首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 505 毫秒
1.
In a human eosinophilic leukemia cell line, EoL-1, cell proliferation was suppressed by 2-day treatment with troglitazone. EoL-1 cells treated with troglitazone were arrested and maintained in the G0/G1 phase in the cell cycle. This suppression correlated with the up-regulation of mRNA for p21WAF1/CIP1 cyclin-dependent kinase (Cdk) inhibitor. The inhibitory effects of troglitazone on cell proliferation and expression of p21 mRNA were observed in a human myelomonocytic cell line, U937, and a human myelomonoblastic cell line, KPB-M15. In addition, in EoL-1 cells, p21 protein was induced by troglitazone treatment and the induction was inhibited by protein synthesis inhibitor, cycloheximide. These data suggest that troglitazone inhibits cell proliferation in myeloid leukemia cell lines at least in part by induction of p21 Cdk inhibitor.  相似文献   

2.
The constitutively activated tyrosine kinase Fip1-like 1 (FIP1L1)-platelet-derived growth factor receptor α (PDGFRα) causes eosinophilic leukemia EoL-1 cells to proliferate. Recently, we demonstrated that histone deacetylase inhibitors suppressed this proliferation and induced the differentiation of EoL-1 cells into eosinophils in parallel with a decrease in the level of FIP1L1-PDGFRα. In this study, we analyzed the mechanism by which FIP1L1-PDGFRα induces the proliferation and whether the suppression of cell proliferation triggers the differentiation into eosinophils. The FIP1L1-PDGFRα inhibitor imatinib inhibited the proliferation of EoL-1 cells and decreased the level of the oncoprotein c-Myc as well as the phosphorylation of extracellular signal-regulated kinase and c-Jun N-terminal kinase (JNK). The proliferation of EoL-1 cells and expression of c-Myc were also inhibited by the MEK inhibitor U0126 and JNK inhibitor SP600125. The expression of the eosinophilic differentiation marker CCR3 was not induced by imatinib. These findings suggest that FIP1L1-PDGFRα induces the proliferation of EoL-1 cells through the induction of c-Myc expression via ERK and JNK signaling pathways, but is not involved in the inhibition of differentiation toward mature eosinophils.  相似文献   

3.
The effects of several cytokines and phorbol myristate acetate (PMA) on LFA-1 and ICAM-1 expression on a human eosinophilic leukemia cell line, EoL-3, were investigated and compared with those of a human monocytic leukemia cell line, U937. EoL-3 cells expressed large amounts of LFA-1 and small amounts of ICAM-1, and their expression was regulated similarly in EoL-3 cells and U937 cells. Interferon-gamma (IFN-gamma) enhanced ICAM-1 expression but not LFA-1 expression, and PMA augmented both LFA-1 and ICAM-1 expression. IFN-gamma and PMA showed an additive effect on ICAM-1 expression. These results collectively suggest that expression of LFA-1 and ICAM-1 is regulated differently and that IFN-gamma and PMA regulate the expression through different mechanisms. PMA but not IFN-gamma induced homotypic adhesion of EoL-3 and U937 cells, suggesting that PMA but not IFN-gamma activated the adhesive function of these cells. Staurosporin, an inhibitor of protein kinases (PKs), partly suppressed IFN-gamma- and PMA-augmented expression of ICAM-1 on EoL-3 and U937 cells, but did not affect PMA-augmented LFA-1 expression, suggesting that staurosporin-sensitive PKs are involved in IFN-gamma- and PMA-augmented ICAM-1 expression but not in PMA-augmented LFA-1 expression. The role of protein kinase C (PK-C) in these mechanisms was not revealed because a PK-C inhibitor, H-7, did not show any definitive effect on IFN-gamma- and PMA-induced expression of LFA-1 and ICAM-1. Moreover, cyclic AMP (cAMP)- and cGMP-dependent pathways were not shown to be involved in the augmentation of the expression of these molecules.  相似文献   

