共查询到20条相似文献,搜索用时 8 毫秒
1.
Heymann MF Riet A Le Goff B Battaglia S Paineau J Heymann D 《Regulatory peptides》2008,148(1-3):46-53
Receptor activator of NF-kappaB (RANK), RANK ligand (RANKL) and osteoprotegerin (OPG) play essential roles in bone metabolism. RANKL binds to RANK, which is expressed by osteoclasts whereas OPG acts as its decoy receptor blocking the RANK-RANKL interaction. OPG/RANK/RANKL are produced by variety of tissues including epithelial and mesenchymal cells. However, the role of RANKL/OPG in thyroid pathophysiology remains unclear. The aim of this study was to determine the expression pattern of RANK/RANKL/OPG in primary neoplastic thyroid lesions and in lymph node metastases. 27 specimens from total thyroidectomy were studied by immunohistochemistry: 9 papillary carcinomas (PC), 9 medullary carcinomas (MC), 9 macrovesicular adenomas (MA). Immunohistochemical evidence of RANKL was found in 30 % of MC, 22% of PC while RANKL has never been detected in PC. The expression of RANK is closely related to RANKL. OPG was restricted to the cytoplasm of epithelial in 1 MA and 1 MC. In contrast to pathological tissues, any expression of OPG/RANK/RANKL was detected in healthy thyroid tissue. This work reveals for the first time that OPG/RANK/RANKL are expressed in the pathological thyroid gland by follicular cells, by malignant parafollicular cells as well as in metastatic lymph node microenvironment. Thus OPG/RANK/RANKL molecular triad might play a role during pathogenesis of follicular and parafollicular tumors. 相似文献
2.
Zou W Amcheslavsky A Takeshita S Drissi H Bar-Shavit Z 《Journal of cellular physiology》2005,202(2):371-378
3.
Bharti AC Aggarwal BB 《Apoptosis : an international journal on programmed cell death》2004,9(6):677-690
Many members of tumor necrosis factor (TNF) superfamily are characterized by their ability to induce apoptosis once they bind in a homotrimeric manner to their cognate receptors. The receptor activator of nuclear factor-kappaB ligand (RANKL), a member of the TNF superfamily identified seven years ago, was originally described as a factor that induced osteoclastogenesis and dendritic cell survival. Recent observations indicate that a growth inhibitory and apoptosis-inducing activity is associated with RANKL, as is the case for other members of TNF superfamily. This review describes the possible mechanisms of induction of RANKL-induced growth inhibition/apoptosis and discusses the role of various components in RANKL-signaling in this phenomenon, including TNF receptor-associated factor (TRAF)-6, nuclear factor-kappaB (NF-kappaB), c-jun N-terminal kinase JNK), phosphatidylinositol-3 kinase (PI3K). 相似文献
4.
5.
Shiqian Zhang Changzhen Liu Peng Huang Jingshan Ren Peifu Tang Bin Gao 《Archives of biochemistry and biophysics》2009,487(1):49-53
Receptor activator of nuclear factor-kappa B (RANK) and its ligand, RANKL play critical roles in bone re-modeling, immune function, vascular disease and mammary gland development. To study the interaction of RANK and RANKL, we have expressed both extracellular domain of RANK and ectodomain of RANKL using Escherichia coli expression system. RANK was expressed as an inclusion body first which properly refolded later, while RANKL was initially produced as a GST fusion protein, after which the GST was removed by enzyme digestion. Soluble RANK existed as a monomer while RANKL was seen as a trimer in solution, demonstrated by gel filtration chromatography and cross-linking experiment. The recombinant RANK and RANKL could bind to each other and the binding affinity of RANKL for RANK was measured with surface plasmon resonance technology and KD value is about 1.09 × 10−10 M. 相似文献
6.
7.
