首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seo JY  Britt WJ 《Journal of virology》2008,82(13):6272-6287
Human cytomegalovirus (HCMV) UL99-encoded pp28 is an essential tegument protein required for envelopment and production of infectious virus. Nonenveloped virions accumulate in the cytoplasm of cells infected with recombinant viruses with the UL99 gene deleted. Previous results have suggested that a key function of pp28 in the envelopment of infectious HCMV is expressed after the protein localizes in the assembly compartment (AC). In this study, we investigated the potential role of pp28 multimerization in the envelopment of the infectious virion. Our results indicated that pp28 multimerized during viral infection and that interacting domains responsible for self-interaction were localized in the amino terminus of the protein (amino acids [aa] 1 to 43). The results from transient-expression and/or infection assays indicated that the self-interaction took place in the AC. A mutant pp28 molecule containing only the first 35 aa failed to accumulate in the AC, did not interact with pp28 in the AC, and could not support virus replication. In contrast, the first 50 aa of pp28 was sufficient for the self-interaction within the AC and the assembly of infectious virus. Recombinant viruses encoding an in-frame deletion of aa 26 to 33 of pp28 were replication competent, whereas infectious virus was not recovered from HCMV BACs lacking aa 26 to 43. These findings suggested that the accumulation of pp28 was a prerequisite for multimerization of pp28 within the AC and that pp28 multimerization in the AC represented an essential step in the envelopment and production of infectious virions.  相似文献   

2.
Seo JY  Britt WJ 《Journal of virology》2006,80(11):5611-5626
The human cytomegalovirus UL99 open reading frame encodes a 190-amino-acid (aa) tegument protein, pp28, that is myristoylated and phosphorylated. pp28 is essential for assembly of infectious virus, and nonenveloped virions accumulate in the cytoplasm of cells infected with recombinant viruses with a UL99 deletion. pp28 is localized to the endoplasmic reticulum-Golgi intermediate compartment (ERGIC) in transfected cells, while in infected cells, it is localized together with other virion proteins in a juxtanuclear compartment termed the assembly compartment (AC). We investigated the sequence requirements for pp28 trafficking to the AC and assembly of infectious virus. Our studies indicated that the first 30 to 35 aa were required for localization of pp28 to the ERGIC in transfected cells. Mutant forms of pp28 containing only the first 35 aa localized with other virion structural proteins to cytoplasmic compartments early in infection, but localization to the AC at late times required a minimum of 50 aa. In agreement with previous reports, we demonstrated that the deletion of a cluster of acidic amino acids (aa 44 to 59) prevented wild-type trafficking of pp28 and recovery of infectious virus. A recombinant virus expressing only the first 50 aa was replication competent, and this mutant, pp28, localized to the AC in cells infected with this virus. These findings argued that localization of pp28 to the AC was essential for assembly of infectious virus and raised the possibility that amino acids in the amino terminus of pp28 have additional roles in the envelopment and assembly of the virion other than simply localizing pp28 to the AC.  相似文献   

3.
Das S  Vasanji A  Pellett PE 《Journal of virology》2007,81(21):11861-11869
Human cytomegalovirus (HCMV) induces profound changes in infected cell morphology, including a large cytoplasmic inclusion that corresponds to the virion assembly complex (AC). In electron micrographs, the AC is a highly vacuolated part of the cytoplasm. Markers of cellular secretory organelles have been visualized at the outer edge of the AC, and we recently showed that a marker for early endosomes (i.e., early endosome antigen 1) localizes to the center of the AC. Here, we examined the relationship between the AC and components of the secretory apparatus, studied temporal aspects of the dramatic infection-induced cytoplasmic remodeling, examined the three-dimensional structure of the AC, and considered the implications of our observations for models of HCMV virion maturation and egress. We made three major observations. First, in addition to being relocated, the expression levels of some organelle markers change markedly during the period while the AC is developing. Second, based on three-dimensional reconstructions from z-series confocal microscopic images, the observed concentric rings of vesicles derived from the several compartments (Golgi bodies, the trans-Golgi network [TGN], and early endosomes) are arranged as nested cylinders of organelle-specific vesicles. Third, the membrane protein biosynthetic and exocytic pathways from the endoplasmic reticulum to the Golgi bodies, TGN, and early endosomes are in an unusual arrangement that nonetheless allows for a conventional order of biosynthesis and transport. Our model of AC structure suggests a mechanism by which the virus can regulate the order of tegument assembly.  相似文献   