4.
Leukotactin-1 (Lkn-1)/CCL15 is a CC chemokine that binds to the CCR1 and CCR3. Lkn-1 functions as an essential factor in the migration of monocytes, lymphocytes, and neutrophils. Although eosinophils express both receptors, the role of Lkn-1 in immature eosinophils remains to be elucidated. In this present study, we investigated the contribution of the CCR1-binding chemokines to chemotactic activity and in the differentiation in the human eosinophilic leukemia cell line EoL-1. Lkn-1 induced the stronger migration of EoL-1 cells than other CCR1-binding chemokines such as RANTES/CCL5, MIP-1α/CCL3 and HCC-4/CCL16. Lkn-1-induced chemotaxis was inhibited by pertussis toxin, an inhibitor of Gi/Go protein; U73122, an inhibitor of phospholipase C and rottlerin, an inhibitor of protein kinase C delta (PKCδ). Lkn-1 increased PKCδ activity, which was partially blocked by the pertussis toxin and U73122. Lkn-1 enhanced the butyric acid-induced differentiation via PKCδ after binding to the increased CCR1 because Lkn-1 caused EoL-1 cells to change morphologically into mature eosinophil-like cells. Likewise, Lkn-1 increased the expression of both eosinophil peroxidase (EPO) and the major basic protein (MBP). PKCδ activation due to Lkn-1 is involved in migration, as well as the butyric acid-induced differentiation. This finding contributes to an understanding of CC chemokines in eosinophil biology and to the development of novel therapies for the treatment of eosinophilic disorders. This study suggests the pivotal roles of Lkn-1 in the regulation of the movement and development of eosinophils.  相似文献   

5.
The human eosinophilic leukemia cell line, EoL-1, differentiated with butyrate as an eosinophilic cellular model was evaluated for peroxidase-dependent tyrosine nitration. Butyrate suppressed cell growth and induced eosinophilic granules in EoL-1 cells after 9 days of culture. Peroxidase activity was detected biochemically and histochemically from 3-day cultures and it increased in a time dependent manner. This peroxidase activity was inhibited by cyanide. Nitrotyrosine formation catalysed by peroxidase using hydrogen peroxide and nitrite was detected at a high level similar to that of mature eosinophils. However, no expression of eosinophil peroxidase (EPO) was detected by RT-PCR or immunocytochemistry. In contrast, the induction of myeloperoxidase (MPO) by butyrate was clearly detected by RT-PCR, Northern blot, and immunocytochemical staining. These results suggest that butyrate induces MPO rather than EPO in EoL-1 cells and that the formation of nitrotyrosine in butyrate-induced cells is dependent on MPO.  相似文献   

6.
EoL-1 cells differentiate into eosinophils in the presence of n-butyrate, but the mechanism has remained to be elucidated. Because n-butyrate can inhibit histone deacetylases, we hypothesized that the inhibition of histone deacetylases induces the differentiation of EoL-1 cells into eosinophils. In this study, using n-butyrate and two other histone deacetylase inhibitors, apicidin and trichostatin A, we have analyzed the relationship between the inhibition of histone deacetylases and the differentiation into eosinophils in EoL-1 cells. It was demonstrated that apicidin and n-butyrate induced a continuous acetylation of histones H4 and H3, inhibited the proliferation of EoL-1 cells without attenuating the level of FIP1L1-PDGFRA mRNA, and induced the expression of markers for mature eosinophils such as integrin beta7, CCR1, and CCR3 on EoL-1 cells, while trichostatin A evoked a transient acetylation of histones and induced no differentiation into eosinophils. These findings suggest that the continuous inhibition of histone deacetylases in EoL-1 cells induces the differentiation into mature eosinophils.  相似文献   

