首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of direct 5,7-dihydroxytryptamine (5,7-DHT) injection into the medulla region of the optic lobe on the locomotor activity was investigated in the adult male cricket, Gryllus bimaculatus. After a 6 hr phase advance of a light-dark cycle, the 5,7-DHT injected animals needed significantly longer time for resynchronization to the new cycle (6.55 +/- 0.62 days) than the control, Ringer's solution injected animals (3.17 +/- 0.15 days; P < 0.001, t-test). Light induced a bout of activity (i.e., masking effect) when light-dark cycle was phase advanced by 6 hr and the duration of the masking effect was significantly longer in 5,7-DHT injected animals. An initial bout of the nocturnal activity was significantly greater in the 5,7-DHT injected animal. Under constant darkness, the freerunning periods of both groups were not significantly different. Under constant light, a significantly higher percentage of 5,7-DHT injected animals showed arrhythmicity compared with the control group. An analysis carried by high-pressure liquid chromatography with electro-chemical detection (HPLC-ECD) revealed that the serotonin content in the optic lobe was significantly reduced to less than 50% in the 5,7-DHT injected animals, even one month after the injection. These results suggest that serotonin plays important roles in the regulation of circadian locomotor rhythms of the cricket mainly by regulating the sensitivity of the photoreceptive system.  相似文献   

2.
The effect of bombesin (5 ng/kg/min X 2.5 h) on basal pituitary secretion as well as on the response to thyrotropin releasing hormone (TRH; 200 micrograms) plus luteinizing hormone releasing hormone (LHRH; 100 micrograms) was studied in healthy male volunteers. The peptide did not change the basal level of growth hormone (GH), prolactin, thyroid-stimulating hormone (TSH), luteinizing hormone (LH) and follicle-stimulating hormone (FSH). On the contrary, the pituitary response to releasing hormones was modified by bombesin administration. When compared with control (saline) values, prolactin and TSH levels after TRH were lower during bombesin infusion, whereas LH and FSH levels after LHRH were higher. Thus bombesin affects in man, as in experimental animals, the secretion of some pituitary hormones.  相似文献   

3.
The effect of ethanol (4 g/kg) as well as the role of serotoninergic neurons on the rate of ovulation and plasma LH, FSH and prolactin secretion have been studied in rats at preovulatory periods (18th hour of diestrus). It has been found that administration of ethanol in preovulatory periods decreased the number of ovules per rat (p less than 0.001), the number of ovulating rats and LH levels (p less than 0.001). These effects were accompanied by an increase in prolactin concentration (0.05 greater than p greater than 0.02), which was followed by a diffuse luteinization in the ovarian tissue. These results showed that ethanol had an effect of central depression in preovulatory periods. These effects could be mediated through the hypothalamic releasing factors. Under previous serotonin depletion with p-chlorophenylalanine (PCPA: 300 mg/kg), ethanol caused similar effects on LH and FSH levels as compared with the control group with PCPA. However, prolactin concentration was not increased. These results showed that serotoninergic neurons could be mediated in changes caused by ethanol on prolactin secretion, but do not affect directly in changes caused on LH and FSH secretion.  相似文献   

4.
Recent reports indicate that luteinizing hormone-releasing hormone (LHRH) releases prolactin (PRL) under some circumstances. We examined the chronic effects of LHRH, growth hormone-releasing hormone (GHRH), and corticotrophin-releasing hormone (CRH) on the release of PRL, luteinizing hormone (LH), and follicle-stimulating hormone (FSH) by pituitary allografts in hypophysectomized, orchidectomized hamsters. Entire pituitary glands removed from 7-week-old-male Golden Syrian hamsters were placed under the renal capsule of hypophysectomized, orchidectomized 12-week-old hamsters. Beginning 6 days postgrafting, hamsters were injected subcutaneously twice daily with 1 microgram LHRH, 4 micrograms GHRH, or 4 micrograms CRH in 100 microliter of vehicle for 16 days. Six hosts from each of the four groups were decapitated on Day 17, 16 hr after the last injection. Prolactin, LH, and FSH were measured in serum collected from the trunk blood. Treatment with LHRH significantly elevated serum PRL levels above those measured in the other three groups, which were all similar to one another. Serum LH levels in hosts treated with vehicle were elevated above those measured in the other three groups. Serum FSH levels in hosts treated with LHRH were greater than FSH levels in any of the other three groups. These results indicate that chronic treatment with LHRH can stimulate PRL and FSH release by ectopic pituitary cells in the hamster.  相似文献   