4.
Human cytomegalovirus (HCMV) is the most genetically and structurally complex human herpesvirus and is composed of an envelope, a tegument, and a dsDNA-containing capsid. HCMV tegument plays essential roles in HCMV infection and assembly. Using cryo electron tomography (cryoET), here we show that HCMV tegument compartment can be divided into two sub-compartments: an inner and an outer tegument. The inner tegument consists of densely-packed proteins surrounding the capsid. The outer tegument contains those components that are loosely packed in the space between the inner tegument and the pleomorphic glycoprotein-containing envelope. To systematically characterize the inner tegument proteins interacting with the capsid, we used chemical treatment to strip off the entire envelope and most tegument proteins to obtain a tegumented capsid with inner tegument proteins. SDS-polyacrylamide gel electrophoresis analyses show that only two tegument proteins, UL32-encoded pp150 and UL48-encoded high molecular weight protein (HMWP), remains unchanged in their abundance in the tegumented capsids as compared to their abundance in the intact particles. Three-dimensional reconstructions by single particle cryo electron microscopy (cryoEM) reveal that the net-like layer of icosahedrally-ordered tegument densities are also the same in the tegumented capsid and in the intact particles. CryoET reconstruction of the tegumented capsid labeled with an anti-pp150 antibody is consistent with the biochemical and cryoEM data in localizing pp150 within the ordered tegument. Taken together, these results suggest that pp150, a betaherpesvirus-specific tegument protein, is a constituent of the net-like layer of icosahedrally-ordered capsid-bound tegument densities, a structure lacking similarities in alpha and gammaherpesviruses.  相似文献   

5.
The protein components of the white spot syndrome virus (WSSV) virion have been well established by proteomic methods, and at least 39 structural proteins are currently known. However, several details of the virus structure and assembly remain controversial, including the role of one of the major structural proteins, VP26. In this study, Triton X-100 was used in combination with various concentrations of NaCl to separate intact WSSV virions into distinct fractions such that each fraction contained envelope and tegument proteins, tegument and nucleocapsid proteins, or nucleocapsid proteins only. From the protein profiles and Western blotting results, VP26, VP36A, VP39A, and VP95 were all identified as tegument proteins distinct from the envelope proteins (VP19, VP28, VP31, VP36B, VP38A, VP51B, VP53A) and nucleocapsid proteins (VP664, VP51C, VP60B, VP15). We also found that VP15 dissociated from the nucleocapsid at high salt concentrations, even though DNA was still present. These results were confirmed by CsCl isopycnic centrifugation followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and liquid chromatography-nanoelectrospray ionization-tandem mass spectrometry, by a trypsin sensitivity assay, and by an immunogold assay. Finally, we propose an assembly process for the WSSV virion.  相似文献   

6.
Human cytomegalovirus (HCMV) UL99 encodes a late tegument protein pp28 that is essential for envelopment and production of infectious virus. This protein is localized to the endoplasmic reticulum-Golgi intermediate compartment (ERGIC) in transfected cells but it localizes to the cytoplasmic assembly compartment (AC) in HCMV-infected cells. Trafficking of pp28 to the AC is required for the assembly of infectious virus. The N-terminal domain (aa 1–61) of pp28 is sufficient for trafficking and function of the wild type protein during viral infection. However, residues required for authentic pp28 trafficking with the exception of the acidic cluster in the N-terminal domain of pp28 remain undefined. Monitoring protein migration on SDS-PAGE, we found that pp28 is phosphorylated in the virus-infected cells and dephosphorylated in the viral particles. By generating substitution mutants of pp28, we showed that three serine residues (aa 41–43) and a tyrosine residue (aa 34) account for its phosphorylation. The mutant forms of pp28 were localized to the plasma membrane as well as the ERGIC in transfected cells. Likewise, these mutant proteins were localized to the plasma membrane as well as the AC in virus-infected cells. These results suggested that phosphorylation of pp28 contributes to its intracellular trafficking and efficient viral assembly and incorporation.  相似文献   