7.
Epigallocatechin-3-gallate (EGCG), a tea polyphenol, inhibits the proliferation of many cancer cell lines; however, the antiproliferative mechanism(s) are not well-characterized. The objective of this study is to identify the cellular signaling mechanism(s) responsible for the antiproliferative effects of EGCG in the PC-3 prostate cancer cell line. EGCG inhibited PC-3 cell proliferation in a concentration-dependent manner with an IC(50) value of 39.0 microM, but had no effect on the proliferation of a nontumorigenic prostate epithelial cell line (RWPE-1). Treatment of PC-3 cells with EGCG (0-50 microM) resulted in time and concentration-dependent activation of the extracellular signal-regulated kinase (ERK1/2) pathway. EGCG treatment did not induce ERK1/2 activity in RWPE-1 cells. The activation of ERK1/2 by EGCG was not inhibited using PD98059, a potent inhibitor of mitogen-activated protein kinase kinase (MEK), the immediate upstream kinase responsible for ERK1/2 activation; suggesting a MEK-independent signaling mechanism. Pretreatment of PC-3 cells with a phosphoinositide-3 kinase (PI3K) inhibitor partially reduced both EGCG-induced ERK1/2 activation and the antiproliferative effects of this polyphenol. These results suggest that ERK1/2 activation via a MEK-independent, PI3-K-dependent signaling pathway is partially responsible for the antiproliferative effects of EGCG in PC-3 cells.  相似文献   

8.
《Cytokine》2010,49(3):186-195
Idiopathic hypereosinophilc syndrome is a disorder associated with clonally eosinophilic proliferation. The importance of FIP1-like-1-platelet-derived growth factor receptor-α (FIP1L1-PDGFRA) in the pathogenesis and classification of HES has been recently reported. In this study, we investigated the contribution of monocyte chemoattractant protein-1 (MCP-1)/CCL2 to chemotactic activity and protein kinase C delta (PKCδ in the human eosinophilic leukemia cell line EoL-1. These cells express CCR2 protein among the CC chemokine receptors (CCR1-5). MCP-1 induces strong migration of EoL-1 cells and the chemotaxis signal in response to MCP-1 involves a Gi/Go protein, phospholipase C (PLC), PKCδ, p38 MAPK and NF-κB. MCP-1 activates p38 MAPK via Gi/Go protein, PLC and PKCδ cascade. MCP-1 also induces NF-κB translocation and the activation is inhibited by PKCδ activation. The increase in the basal expression and activity of PKCδ in EoL-1 cells, compared to normal eosinophils, inhibits apoptosis in EoL-1 cells. Anti-apoptotic mechanism of PKCδ is related to inhibition of caspase 3 and caspase 9, but not to FIP1L1-PDGFRA. PKCδ functions as an anti-apoptotic molecule, and is involved in EoL-1 cell movement stimulated by MCP-1. This study contributes to an understanding of MCP-1 in eosinophil biology and pathogenic mechanism of eosinophilic disorders.  相似文献   

9.
10.
Ji-Sook Lee  Eun Ju Yang  In Sik Kim   《Cytokine》2009,48(3):186-195
Idiopathic hypereosinophilc syndrome is a disorder associated with clonally eosinophilic proliferation. The importance of FIP1-like-1-platelet-derived growth factor receptor-α (FIP1L1-PDGFRA) in the pathogenesis and classification of HES has been recently reported. In this study, we investigated the contribution of monocyte chemoattractant protein-1 (MCP-1)/CCL2 to chemotactic activity and protein kinase C delta (PKCδ in the human eosinophilic leukemia cell line EoL-1. These cells express CCR2 protein among the CC chemokine receptors (CCR1-5). MCP-1 induces strong migration of EoL-1 cells and the chemotaxis signal in response to MCP-1 involves a Gi/Go protein, phospholipase C (PLC), PKCδ, p38 MAPK and NF-κB. MCP-1 activates p38 MAPK via Gi/Go protein, PLC and PKCδ cascade. MCP-1 also induces NF-κB translocation and the activation is inhibited by PKCδ activation. The increase in the basal expression and activity of PKCδ in EoL-1 cells, compared to normal eosinophils, inhibits apoptosis in EoL-1 cells. Anti-apoptotic mechanism of PKCδ is related to inhibition of caspase 3 and caspase 9, but not to FIP1L1-PDGFRA. PKCδ functions as an anti-apoptotic molecule, and is involved in EoL-1 cell movement stimulated by MCP-1. This study contributes to an understanding of MCP-1 in eosinophil biology and pathogenic mechanism of eosinophilic disorders.  相似文献   

