied as catalysts in the synthesis of glycosylated molecules and can act as antistaling agents in the baking industry. To improve the performance of CGTases in these various applications, protein engineers are screening for CGTase variants with higher product yields, improved CD size specificity, etc. In this review, we focus on the strategies employed in obtaining CGTases with new or enhanced enzymatic capabilities by searching for new enzymes and improving existing enzymatic activities via protein engineering.  相似文献   

12.
13.
Cyclodextrin glycosyltransferase (CGTase) uses an alpha-retaining double displacement mechanism to catalyze three distinct transglycosylation reactions. To investigate these reactions as catalyzed by the CGTase from Thermoanaerobacterium thermosulfurigenes the enzyme was overproduced (8 mg.L(-1) culture) using Bacillus subtilis as a host. Detailed analysis revealed that the three reactions proceed via different kinetic mechanisms. The cyclization reaction (cyclodextrin formation from starch) is a one-substrate reaction, whereas the other two transglycosylation reactions are two-substrate reactions, which obey substituted enzyme mechanism kinetics (disproportionation reaction) or ternary complex mechanism kinetics (coupling reaction). Analysis of the effects of acarbose and cyclodextrins on the disproportionation reaction revealed that cyclodextrins are competitive inhibitors, whereas acarbose is a mixed type of inhibitor. Our results show that one molecule of acarbose binds either in the active site of the free enzyme, or at a secondary site of the enzyme-substrate complex. The mixed inhibition thus indicates the existence of a secondary sugar binding site near the active site of T. thermosulfurigenes CGTase.  相似文献   

14.
Proteins of halophilic organisms, which accumulate molar concentrations of KCl in their cytoplasm, have a much higher content in acidic amino acids than proteins of mesophilic organisms. It has been proposed that this excess is necessary to maintain proteins hydrated in an environment with low water activity, either via direct interactions between water and the carboxylate groups of acidic amino acids or via cooperative interactions between acidic amino acids and hydrated cations. Our simulation study of five halophilic proteins and five mesophilic counterparts does not support either possibility. The simulations use the AMBER ff14SB force field with newly optimized Lennard-Jones parameters for the interactions between carboxylate groups and potassium ions. We find that proteins with a larger fraction of acidic amino acids indeed have higher hydration levels, as measured by the concentration of water in their hydration shell and the number of water/protein hydrogen bonds. However, the hydration level of each protein is identical at low (bKCl = 0.15 mol/kg) and high (bKCl = 2 mol/kg) KCl concentrations; excess acidic amino acids are clearly not necessary to maintain proteins hydrated at high salt concentration. It has also been proposed that cooperative interactions between acidic amino acids in halophilic proteins and hydrated cations stabilize the folded protein structure and would lead to slower dynamics of the solvation shell. We find that the translational dynamics of the solvation shell is barely distinguishable between halophilic and mesophilic proteins; if such a cooperative effect exists, it does not have that entropic signature.  相似文献   

15.
盐碱环境放线菌多样性研究   总被引:5,自引:3,他引:5  
放线菌因产生多种多样的生物活性物质而受到重视。但极端环境放线菌的研究甚少。采用DGGE、纯培养法,重点研究了新疆、青海及埃及的重盐碱环境的放线菌分布情况,种类组成,生物学特性。发现了1个新科,8个新属及30多个新种。从嗜(耐)盐碱放线菌筛选到许多带有PKS基因的菌株。认为极端环境放线菌是生物活性物质的重要来源;改进分离程序,分离未知放线菌,是放线菌多样性研究及开发利用的前提之一;并对极端环境放线菌研究作了论述。  相似文献   

16.
Cyclodextrin glycosyltransferase (EC 2.4.1.19) from Bacillus circulans has been purified, crystallized and analyzed by X-ray diffraction. The enzyme is monomeric. SDS/polyacrylamide gel electrophoresis gave an Mr of 73,600(+/- 1000), corresponding to 670(+/- 10) amino acid residues. The structure of the crystalline enzyme has been elucidated at a resolution of 3.4 A, using multiple isomorphous replacement and solvent flattening for phase determination. The resulting electron density map allowed tracing of the polypeptide chain; 664 residue positions have been assigned. The chain fold has been subdivided into five domains. The N-terminal domain forms a (beta alpha)8-barrel, which contains the second domain of about 55 residues as an insert after the third beta-strand. The three remaining domains form almost exclusively beta-pleated sheet structures and consist of about 90, 80 and 95 residues. The chain fold of the three N-terminal domains of 492 residues resembles closely the two known structures of alpha-amylases. This geometric similarity corresponds to the observed amino acid sequence homology. On the basis of the sequence homology with alpha-amylases, the active center can be located. The fourth domain has an immunoglobulin fold and is far away from the active center, while the fifth domain participates in the formation of the broad depression at the active center. Accordingly, the cyclodextrin glycosyltransferase chain fold can be considered as an alpha-amylase chain fold with two additional domains.  相似文献   