5.
Experiments were conducted to determine the effects of acute hyperprolactinemia (hyperPRL) on the control of luteinizing hormone and follicle-stimulating hormone secretion in male rats. Exposure to elevated levels of prolactin from the time of castration (1 mg ovine prolactin 2 X daily) greatly attenuated the post-castration rise in LH observed 3 days after castration. By 7 days after castration, LH concentrations in the prolactin-treated animals approached the levels observed in control animals. HyperPRL had no effect on the postcastration rise in FSH. Pituitary responsiveness to gonadotropin hormone-releasing hormone (GnRH), as assessed by LH responses to an i.v. bolus of 25 ng GnRH, was only minimally effected by hperPRL at 3 and 7 days postcastration. LH responses were similar at all time points after GnRH in control and prolactin-treated animals, except for the peak LH responses, which were significantly smaller in the prolactin-treated animals. The effects of hyperPRL were examined further by exposing hemipituitaries in vitro from male rats to 6-min pulses of GnRH (5 ng/ml) every 30 min for 4 h. HyperPRL had no effect on basal LH release in vitro, on GnRH-stimulated LH release, or on pituitary LH concentrations in hemipituitaries from animals that were intact, 3 days postcastration, or 7 days postcastration. However, net GnRH-stimulated release of FSH was significantly higher by pituitaries from hyperprolactinemic, castrated males. To assess indirectly the effects of hyperPRL on GnRH release, males were subjected to electrical stimulation of the arcuate nucleus/median eminence (ARC/ME) 3 days postcastration. The presence of elevated levels of prolactin not only suppressed basal LH secretion but reduced the LH responses to electrical stimulation by 50% when compared to the LH responses in control castrated males. These results suggest that acute hyperPRL suppresses LH secretion but not FSH secretion. Although pituitary responsiveness is somewhat attenuated in hyperprolactinemic males, as assessed in vivo, it is normal when pituitaries are exposed to adequate amounts of GnRH in vitro. Thus, the effects of hyperPRL on pituitary responsiveness appear to be minimal, especially if the pituitary is exposed to an adequate GnRH stimulus. The suppression of basal LH secretion in vivo most likely reflects inadequate endogenous GnRH secretion. The greatly reduced LH responses after electrical stimulation in hyperprolactinemic males exposed to prolactin suggest further that hyperPRL suppresses GnRH secretion.  相似文献   

6.
In 62 male Wistar rats the influence was studied of the transplanted embryonal tissue of raphe nuclei (NR) on the mechanisms of compensation of disturbances of exploratory activity, sensory attention, learning and emotional reactivity induced by neonatal injection of 5,7-DHT. In histochemical studies by Falk-Hillarp method the presence of yellow fluorescence confirmed the specificity of transplanted 5-HT neurones. It is found that NR transplantation causes in animals after 3 months recovery of orienting reaction to sensory stimuli, reduces rats reactivity in the open field, restores the ability to discrimination of emotionally positive influence, disturbed by neonatal injection of 5,7-DHT. The obtained data show the possibility of compensation of behaviour disturbances caused by chronic deprivation of 5-HT system activity by transplantation in the neocortex parenchyma of the embryonal tissue, containing serotoninergic neurones.  相似文献   

7.
The central effects of both an antagonist and an antiserum to substance P (SP) on gonadotropin and prolactin (Prl) secretion were studied in castrated male rats. The lateral ventricular injection (20 micrograms) of an analogue to SP possessing antagonistic properties resulted in significantly suppressed serum LH levels without altering serum FSH and Prl levels when compared with saline-injected control animals. Similarly, the lateral ventricular injection of an antiserum to SP also resulted in significantly suppressed LH levels when compared to control animals injected with normal rabbit serum. Additionally, no changes were observed in the levels of serum FSH and Prl as a result of the anti-SP injection. Thus, although indirect, these results support the hypothesis that SP may have a central stimulatory action on LH secretion, but not FSH and Prl secretion.  相似文献   