11.
Bacterial superantigens (SAg) are potent T cell activators and when delivered systemically elicit a self-limiting enteropathy in mice. Also, SAg-stimulated human peripheral blood mononuclear cells (PBMC) increase enteric epithelial cell monolayer permeability in vitro. Epigallocatechin gallate (EGCG), the major polyphenol component of green tea (Camilla sinesis) leaf, has been presented as an anti-inflammatory agent. We tested the hypothesis that EGCG (10-100 microM) would block PBMC activation by the SAg, Staphylococcus aureus enterotoxin B (SEB, 1 microg/ml), thus preventing disruption of the epithelial barrier. Pretreatment or co-treatment of human PBMC or murine lymphnode cells with EGCG significantly reduced SEB-induced proliferation and IL-2, IFNgamma, and TNFalpha production. ConA-induced proliferation was also inhibited by EGCG (50 microM) co-treatment. These effects of EGCG were not due to induction of immune cell apoptosis, and were independent of EGCGs anti-oxidant activity, and inhibition of NF-kappaB or AP-1 activation. Moreover, addition of exogenous IL-2 (20 ng/ml) to the cultures could not overcome the immunosuppressive effect of EGCG. Culture supernatant from PBMC stimulated in the presence of EGCG failed to increase the permeability of T84 epithelial cell monolayers: a finding consistent with the reduced IFNgamma and TNFalpha production by SAg+EGCG treated PBMC. These data promote EGCG as a suppressor of T cell activation, and given the prominent role that bacteria and T cells play in inflammatory disease we suggest that EGCG could be a useful addition to current treatments for enteric immune disorders and T cell driven immunopathologies.  相似文献   

12.
(-)-Epigallocatechin-3-gallate (EGCG) is a polyphenolic compound found in green tea. It has been reported to possess a wide range of pharmacological properties, and is one of the most promising chemopreventive agents for cancer. To provide a better understanding of the preventive effect of EGCG on liver cancer, we examined EGCG for its effect on proliferation and cell cycle progression in a human liver cancer cell line, Hep G2. The results showed that EGCG inhibited the proliferation of Hep G2 by inducing apoptosis and blocking cell cycle progression in the G1 phase. ELISA showed that EGCG significantly increased the expression of p53 and p21/WAF1 protein, and this contributed to cell cycle arrest. An enhancement in Fas/APO-1 and its two form ligands, membrane-bound Fas ligand (mFasL) and soluble Fas ligand (sFasL), as well as Bax protein, was responsible for the apoptotic effect induced by EGCG. Taken together, our study suggests that the induction of p53 and the activity of the Fas/FasL apoptotic system play major roles in the antiproliferative activity of EGCG in Hep G2 cells.  相似文献   

13.
Treatment of the human promyelocytic leukemia cell line HL-60, with 12-o-tetradecanoylphorbol acetate (TPA) results in the differentiation into macrophage-like cell. A potent inhibitor of protein kinase C, 1-(5-isoquinolinesulfonyl)-2-methylpiperazine(H-7), suppressed the proliferation of HL-60 cells and also inhibited TPA-induced cell differentiation of these cells. N-(2-guanidinoethyl)-5-isoquinolinesulfonamide(HA-1004), a weaker analog of H-7, failed to inhibit this TPA-induced cell differentiation. H-7 also inhibited TPA-induced protein phosphorylation in these cells. Thus, protein kinase C-mediated phosphorylation may be involved in the process of TPA-induced HL-60 cell differentiation.  相似文献   

14.
15.
Ribonucleases (RNases), which are essential for cleavage of RNA, may be cytotoxic due to undesired cleavage of RNA in the cell. The quest for small molecule inhibitors of members of the ribonuclease superfamily has become indispensable with a growing number exhibiting unusual biological properties. Thus, inhibitors of RNases may serve as potential drug candidates. Green tea catechins (GTC), particularly its major constituent (-)-epigallocatechin-3-gallate (EGCG), have reported potential against cell proliferation and angiogenesis induced by several growth factors including angiogenin, a member of the RNase superfamily. This study reports the inhibition of bovine pancreatic ribonuclease A (RNase A) by EGCG and GTC. This has been checked qualitatively by an agarose gel based assay. Enzyme kinetic studies with cytidine 2',3' cyclic monophosphate as the substrate have also been conducted. Results indicate substantial inhibitory activity of a noncompetitive nature with an inhibition constant of approximately 80 microM for EGCG and approximately 100 microM for GTC measured in gallic acid equivalents.  相似文献   