Detection and characterization of RANK ligand and osteoprotegerin in the thyroid gland 总被引:3,自引:0,他引:3
Hofbauer LC Kluger S Kühne CA Dunstan CR Burchert A Schoppet M Zielke A Heufelder AE 《Journal of cellular biochemistry》2002,86(4):642-650
Receptor activator of NF-kappaB (RANK) ligand (RANKL) and osteoprotegerin (OPG) play essential roles in bone metabolism and immune responses. RANKL activates RANK, which is expressed by osteoclasts and dendritic cells (DC), whereas OPG acts as its decoy receptor. The role of RANKL and OPG in thyroid physiology is unclear. Northern analysis revealed pronounced OPG mRNA levels in normal human thyroid. By contrast, RANKL mRNA levels were most abundant in lymph node and appendix, and low in the thyroid. In the human thyroid follicular cell line XTC and in primary human thyroid follicular cells, OPG mRNA levels and protein secretion were upregulated by interleukin (IL)-1beta (33-fold), tumor necrosis factor (TNF)-alpha (eightfold), and thyrotropin (TSH) (threefold). RANKL mRNA was stimulated in XTC by IL-1beta and TNF-alpha, but inhibited by TSH. Conditioned medium harvested from IL-1beta-treated XTC (containing high concentrations of OPG) inhibited RANKL-induced CD40 upregulation and cluster formation of DC. OPG mRNA levels were three times more abundant in surgical thyroid specimens of Graves' disease as compared to other thyroid diseases. Our data suggest that RANKL and OPG are produced in the thyroid gland by thyroid follicular cells, are regulated by cytokines and TSH, and are capable of modulating dendritic cell functions. Thus, these cytokines may represent important local immunoregulatory factors involved in the pathogenesis of autoimmune thyroid diseases. 相似文献
8.
9.
10.
11.
12.
Tumor necrosis factor-alpha mediates RANK ligand stimulation of osteoclast differentiation by an autocrine mechanism 总被引:9,自引:0,他引:9
Osteoblasts or bone marrow stromal cells are required as supporting cells for the in vitro differentiation of osteoclasts from their progenitor cells. Soluble receptor activator of nuclear factor-kappaB ligand (RANKL) in the presence of macrophage colony-stimulating factor (M-CSF) is capable of replacing the supporting cells in promoting osteoclastogenesis. In the present study, using Balb/c-derived cultures, osteoclast formation in both systems-osteoblast/bone-marrow cell co-cultures and in RANKL-induced osteoclastogenesis-was inhibited by antibody to tumor necrosis factor-alpha (TNF-alpha), and was enhanced by the addition of this cytokine. TNF-alpha itself promoted osteoclastogenesis in the presence of M-CSF. However, even at high concentrations of TNF-alpha the efficiency of this activity was much lower than the osteoclastogenic activity of RANKL. RANKL increased the level of TNF-alpha mRNA and induced TNF-alpha release from osteoclast progenitors. Furthermore, antibody to p55 TNF-alpha receptors (TNF receptors-1) (but not to p75 TNF-alpha receptors (TNF receptors-2) inhibited effectively RANKL- (and TNF-alpha() induced osteoclastogenesis. Anti-TNF receptors-1 antibody failed to inhibit osteoclastogenesis in C57BL/6-derived cultures. Taken together, our data support the hypothesis that in Balb/c, but not in C57BL/6 (strains known to differ in inflammatory responses and cytokine modulation), TNF-alpha is an autocrine factor in osteoclasts, promoting their differentiation, and mediates, at least in part, RANKL's induction of osteoclastogenesis. 相似文献
13.
Regulation of mucosal dendritic cell function by receptor activator of NF-kappa B (RANK)/RANK ligand interactions: impact on tolerance induction 总被引:3,自引:0,他引:3
Williamson E Bilsborough JM Viney JL 《Journal of immunology (Baltimore, Md. : 1950)》2002,169(7):3606-3612
The mucosal immune system is uniquely equipped to discriminate between potentially invasive pathogens and innocuous food proteins. While the mechanisms responsible for induction of mucosal immunity vs tolerance are not yet fully delineated, recent studies have highlighted mucosal dendritic cells (DC) as being important in determining the fate of orally administered Ag. To further investigate the DC:T cell signals involved in regulating the homeostatic balance between mucosal immunity and tolerance, we have examined the expression and function of the TNFR family member receptor activator of NF-kappaB (RANK) and its cognate ligand, RANKL, in vitro and in vivo. Our data show that although DC isolated from mucosal lymphoid tissues expressed similar levels of surface RANK compared with DC isolated from peripheral lymphoid tissues, DC from the distinct anatomical sites displayed differential responsiveness to RANK engagement with soluble RANKL. Whereas splenic DC responded to RANKL stimulation with elevated IL-12 p40 mRNA expression, Peyer's patch DC instead preferentially displayed increased IL-10 mRNA expression. Our data also show that the in vivo functional capacity of mucosal DC can be modulated by RANKL. Treatment with RANKL in vivo at the time of oral administration of soluble OVA enhanced the induction of tolerance in two different mouse models. These studies underscore the functional differences between mucosal and peripheral DC and highlight a novel role for RANK/RANKL interactions during the induction of mucosal immune responses. 相似文献
14.