8.
The effects of third ventricular (IVT) injection of 25 μg of bradykinin (BK) upon plasma levels of LH, FSH, TSH, GH and prolactin were investigated in conscious ovariectomized female rats bearing indwelling jugular cannulae. Some animals were pretreated with bradykinin potentiating factor (BPF). Intravenous administration of BK had no effect upon hormone levels. IVT injection of BK significantly depressed plasma prolactin levels at 15 and 30 min post-drug, with levels returning to control values by 60 min. Pretreatment of animals with BPF (75 μg/3 μl) prolonged the prolactin suppression induced by BK for up to two hours. Plasma LH, FSH, TSH and GH levels in BK-rats were not significantly different from those of saline-injected animals at any time point measured. Neither BPF alone nor in conjunction with BK had any effects upon plasma levels of TSH; however, BK plus BPF suppressed FSH concentrations at 75 min post-BPF, while BPF alone appeared to increase GH levels at 45 min. In vitro incubation of hemipituitaries with 0.083, 0.83 or 8.33 μg/ml BK had no effect upon the release of LH, TSH or prolactin compared to control values. However, the secretion of GH and FSH was suppressed by the lowest dose of BK tested. These results suggest that BK may play a physiological inhibitory role in the regulation of prolactin, which can be augmented by preventing its degradation, i.e. via BPF. The effect of the peptide seems to be mediated by the CNS since neither intravenous injection of BK nor in vitro incubation of pituitaries with the peptide modified prolactin release.  相似文献   

9.
The effect of age and melatonin on the activity of the neuroendocrine reproductive system was studied in young cyclic (3-5 months-old), and old acyclic (23-25 month-old) female rats. Pituitary responsiveness to a bolus of GnRH (50 ng per 100 g body weight) was assessed at both reproductive stages in control and melatonin-treated (150 micrograms melatonin per 100 g body weight each day for 1 month) groups. After this experiment, female rats were treated for another month to study the influence of ageing and melatonin on the reproductive axis. Plasma LH, FSH, prolactin, oestradiol and progesterone were measured. A positive LH response to GnRH was observed in both control groups (cyclic and acyclic). However, a response of greater magnitude was observed in old acyclic rats. Melatonin treatment reduced this increased response in acyclic rats and produced a pituitary responsiveness similar to that of young cyclic rats. FSH secretion was independent of GnRH administration in all groups, indicating desynchronization between LH and FSH secretion in response to GnRH in young animals and during senescence. No effect on prolactin was observed. Significantly higher LH (3009.11 +/- 1275.08 pg ml(-1); P < 0.05) and FSH concentrations (5879.28 +/- 1631.68 pg ml(-1); P < 0.01) were seen in acyclic control rats. After melatonin treatment, LH (811.11 +/- 89.71 pg ml(-1)) and FSH concentrations (2070 +/- 301.62 pg ml(-1)) decreased to amounts similar to those observed in young cyclic rats. However, plasma concentrations of oestradiol and progesterone were not reduced. In conclusion, the results of the present study indicate that, during ageing, the effect of melatonin is exerted primarily at the hypothalamo-pituitary axis rather than on the ovary. Melatonin restored the basal concentrations of pituitary hormones and pituitary responsiveness to similar values to those observed in young rats.  相似文献   

10.
On Wistar rats characteristics were studied of investigating behaviour in the open field, of learning of conditioned food-reinforced reaction and also of BA and their metabolites content in various brain structures under local intracerebral injections of specific neurotoxins; 6-hydroxydopamine (6-OHDA) and 5,7-dihydroxytryptamine (5,7-DHT), abolishing correspondingly catecholaminergic and serotoninergic terminals. Bilateral injection of 6-OHDA in the neocortex led to a weakening of rats investigating activity in the open field and to an increase of the time of fulfillment of the forming of conditioned food-reinforced reaction. Administration of 5,7-DHT was accompanied by an increase of the investigating behaviour in the open field and a reduction of the duration of the forming of conditioned reaction. Administration of 6-OHDA to the neocortex caused a lowering of catecholamines level in the frontal area of the neocortex and the hippocampus. Analogous administration of 5,7-DHT elicited simultaneously with a deep level lowering of 5-HT and its metabolite in these structures, a change of catecholamines content which testifies to a lesser specificity of the neurotoxin 5,7-DHT in comparison with 6-OHDA. Structures lesion of serotoninergic and catecholaminergic systems of the frontal cortex and the hippocampus brought about by a local administration of 6-OHDA and 5,7-DHT in the neocortex was accompanied by differently directed changes in animals behaviour.  相似文献   