16.
目的:研究表没食子儿茶素-3-没食子酸酯(epigallocatechin-3-gallate,EGCG)对炎性刺激的人肺腺癌A549细胞增殖和凋亡的影响及与CUGBP1表达的关系。方法:MTT法检测EGCG和LPS刺激A549细胞增殖活性的影响;流式细胞仪检测细胞凋亡;免疫细胞化学检测EGCG对LPS刺激人肺腺癌A549细胞内CUGBP1蛋白的表达。结果:与对照组相比,LPS体外显著促进A549细胞增殖,其胞核胞质内CUGBP1表达明显增强(P0.01)。加入EGCG可拮抗LPS促A549细胞增殖的作用,促进其凋亡,明显抑制LPS刺激的A549细胞内CUGBP1的表达(P0.01)。CUGBP1蛋白定量分析可知EGCG和LPS共同孵育A549细胞4h、24h时,细胞中的CUGBP1蛋白表达量较单纯LPS作用时降低。但EGCG和LPS共同孵育A549细胞24h,A549细胞中胞核CUGBP1蛋白表达量(1210.565±3.46)较4h时胞核CUGBP1蛋白表达量(67.344±3.68)高,差异有统计学意义(t=927.164,P0.001)。结论:EGCG可能通过干扰CUGBP1基因的表达抑制炎症刺激人肺腺癌细胞A549的增殖,促进其凋亡。  相似文献   

17.
《Phytomedicine》2015,22(1):213-222
Epigallocatechin gallate (EGCG), ellagic acid (EA) and rosmarinic acid (RA) are natural polyphenols exerting cancer chemopreventive effects. Ribonucleotide reductase (RR; EC 1.17.4.1) converts ribonucleoside diphosphates into deoxyribonucleoside diphosphates being essential for DNA replication, which is why the enzyme is considered an excellent target for anticancer therapy.EGCG, EA, and RA dose-dependently inhibited the growth of human HL-60 promyelocytic leukemia cells, exerted strong free radical scavenging potential, and significantly imbalanced nuclear deoxyribonucleoside triphosphate (dNTP) concentrations without distinctly affecting the protein levels of RR subunits (R1, R2, p53R2). Incorporation of 14C-cytidine into nascent DNA of tumor cells was also significantly lowered, being equivalent to an inhibition of DNA synthesis. Consequently, treatment with EGCG and RA attenuated cells in the G0/G1 phase of the cell cycle, finally resulting in a pronounced induction of apoptosis. Sequential combination of EA and RA with the first-line antileukemic agent arabinofuranosylcytosine (AraC) synergistically potentiated the antiproliferative effect of AraC, whereas EGCG plus AraC yielded additive effects.Taken together, we show for the first time that EGCG, EA, and RA perturbed dNTP levels and inhibited cell proliferation in human HL-60 promyelocytic leukemia cells, with EGCG and RA causing a pronounced induction of apoptosis. Due to these effects and synergism with AraC, these food ingredients deserve further preclinical and in vivo testing as inhibitors of leukemic cell proliferation.  相似文献   