7.
Seo JY  Britt WJ 《Journal of virology》2007,81(12):6536-6547
The assembly of herpesvirus remains incompletely defined due to the structural complexity of these viruses. Although the assembly of the capsid of these large DNA viruses is well studied and reasonably well conserved for all members of this diverse family of viruses, the cytoplasmic processes of tegumentation and envelopment are not well understood. The virion of the largest human herpesvirus, human cytomegalovirus (HCMV), contains over 70 virus-encoded proteins that are incorporated during a nuclear and cytoplasmic phase of assembly. Envelopment of this virus requires the function of at least one tegument protein, pp28, the product of the UL99 open reading frame. However, the role of pp28 in the envelopment of HCMV remains undefined. We have generated a pp28 mutant virus that encodes only the first 50 amino acids (aa) of this 190-aa virion protein. This virus is replication impaired and is defective in virus assembly. Characterization of both intracellular and extracellular virions from cells infected with this viral mutant indicated that the decrease in production of infectious virus was secondary to a defect in envelopment and the accumulation of tegumented, noninfectious intracellular particles. Image analysis using fluorescence recovery after photobleaching indicated that the pp28 mutant protein encoded by this virus failed to efficiently accumulate in the virus assembly compartment (AC). Our results suggest that pp28 must accumulate in the AC for efficient envelopment of the particle and provide evidence for a direct role of this tegument protein in the late stages of assembly, such as envelopment.  相似文献   

8.
The virion proteins and genomic RNA of human parainfluenza virus 3 have been characterized. The virion contains seven major and two minor proteins. Three proteins of 195 X 10(3) molecular weight (195K), 87K, and 67K are associated with the nucleocapsid of the virion and have been designated L, P, and NP, respectively. Three proteins can be labeled with [14C]glucosamine and have molecular weights of 69K, 60K, and 46K. We have designated these proteins as HN, F0, and F1, respectively. HN protein has interchain disulfide bonds, but does not participate in disulfide bonding to form homomultimeric forms. F1 appears to be derived from a complex, F1,2, that has an electrophoretic mobility similar to that of F0 under nonreducing conditions. A protein of 35K is associated with the envelope components of the virion and aggregates under low-salt conditions; this protein has been designated M. The genome of human parainfluenza virus 3 is a linear RNA molecule with a molecular weight of approximately 4.6 X 10(6).  相似文献   

9.
Proteins encoded by the UL46 and UL47 genes of herpes simplex virus type 1 (HSV-1) constitute major components of the viral tegument. However, their functions have so far not been elucidated in detail. By use of monospecific antisera directed against bacterially expressed glutathione-S-transferase fusion proteins, the homologous UL46 and UL47 proteins of the alphaherpesvirus pseudorabies virus (PrV) were identified in virus-infected cells and in virions. The PrV UL46 gene product of 693 amino acids (aa) exhibits an apparent molecular mass of 95 kDa, whereas the UL47 product of 750 aa was identified as a 97-kDa protein. Both are present in purified virions, correlating with their role as tegument proteins. Immunofluorescence analysis by confocal laser scan microscopy showed that late in infection the UL46 product is detectable in the cytoplasm, whereas the UL47 product was observed to be diffuse in the cytoplasm and speckled in the nucleus. Virus mutants lacking either the UL46 or the UL47 gene or both were isolated on noncomplementing cells, demonstrating that these genes either singly or in combination are not required for productive viral replication. However, plaque sizes were decreased. Interestingly, in one-step growth analysis, UL47 deletion mutants exhibited an approximately 10-fold decrease in final titers, whereas the UL46 deletion mutant was not affected. This finding correlated with ultrastructural observations which showed unimpaired virion morphogenesis in the absence of the UL46 protein, whereas in the absence of the UL47 protein intracytoplasmic aggregates of partially tegumented capsids were observed. In summary, we identified the PrV UL46 and UL47 proteins and show that the UL47 protein plays an important role in virion assembly in the cytoplasm.  相似文献   