11.
The present studies were designed to assess the effect of neurotensin on the release of LH, FSH, and prolactin in long-term castrated female rats. The animals were implanted in the lateral ventricle of the brain wih a cannula to allow the administration of either neurotensin or the vehicle. The peptide (30 microgram, dissolved in saline) or the control saline solution was injected intraventricularly in a volume of 10 microliter following pentobarbital anesthesia. Blood samples were collected at sacrifice 15, 30 and 60 min after injection. A significant decrease of serum LH levels was already present in neurotensin-treated animals at 15 min, and was maintained up to the end of the experiment. This decrease was not accompanied by any change in FSH or prolactin secretion. The results suggest that this tridecapeptide participates in the control of LH release and provide new data on the separate control of the release of the two gonadotropins.  相似文献   

12.
In order to study the mechanisms by which melatonin modulates sexual development, 5-day-old female Wistar rats have been treated with a single s.c. injection of melatonin, 3 h before the darkness onset. Criteria for sexual development were the age of vaginal opening and the circulating levels of prolactin, LH, FSH and estradiol. Also, pineal melatonin content was measured. There was a precocious puberty (P less than 0.01) in melatonin-treated rats measured by the age of the vaginal opening. An increase in the number of estrous smears over the whole period studied was observed in melatonin-treated animals as compared to controls. Along with these modifications, there was decrease in pineal melatonin content and serum prolactin levels, on day 21 of life (P less than 0.05), with an increase in both parameters on day 30 of age, in melatonin-treated rats as compared to controls, with no modifications at any other time studied. No differences were detected for serum LH levels considering the whole period studied for both groups. There was a faster decrease in plasma FSH levels with age in melatonin-treated animals than in controls. Serum estradiol levels were decreased in the peripubertal period in melatonin-treated rats as compared to controls. All these data suggest that the modifications induced by neonatal melatonin administration on prolactin, FSH and estradiol could be responsible for the precocious puberty shown in this study.  相似文献   

13.
The time course for LH induction of luteinizing hormone (LH) receptors as reflected in binding of 125l-labeled hCG was investigated in hypophysecto-mized adult male rats. A low dose of oLH (10 μg) was administered to hypophysectomized adult male rats following pretreatments with prolactin, follicle-stimulating hormone (FSH), growth hormone (GH), or saline. Testicular binding of hCG was determined at different times following the LH injection using Leydig cell membrane preparations from a testicular homogenate. Seven days after hypophysectomy, hCG binding was at a nadir of 19 ± 7% (mean ± SD) of control values. Pretreatment with prolactin (100 μg/day) for 7 days was associated with a nonsignificantly different hCG binding that was 30 ± 5% of control values. Prolactin pretreatment plus a single 10 μg LH i.p. injection increased 125l hCG binding up to 56 ± 10% of control values within 30 minutes of the LH injection. Luteinizing hormone-induced hCG binding persisted at a high level (51 ± 4% of control values) for 2 hours but returned to hypophysectomized control levels 6 hours after the i.p. LH injection. Seven days pretreatment with FSH or GH at 100 μg/day plus 10-μg LH injections was also tested. Neither FSH nor GH had a statistically significant effect on hCG binding nor could they mimic the ability of prolactin to allow for LH induction of hCG binding in the hypophysectomized adult male rats. These studies suggest that the induction or “up-regulation” of Leydig cell hCG binding by ovine LH is rapid and specifically dependent upon pre-exposure to prolactin.  相似文献   