TNF receptor type 1 regulates RANK ligand expression by stromal cells and modulates osteoclastogenesis 总被引:3,自引:0,他引:3
TNFalpha is a major osteoclastogenic cytokine and a primary mediator of inflammatory osteoclastogenesis. We have previously shown that this cytokine directly targets osteoclasts and their precursors and that deletion of its type-1 receptor (TNFr1) lessens osteoclastogenesis and impacts RANK signaling molecules. Osteoclastogenesis is primarily a RANK/RANKL-dependent event and occurs in an environment governed by both hematopoietic and mesenchymal compartments. Thus, we reasoned that TNF/TNFr1 may regulate RANKL and possibly RANK expression by stromal cells and osteoclast precursors (OCPs), respectively. RT-PCR experiments reveal that levels of RANKL mRNA in WT stromal cells are increased following treatment with 1,25-VD3 compared to low levels in TNFr1-null cells. Expression levels of OPG, the RANKL decoy protein, were largely unchanged, thus supporting a RANKL/OPG positive ratio favoring WT cells. RANK protein expression by OCPs was lower in TNFr1-null cells despite only subtle differences in mRNA expression in both cell types. Mix and match experiments of different cell populations from the two mice phenotypes show that WT stromal cells significantly, but not entirely, restore osteoclastogenesis by TNFr1-null OCPs. Similar results were obtained when the latter cells were cultured in the presence of exogenous RANKL. Altogether, these findings indicate that in the absence of TNFr1 both cell compartments are impaired. This was further confirmed by gain of function experiments using TNFr1- null cultures of both cell types at which exogenous TNFr1 cDNA was virally expressed. Thus, restoration of TNFr1 expression in OCPs and stromal cells was sufficient to reinstate osteoclastogenesis and provides direct evidence that TNFr1 integrity is required for optimal RANK-mediated osteoclastogenesis. 相似文献
15.
Shuichiro Ito Kenji Wakabayashi Osamu Ubukata Shinko Hayashi Fumihiko Okada Tadashi Hata 《The Journal of biological chemistry》2002,277(8):6631-6636
Bone remodeling involves the resorption of bone by osteoclasts and the synthesis of bone matrix by osteoblasts. Receptor activator of NF-kappa B ligand (RANKL, also known as ODF and OPGL), a member of the tumor necrosis factor (TNF) family, triggers osteoclastogenesis by forming a complex with its receptor, RANK. We have determined the crystal structure of the extracellular domain of mouse RANKL at 2.2-A resolution. The structure reveals that the RANKL extracellular domain is trimeric, which was also shown by analytical ultracentrifugation, and each subunit has a beta-strand jellyroll topology like the other members of the TNF family. A comparison of RANKL with TNF beta and TNF-related apoptosis-inducing ligand (TRAIL), whose structures were determined to be in the complex form with their respective receptor, reveals conserved and specific features of RANKL in the TNF superfamily and suggests the presence of key residues of RANKL for receptor binding. 相似文献
16.
17.