18.
A constituent of green tea, (-)-epigallocatechin-3-gallate (EGCG) has been known to possess antiproliferative properties. In this study, we investigated the anticancer effects of EGCG in human papillomavirus (HPV)-16 associated cervical cancer cell line, CaSki cells. The growth inhibitory mechanism(s) and regulation of gene expression by EGCG were also evaluated. EGCG showed growth inhibitory effects in CaSki cells in a dose-dependent fashion, with an inhibitory dose (ID)(50) of approximately 35 microM. When CaSki cells were further tested for EGCG-induced apoptosis, apoptotic cells were significantly observed after 24 h at 100 microM EGCG. In contrast, an insignificant induction of apoptotic cells was observed at 35 microM EGCG. However, cell cycles at the G1 phase were arrested at 35 microM EGCG, suggesting that cell cycle arrests might precede apoptosis. When CaSki cells were tested for their gene expression using 384 cDNA microarray, an alteration in the gene expression was observed by EGCG treatment. EGCG downregulated the expression of 16 genes over time more than twofold. In contrast, EGCG upregulated the expression of four genes more than twofold, suggesting a possible gene regulatory role of EGCG. This data supports that EGCG can inhibit cervical cancer cell growth through induction of apoptosis and cell cycle arrest as well as regulation of gene expression in vitro. Furthermore, in vivo antitumor effects of EGCG were also observed. Thus, EGCG likely provides an additional option for a new and potential drug approach for cervical cancer patients.  相似文献   

19.
The IGF/IGF-1R system, which includes the IGF, IGF-1R, and IGFBPs proteins, plays an important role in the development and growth of colorectal cancer. We previously reported that in the HT29 human colon cancer cell line EGCG, the major biologically active component of green tea, inhibits activation of the RTKs EGFR, HER2, and HER3, and that this is associated with inhibition of multiple downstream signaling pathways. Since IGF-1R is also a RTK, in this study we examined the effects of EGCG on the activity of IGF/IGF-1R system in human colon cancer cells. We found that the colon cancer cell lines Caco2, HT29, SW837, and SW480 express high levels of the IGF-1R receptor, and that both SW837 and SW480 cells display constitutive activation of this receptor. Treatment of SW837 cells with 20 microg/ml of EGCG (the IC50 concentration for growth inhibition) caused within 6 h a decrease in the phosphorylated (i.e., activated) form of the IGF-1R protein. At 12 h, there was a decrease in the levels of both IGF-1 protein and mRNA and within 3-6 h there was an increase in the levels of both IGFBP-3 protein and mRNA. The increased expression of the latter protein was sustained for at least 48 h. When SW837 cells were treated with EGCG for a longer time, i.e., 96 h, a very low concentration (1.0 microg/ml) of EGCG also caused inhibition of activation of IGF-1R, a decrease in the IGF-1 protein, and an increase in the IGFBP-3 protein. EGCG also caused a decrease in the levels of mRNAs that encode MMPs-7 and -9, proteins that proteolyze IGFBP-3. In addition, treatment with EGCG caused a transient increase in the expression of TGF-beta2, an inducer of IGFBP-3 expression. These findings expand the roles of EGCG as an inhibitor of critical RTKs involved in cell proliferation, providing further evidence that EGCG and related compounds may be useful in the chemoprevention or treatment of colorectal cancer.  相似文献   

20.
We investigated the effects of interferon-gamma (IFN-gamma), phorbol myristate acetate (PMA), and dibutyryl cAMP (Bt2cAMP) on Fc gamma R subtype expression on a human eosinophilic leukemia cell line, EoL-3. Unstimulated EoL-3 cells expressed Fc gamma RII as determined by monoclonal antibody (mAb) IV-3, whereas there was little or no Fc gamma RI and Fc gamma RIII expression as determined by mAbs 32.2 and 3G8, respectively. IFN-gamma induced Fc gamma RI expression, and Bt2 cAMP, which did not induce Fc gamma RI expression by itself, showed an additive effect on IFN-gamma-induced Fc gamma RI expression. Fc gamma RII expression was augmented by IFN-gamma, PMA, and Bt2 cAMP. Bt2 cAMP also showed an additive effect on IFN-gamma-augmented Fc gamma RII expression. Fc gamma RIII expression could be induced only by IFN-gamma plus Bt2 cAMP. H-7, a protein kinase C (PK-C) inhibitor, suppressed the enhancement of Fc gamma R subtype expression induced by these reagents. These results show that Fc gamma R subtype expression on EoL-3 cells is regulated differently in each subtype and that cAMP and PK-C play important roles in the regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号