10.
Morphogenesis and maturation of viral particles is an essential step of viral replication. An infectious herpesviral particle has a multilayered architecture, and contains a large DNA genome, a capsid shell, a tegument and an envelope spiked with glycoproteins. Unique to herpesviruses, tegument is a structure that occupies the space between the nucleocapsid and the envelope and contains many virus encoded proteins called tegument proteins. Historically the tegument has been described as an amorphous structure, but increasing evidence supports the notion that there is an ordered addition of tegument during virion assembly, which is consistent with the important roles of tegument proteins in the assembly and egress of herpesviral particles. In this review we first give an overview of the herpesvirus assembly and egress process. We then discuss the roles of selected tegument proteins in each step of the process, i.e., primary envelopment, deenvelopment, secondary envelopment and transport of viral particles. We also suggest key issues that should be addressed in the near future.  相似文献   

11.
Deng L  Dai P  Ciro A  Smee DF  Djaballah H  Shuman S 《Journal of virology》2007,81(24):13392-13402
The bioterror threat of a smallpox outbreak in an unvaccinated population has mobilized efforts to develop new antipoxviral agents. By screening a library of known drugs, we identified 13 compounds that inhibited vaccinia virus replication at noncytotoxic doses. The anticancer drug mitoxantrone is unique among the inhibitors identified in that it has no apparent impact on viral gene expression. Rather, it blocks processing of viral structural proteins and assembly of mature progeny virions. The isolation of mitoxantrone-resistant vaccinia strains underscores that a viral protein is the likely target of the drug. Whole-genome sequencing of mitoxantrone-resistant viruses pinpointed missense mutations in the N-terminal domain of vaccinia DNA ligase. Despite its favorable activity in cell culture, mitoxantrone administered intraperitoneally at the maximum tolerated dose failed to protect mice against a lethal intranasal infection with vaccinia virus.  相似文献   

12.
Meng X  Embry A  Rose L  Yan B  Xu C  Xiang Y 《Journal of virology》2012,86(10):5603-5613
Poxvirus acquires its primary envelope through a process that is distinct from those of other enveloped viruses. The molecular mechanism of this process is poorly understood, but several poxvirus proteins essential for the process have been identified in studies of vaccinia virus (VACV), the prototypical poxvirus. Previously, we identified VACV A6 as an essential factor for virion morphogenesis by studying a temperature-sensitive mutant with a lesion in A6. Here, we further studied A6 by constructing and characterizing an inducible virus (iA6) that could more stringently repress A6 expression. When A6 expression was induced by the inducer isopropyl-β-D-thiogalactoside (IPTG), iA6 replicated normally, and membrane proteins of mature virions (MVs) predominantly localized in viral factories where virions were assembled. However, when A6 expression was repressed, electron microscopy of infected cells showed the accumulation of large viroplasm inclusions containing virion core proteins but no viral membranes. Immunofluorescence and cell fractionation studies showed that the major MV membrane proteins A13, A14, D8, and H3 did not localize to viral factories but instead accumulated in the secretory compartments, including the endoplasmic reticulum. Overall, our results show that A6 is an additional VACV protein that participates in an early step of virion membrane biogenesis. Furthermore, A6 is required for MV membrane protein localization to sites of virion assembly, suggesting that MV membrane proteins or precursors of MV membranes are trafficked to sites of virion assembly through an active, virus-mediated process that requires A6.  相似文献   

13.
Herpes simplex virus replicates its DNA within nuclear structures called replication compartments. In contrast, in cells in which viral DNA replication is inhibited, viral replication proteins localize to punctate structures called prereplicative sites. We have utilized viruses individually mutated in each of the seven essential replication genes to assess the function of each replication protein in the assembly of these proteins into prereplicative sites. We observed that four replication proteins, UL5, UL8 UL52, and UL9, are necessary for the localization of ICP8 (UL29) to prereplicative sites natural infection conditions. Likewise, four of the seven viral DNA replication proteins, UL5, UL52, UL9, and ICP8, are necessary for the localization of the viral DNA polymerase to prereplicative sites. On the basis of these results, we present a model for prereplicative site formation in infected cells in which the helicase-primase components (UL5, UL8, and UL52), the origin-binding protein (UL9), and the viral single-stranded DNA-binding protein (ICP8) assemble together to initiate the process. This is followed by the recruitment of the viral polymerase into the structures, a step facilitated by the polymerase accessory protein, UL42. Host cell factors can apparently substitute for some of these viral proteins under certain conditions, because the viral protein requirements for prereplicative site formation are reduced in transfected cells and in infected cells treated with drugs that inhibit DNA synthesis.  相似文献   