Arthur KK Gabrielson JP Hawkins N Anafi D Wypych J Nagi A Sullivan JK Bondarenko PV 《Biochemistry》2012,51(3):795-806
The in vitro binding stoichiometry of denosumab, an IgG2 fully human monoclonal therapeutic antibody, to RANK ligand was determined by multiple complementary size separation techniques with mass measuring detectors, including two solution-based techniques (size-exclusion chromatography with static light scattering detection and sedimentation velocity analytical ultracentrifugation) and a gas-phase analysis by electrospray ionization time-of-flight mass spectrometry from aqueous nondenaturing solutions. The stoichiometry was determined under defined conditions ranging from small excess RANK ligand to large excess denosumab (up to 40:1). High concentrations of denosumab relative to RANK ligand were studied because of their physiological relevance; a large excess of denosumab is anticipated in circulation for extended periods relative to much lower concentrations of free soluble RANKL. The studies revealed that an assembly including 3 denosumab antibody molecules bound to 2 RANKL trimers (3D2R) is the most stable complex in DPBS at 37 °C. This differs from the 1:1 binding stoichiometry reported for RANKL and osteoprotegerin (OPG), a soluble homodimeric decoy receptor which binds RANKL with high affinity. Denosumab and RANKL also formed smaller assemblies including 1 denosumab and 2 RANKL trimer molecules (1D2R) under conditions of excess RANKL, 3 denosumab molecules and 1 RANKL trimer (3D1R) under conditions of excess denosumab, and larger assemblies, but these intermediate species were only present at lower temperatures (4 °C), shortly after mixing denosumab and RANKL, and converted over time to the more stable 3D2R assembly. 相似文献
18.
Kajiya H Ito M Ohshima H Kenmotsu S Ries WL Benjamin IJ Reddy SV 《Journal of cellular biochemistry》2006,97(6):1362-1369
Heat Shock Proteins (HSP) are molecular chaperones activated upon cellular stress/stimuli. HSP gene expression is regulated by Heat Shock Factors (HSF). We have recently demonstrated a functional role for heat shock factor-2 (HSF-2) in fibroblast growth factor-2 (FGF-2)-induced RANK ligand (RANKL), a critical osteoclastogenic factor expression on stromal/preosteoblast cells. In the present study, we show that FGF-2 treatment did not induce RANKL expression in HSF-2-/-stromal/preosteoblast cells. Interestingly, HSF-2 deficiency resulted in rapid induction of alkaline phosphatase (ALP) activity and osteocalcin mRNA expression in these cells. Furthermore, FGF-2 did not induce osteoclast formation in co-culture of normal mouse spleen cells and HSF-2-/-stromal/preosteoblast cells. Electron microscopy analysis demonstrated that osteoclasts from HSF-2-/-mice have poorly developed ruffled borders. These data further confirm that HSF-2 plays an important role in FGF-2-induced RANKL expression in stromal/preosteoblast cells. HSF-2 deficiency has pleotropic effects on gene expression during osteoblast differentiation and osteoclastogenesis in the bone microenvironment. Novel therapeutic agents that modulate HSF-2 activation may have therapeutic utility against increased levels of FGF-2 and bone destruction associated with pathologic conditions. 相似文献
19.
20.
Min JK Kim YM Kim YM Kim EC Gho YS Kang IJ Lee SY Kong YY Kwon YG 《The Journal of biological chemistry》2003,278(41):39548-39557
Vascular endothelial growth factor (VEGF) is known as a key regulator of angiogenesis during endochondral bone formation. Recently, we demonstrated that TNF-related activation-induced cytokine (TRANCE or RANKL), which is essential for bone remodeling, also had an angiogenic activity. Here we report that VEGF up-regulates expression of receptor activator of NF-kappa B (RANK) and increases angiogenic responses of endothelial cells to TRANCE. Treatment of human umbilical vein endothelial cells (HUVECs) with VEGF increased both RANK mRNA and surface protein expression. Although placenta growth factor specific to VEGF receptor-1 had no significant effect on RANK expression, inhibition of downstream signaling molecules of the VEGF receptor-2 (Flk-1/KDR) such as Src, phospholipase C, protein kinase C, and phosphatidylinositol 3'-kinase suppressed VEGF-stimulated RANK expression in HUVECs. Moreover, the MEK inhibitor PD98059 or expression of dominant negative MEK1 inhibited induction of RANK by VEGF but not the Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA-AM). VEGF potentiated TRANCE-induced ERK activation and tube formation via RANK up-regulation in HUVECs. Together, these results show that VEGF enhances RANK expression in endothelial cells through Flk-1/KDR-protein kinase C-ERK signaling pathway, suggesting that VEGF plays an important role in modulating the angiogenic action of TRANCE under physiological or pathological conditions. 相似文献