14.
It is becoming increasingly clear that the effects of the opioids and their synthetic analogs on anterior pituitary function largely depend on the steroid milieu present in the animal at time of drug administration. However, it is still unclear whether gonadal steroids regulate the opioid-modulated mechanisms by affecting the number of opiate receptors in the brain. To further investigate these issues, the effects of opiate agonists and antagonists on LH, FSH and prolactin (Prl) secretion have been studied in: (a) normal and castrated male rats, and (b) normally cycling female rats. The binding characteristics of the brain subclass of mu opiate receptors have been analyzed in the same group of experimental animals; this type of receptors seems to be particularly involved in the control of gonadotropin and Prl release. When injected intraventricularly into normal male rats, morphine (200 micrograms/rat) induced in a significant elevation of serum LH levels at 10 and 20 min. In long-term castrated animals the administration of the drug significantly reduced LH secretion at 40 and 60 min after the injection, the inhibition lasted up to 180 min. Morphine, when given intraventricularly to normal males, induced a conspicuous and significant elevation of serum Prl levels at 10, 20, 40 and 60 min after treatment. However, when the drug was administered to castrated rats, it did not significantly affect Prl release at any time interval considered. Morphine intraventricular injections did not modify serum FSH levels either in normal or in castrated male rats. The concentration of mu opiate receptors was found to be similar when measured in the whole brain of normal and orchidectomized rats. In adult cycling female rats, s.c. injections of naloxone (2.5 mg/kg) stimulated LH release in every phase of the estrous cycle; the magnitude of the responses was highly variable, being particularly elevated at 16.00 h of the day of proestrous and at 10.00, 12.00 and 14.00 h of the day of estrous. Conversely, LH response to naloxone was totally obliterated at 18.00 and 20.00 h of the day of proestrous, when the preovulatory LH surge was found to occur. The concentration of brain opiate receptors of the mu type showed significant variations during the different phases of the estrous cycle, with higher levels at 12.00 h of the day of proestrous and at 18.00 h of the day of estrous.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Inoculation of cyclic female rats with the prolactin (Prl)/growth hormone-secreting pituitary tumor, MtT.W15, resulted in a cessation of estrous cyclicity within 5--10 days. Associated with this acyclicity was a persistently low serum concentration of estradiol and marked increases in both circulating Prl and progesterone. At Day 26 of acyclicity, basal serum luteinizing hormone (LH) values measured in samples taken every 20 min from 0900--1100 h were significantly reduced when compared to cyclic, nontumor animals on diestrus Day 2. There was no difference in basal follicle-stimulating hormone (FSH) concentrations. In a separate group of acyclic, tumor-bearing females 42--56 days after transplantation, a single s.c. injection of 20 micrograms estradiol benzoate (EB) at 1030 h elicited significant increases in both serum LH and FSH values between 1700 and 1830 h on the next day. The magnitude of the LH surge was reduced and that of FSH was increased in tumor-bearing animals when compared to cyclic, nontumor females given a similar EB injection on diestrus Day 1. These results demonstrate that chronic hyperprolactinemia is associated with inhibition of basal LH secretion and ovarian estrogen production and an increase in circulating progesterone concentrations. Nevertheless, the stimulatory feedback effects of estrogen on LH and FSH release are still present and functioning in acyclic female rats under chronically hyperprolactinemic conditions. These data suggest that the cessation of regular ovulatory cycles associated with hyperprolactinemia may be due to a deficiency of LH and/or estrogen secretion, but not to a lack of central nervous system response to the stimulatory feedback action of estrogen.  相似文献   

16.
This work analyzes the effect of calorie restriction on the 24 h variation of pituitary-testicular function in young male Wistar rats by measuring the circulating levels of prolactin, follicle-stimulating hormone (FSH), luteinizing hormone (LH), and testosterone. Control animals were provided an equilibrium calorie diet and the experimental animals a calorie-restriction diet equivalent to 66% of food restriction for four weeks starting on day 35 of life. Different groups of control and experimental rats were killed at 6 h intervals around the clock, beginning 1 h after light on (HALO). Compared to the control animals, the mean secretion of prolactin was augmented and that of LH and testosterone decreased in calorie-restricted rats, whereas FSH release remained unchanged. Significant changes in the 24 h secretory pattern of circulating prolactin, LH, and testosterone occurred in the calorie-restricted rats. These include the appearance of a second maximum of plasma prolactin at 21 HALO, blunting of the LH peak seen at 13 HALO, and phase-shift of the testosterone peak from 13 HALO in controls to 17 HALO in calorie-restricted rats. The significant positive correlation between individual LH and testosterone levels found in controls was no longer observed in calorie-restricted rats. Availability of nutrients presumably affects the mechanisms that modulate the circadian variation of the pituitary-gonadal axis in growing male rats.  相似文献   