14.
Krzyzaniak M  Mach M  Britt WJ 《Journal of virology》2007,81(19):10316-10328
The virion envelope of human cytomegalovirus (HCMV) is complex and consists of an incompletely defined number of glycoproteins. The gM/gN protein complex is the most abundant protein component of the envelope. Studies have indicated that deletion of the viral gene encoding either gM or gN is a lethal mutation. Analysis of the amino acid sequence of gM disclosed a C-terminal acidic cluster of amino acids and a tyrosine-containing trafficking motif, both of which are well-described trafficking/sorting signals in the cellular secretory pathway. To investigate the roles of these signals in the trafficking of the gM/gN complex during virus assembly, we made a series of gM (UL100 open reading frame) mutants in the AD169 strain of HCMV. Mutant viruses that lacked the entire C-terminal cytoplasmic tail of gM were not viable, suggesting that the cytoplasmic tail of gM is essential for virus replication. In addition, the gM mutant protein lacking the cytoplasmic domain exhibited decreased protein stability. Mutant viruses with a deletion of the acidic cluster or alanine substitutions in tyrosine-based motifs were viable but exhibited a replication-impaired phenotype suggestive of a defect in virion assembly. Analysis of these mutant gMs using static immunofluorescence and fluorescence recovery after photobleaching demonstrated delayed kinetics of intracellular localization of the gM/gN protein to the virus assembly compartment compared to the wild-type protein. These data suggest an important role of the glycoprotein gM during virus assembly, particularly in the dynamics of gM trafficking during viral-particle assembly.  相似文献   

15.
Chan WE  Lin HH  Chen SS 《Journal of virology》2005,79(13):8374-8387
Palmitoylation of the cytoplasmic domain of the human immunodeficiency type virus type 1 (HIV-1) envelope (Env) transmembrane protein, gp41, has been implicated in Env targeting to detergent-resistant lipid rafts, Env incorporation into the virus, and viral infectivity. In contrast, we provide evidence here to show that HIV-1 infectivity, Env targeting to lipid rafts, and Env incorporation into the virus are independent of cytoplasmic tail palmitoylation. The T-cell (T)-tropic HXB2-based virus, which utilizes CXCR4 as the entry coreceptor, carrying a Cys-to-Ser mutation at residue 764 or 837 or at both replicated with wild-type (WT) virus replication kinetics in CD4+ T cells. The properties of Env expression, precursor processing, cell surface expression, and Env incorporation of these three mutant viruses were normal compared to those of the WT virus. These three mutant Env proteins all effectively mediated one-cycle virus infection. When the Cys residues were replaced by Ala residues, all single and double mutants still retained the phenotypes of infectivity, Env incorporation, and lipid raft localization of the WT Env. When Cys-to-Ala substitutions were introduced into the macrophage (M)-tropic ConB virus, which utilizes CCR5 as the coreceptor, these mutations did not affect the replication potential, Env phenotypes, lipid raft targeting, or Env assembly into the virus of the WT Env. These T- and M-tropic mutants also productively replicated in human primary CD4+ T cells. Moreover, mutations at both Cys residues significantly reduced the level of palmitoylation of the Env. Our results together support the notion that palmitoylation of the cytoplasmic tail of the HIV-1 Env is not essential for the HIV-1 virus life cycle.  相似文献   