17.
Proteins from halophilic organisms, which live in extreme saline conditions, have evolved to remain folded at very high ionic strengths. The surfaces of halophilic proteins show a biased amino acid composition with a high prevalence of aspartic and glutamic acids, a low frequency of lysine, and a high occurrence of amino acids with a low hydrophobic character. Using extensive mutational studies on the protein surfaces, we show that it is possible to decrease the salt dependence of a typical halophilic protein to the level of a mesophilic form and engineer a protein from a mesophilic organism into an obligate halophilic form. NMR studies demonstrate complete preservation of the three-dimensional structure of extreme mutants and confirm that salt dependency is conferred exclusively by surface residues. In spite of the statistically established fact that most halophilic proteins are strongly acidic, analysis of a very large number of mutants showed that the effect of salt on protein stability is largely independent of the total protein charge. Conversely, we quantitatively demonstrate that halophilicity is directly related to a decrease in the accessible surface area.  相似文献   

18.
Crystal structures are known for several glycosyl hydrolase family 10 (GH10) xylanases. However, none of them is from an alkalophilic organism that can grow in alkaline conditions. We have determined the crystal structures at 2.2 Angstroms of a GH10 extracellular endoxylanase (BSX) from an alkalophilic Bacillus sp. NG-27, for the native and the complex enzyme with xylosaccharides. The industrially important enzyme is optimally active and stable at 343 K and at a pH of 8.4. Comparison of the structure of BSX with those of other thermostable GH10 xylanases optimally active at acidic or close to neutral pH showed that the solvent-exposed acidic amino acids, Asp and Glu, are markedly enhanced in BSX, while solvent-exposed Asn was noticeably depleted. The BSX crystal structure when compared with putative three-dimensional homology models of other extracellular alkalophilic GH10 xylanases from alkalophilic organisms suggests that a protein surface rich in acidic residues may be an important feature common to these alkali thermostable enzymes. A comparison of the surface features of BSX and of halophilic proteins allowed us to predict the activity of BSX at high salt concentrations, which we verified through experiments. This offered us important lessons in the polyextremophilicity of proteins, where understanding the structural features of a protein stable in one set of extreme conditions provided clues about the activity of the protein in other extreme conditions. The work brings to the fore the role of the nature and composition of solvent-exposed residues in the adaptation of enzymes to polyextreme conditions, as in BSX.  相似文献   

19.
A new gold nanoparticle-based construct has been designed to hydrophobic drugs delivery into cancer cells. Cyclodextrin scaffolds adsorbed on polyethyleneimine-coated gold nanoparticles (AuNP@PEI@CD) have been used to encapsulate hydrophobic tetrapyrrolic compounds consisting of gold complexes of 5,10,15,20-tetraphenyl porphyrin (AuTPPCl) and 5-(4-acetoxyphenyl)-10,15,20-triphenyl porphyrin (AuTPPOAcCl). These two nanoparticles have been tested for their cytotoxic activities against the two colorectal cancer cell lines HT-29 and HCT-116 and have shown significant increases in toxicity when compared to the corresponding non-vectorized tetrapyrrolic macrocycles.  相似文献   

20.
The extremely halophilic Archae require near-saturating concentrations of salt in the external environment and in their cytoplasm, potassium being the predominant intracellular cation. The proteins of these organisms have evolved to function in concentrations of salt that inactivate or precipitate homologous proteins from non-halophilic species. It has been proposed that haloadaptation is primarily due to clustering of acidic residues on the surface of the protein, and that these clusters bind networks of hydrated ions. The dihydrofolate reductases from Escherichia coli (ecDHFR) and two DHFR isozymes from Haloferax volcanii (hvDHFR1 and hvDHFR2) have been used as a model system to compare the effect of salts on a mesophilic and halophilic enzyme. The KCl-dependence of the activity and substrate affinity was investigated. ecDHFR is largely inactivated above 1M KCl, with no major effect on substrate affinity. hvDHFR1 and hvDHFR2 unfold at KCl concentrations below approximately 0.5M. Above approximately 1M, the KCl dependence of the hvDHFR activities can be attributed to the effect of salt on substrate affinity. The abilities of NaCl, KCl, and CsCl to enhance the stability to urea denaturation were determined, and similar efficacies of stabilization were observed for all three DHFR variants. The DeltaG degrees (H(2)O) values increased linearly with increasing KCl and CsCl concentrations. The increase of DeltaG degrees (H(2)O) as a function of the smallest cation, NaCl, is slightly curved, suggesting a minor stabilization from cation binding or screening of electrostatic repulsion. At their respective physiological ionic strengths, the DHFR variants exhibit similar stabilities. Salts stabilize ecDHFR and the hvDHFRs by a common mechanism, not a halophile-specific mechanism, such as the binding of hydrated salt networks. The primary mode of salt stabilization of the mesophilic and halophilic DHFRs appears to be through preferential hydration and the Hofmeister effect of salt on the activity and entropy of the aqueous solvent. In support of this conclusion, all three DHFRs are similarly stabilized by the non-ionic cosolute, sucrose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号