17.
To elucidate the role of prolactin on testicular function, we treated mature rats with ovine prolactin (oPRL) and investigated the dose and time-dependent changes in testicular LH, FSH and prolactin receptors as well as in serum gonadotropin and steroid levels. Twelve week-old rats were injected sc with a single dose of various amounts of oPRL (0.2, 1 and 5 IU) and killed on the first, second and third days after the treatment. Testicular LH receptor decreased to 59% of the control level as a function of time while prolactin receptor increased to 244% maximally of the control level on the second day. In contrast, FSH receptor changed in a different fashion. Smaller amounts of oPRL (0.2 and 1 IU) raised the receptor level to 193% of the control level on the first day whereas a larger amount (5 IU) did not change the receptor, which tended to remain in a low level throughout the experimental period. The serum FSH level significantly increased in every group on the second day, then returned to the control range by the third day. On the other hand, the serum testosterone level changed in a characteristic manner, decreased significantly in every group on the first day though not in a dose-dependent fashion, returned to normal on the second day and significantly increased in the 0.2 IU group on the third day (p less than 0.01). Similarly, the serum estradiol level decreased in the oPRL-treated groups on the first day and was restored on the second day.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
This work analyzes the effect of calorie restriction on the 24 h variation of pituitary-testicular function in young male Wistar rats by measuring the circulating levels of prolactin, follicle-stimulating hormone (FSH), luteinizing hormone (LH), and testosterone. Control animals were provided an equilibrium calorie diet and the experimental animals a calorie-restriction diet equivalent to 66% of food restriction for four weeks starting on day 35 of life. Different groups of control and experimental rats were killed at 6 h intervals around the clock, beginning 1 h after light on (HALO). Compared to the control animals, the mean secretion of prolactin was augmented and that of LH and testosterone decreased in calorie-restricted rats, whereas FSH release remained unchanged. Significant changes in the 24 h secretory pattern of circulating prolactin, LH, and testosterone occurred in the calorie-restricted rats. These include the appearance of a second maximum of plasma prolactin at 21 HALO, blunting of the LH peak seen at 13 HALO, and phase-shift of the testosterone peak from 13 HALO in controls to 17 HALO in calorie-restricted rats. The significant positive correlation between individual LH and testosterone levels found in controls was no longer observed in calorie-restricted rats. Availability of nutrients presumably affects the mechanisms that modulate the circadian variation of the pituitary-gonadal axis in growing male rats.  相似文献   

19.
To more completely assess the means by which alcohol impairs the female reproductive cycle in rats, we have measured hypothalamic luteinizing hormone-releasing hormone (LHRH), pituitary LHRH receptor content, and the serum levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH), prolactin (Prl), and progesterone (P). After two successive cycles, the animals began receiving either an alcohol or a isocaloric control liquid diet regimen beginning on the first day of diestrus, with continued monitoring of the estrous cycle throughout the experiment. An additional set of controls consisted of animals maintained on lab chow and water provided ad libitum. Our results indicate that those animals receiving the control diets showed uninterrupted estrous patterns, whereas those animals receiving the alcohol diet remained in diestrus. Additionally, the alcohol-treated animals showed an increase (p less than 0.05) in LHRH content, with a concomitant decrease (p less than 0.01) in serum LH, and an increase (p less than 0.01) in serum Prl. No significant differences were detected in serum FSH levels or pituitary LHRH receptor content. No differences were detected in serum P levels. These results indicate that short-term alcohol administration disrupts the female reproductive cycle, causing persistent diestrus, and support our hypothesis that the alcohol-induced depression in serum LH levels is due to a diminished release rate of hypothalamic LHRH.  相似文献   

20.
The purpose of these experiments was to determine whether bilateral vasoligation of adult male rats had any short-term effects upon plasma levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), and prolactin. Adult male rats (250-300 g) were either bilaterally vasoligated or sham vasoligated, and blood samples were obtained by cardiac puncture preoperatively and at 24 h and 7 days following surgery. Plasma levels of both FSH and LH were significantly (P less than 0.01) decreased at 24 h following vasoligation compared to preoperative levels and those of sham-operated controls. However, the response was differential since, at 7 days following vasoligation, plasma FSH was still significantly decreased while LH was returning to control levels. Conversely, plasma prolactin levels were significantly (P less than 0.01) increased at 24 h compared to preoperative values and those in sham-operated controls, and at 7 days prolactin had returned to preoperative control levels. Sham vasoligation did not significantly change plasma levels of FSH, LH, or prolactin at any of the time intervals investigated. These results provide further evidence that suggests that there may be a direct connection between the testis and central nervous system that may be involved in the short-term regulation of gonadotropin and prolactin secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号