16.
Changes in conductance of oxidized cholesterol planar lipid bilayers were measured following the incorporation of isolated surface glycoproteins; hemagglutinin and neuraminidase (HA+NA) or matrix protein (M-protein) of influenza virus. The conductance dependence of the lipid bilayers on the HA+NA or M-protein concentrations indicates different mechanisms of interaction of these viral proteins with the lipid bilayer. Adsorption of M-protein molecules on one side of the lipid bilayer affects the character of the HA+NA interaction with the opposite side. Planar lipid bilayers can be a useful model for investigation of the assembly of influenza virions and other enveloped viruses.  相似文献   

17.
This study provides evidence that proteasomal activity is required at multiple steps in human cytomegalovirus replication. Electron microscopy revealed that no viral particles were assembled in the presence of proteasome inhibitor MG132. Immunofluorescence and Western blot analyses using MG132 demonstrated that immediate early gene expression was suppressed at low but not high MOI. In contrast, expression of late proteins was completely blocked independent of MOI. Additionally, pulsed-field gel electrophoresis demonstrated that MG132 interferes with cleavage of HCMV DNA. Bromodeoxyuridine incorporation studies showed that de novo viral DNA synthesis is reduced in the presence of MG132. Furthermore, in contrast to previous hypotheses we demonstrated that neither the ND10 components PML and hDaxx nor NFkappaB activation represent the target for MG132.  相似文献   

18.
Chromatin assembly factor I (CAF-I) is a multisubunit protein complex purified from the nuclei of human cells and required for chromatin assembly during DNA replication in vitro. Purified CAF-I promotes chromatin assembly in a reaction that is dependent upon, and coupled with, DNA replication and is therefore likely to reflect events that occur during S phase in vivo. In order to investigate the regulation and mechanism of CAF-I and the replication-dependent chromatin assembly process, we have used the purified protein to raise monoclonal antibodies. In this report we describe the characterization of a panel of monoclonal antibodies which recognize different subunits of the CAF-I complex. We use immunoprecipitation analysis to show that CAF-I exists as a multiprotein complex in vivo and that some of the polypeptides are phosphorylated. In addition, immunocytochemistry demonstrates that CAF-I is localized to the nucleus of human cells. Finally, monoclonal antibodies directed against the individual subunits of CAF-I immunodeplete chromatin assembly activity from nuclear extracts, confirming that CAF-I is a multisubunit protein required for chromatin assembly in vitro.  相似文献   

19.
Trypsinization of intact Moloney murine leukemia virus resulted in cleavage of p15(E) and Pr15(E) at a site near the middle of the molecule, producing a 9,000-dalton amino-terminal fragment which contains the disulfide linkage site to gp70 and which carries p15(E) epitopes b and c, but not epitope a. After solubilization of the viral membrane, trypsinization occurred at a second site within 1,000 daltons of the carboxy end of p15(E). This site is not exposed in intact virions, indicating that p15(E) and Pr15(E) are transmembrane proteins.  相似文献   

20.
West Nile virus (WNV) encodes two envelope proteins, premembrane (prM) and envelope (E). While the prM protein of all WNV strains contains a single N-linked glycosylation site, not all strains contain an N-linked site in the E protein. The presence of N-linked glycosylation on flavivirus E proteins has been linked to virus production, pH sensitivity, and neuroinvasiveness. Therefore, we examined the impact of prM and E glycosylation on WNV assembly and infectivity. Similar to other flaviviruses, expression of WNV prM and E resulted in the release of subviral particles (SVPs). Removing the prM glycosylation site in a lineage I or II strain decreased SVP release, as did removal of the glycosylation site in a lineage I E protein. Addition of the E protein glycosylation site in a lineage II strain that lacked this site increased SVP production. Similar results were obtained in the context of either reporter virus particles (RVPs) or infectious lineage II WNV. RVPs or virions bearing combinations of glycosylated and nonglycosylated forms of prM and E could infect mammalian, avian, and mosquito cells (BHK-21, QT6, and C6/36, respectively). Those particles lacking glycosylation on the E protein were modestly more infectious per genome copy on BHK-21 and QT6 cells, while this absence greatly enhanced the infection of C6/36 cells. Thus, glycosylation of WNV prM and E proteins can affect the efficiency of virus release and infection in a manner that is cell type and perhaps species dependent. This suggests a multifaceted role for envelope N-linked glycosylation in WNV biology and tropism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号