首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Patterns of sheltering and activity are of fundamental importance in the ecology of animals and in determining interactions among predators and prey. Balancing decreased mortality risk when sheltering with increased feeding rate when exposed is believed to be a key determinant of diel patterns of sheltering in many animals. 2. Despite lower foraging efficiency at night than during the day, Atlantic salmon Salmo salar parr are nocturnal during winter and at low summer temperatures. Nocturnal activity also occurs at warm water temperatures during summer, but little is known about the functional significance of this behaviour. 3. This study aimed to determine: (1) the preferred activity and shelter pattern of Atlantic salmon parr during warm summer months, and (2) their response to variations in food availability when balancing growth rate (G) and mortality risk (M), as expressed through time out of shelter. We differentiated among four potential responses to reduced food availability: (1) no response; (2) G decreases but M remains constant; (3) G remains constant but M increases; and (4) G decreases and M increases. 4. Time exposed from shelter was inversely related to food availability. Fish subject to high food availability were significantly less active during the day than those with restricted rations. However, food availability had no significant effect on the extent to which fish were active at night. There was no evidence of variation in growth rate with food availability. 5. Salmon were predominantly nocturnal at high ration levels, consistent with their previously reported behaviour during winter. Rather than switching to diurnal behaviour at high temperatures per se, as previously was supposed, it appears that the fish are diurnal only to the extent needed to sustain a growth rate, and this extent depends on food availability. 6. Atlantic salmon parr modulate the amount of time they are active rather than growth when responding to variations in food availability over an order of magnitude.  相似文献   

2.
Both in foraging groups and in a sequential prey encounter context, learning had a visible effect on the pattern of selection for three live prey types ( Ecdyonurus larvae, Hydropsyche larvae, and Gammarus ) by juvenile Atlantic salmon Salmo salar . Compared to wild-caught fish, naive, hatchery-reared fish that had not been exposed to natural prey ate Hydropsyche larvae in a remarkably low proportion, and consumed a higher proportion of Gammarus. Ecdyonurus experienced a high and rather steady predation rate across the experience gradient, but after a short period of experience with live prey the consumption rate for Hydropsyche increased drastically, and that of Gammarus decreased, matching the selection pattern exhibited by wild fish. Individual fish offered prey in a sequential encounter context increased consumption rates of all the prey types as they gained experience, but the improvement was higher for the prey that were less consumed initially. Fish became more selective as they approached satiation, conforming to the prediction of optimal foraging theory that higher predator's energy requirements, as well as low food availability, result in reduced selectivity. The results also suggest that fish from distinct populations can differ in the degree of diet selectivity according to their energetic requirements for growth. The fast learning response of Atlantic salmon parr towards novel prey probably allows fish to maintain a high foraging efficiency when faced with frequent changes in the availability of different prey types.  相似文献   

3.
Growth rate has been established as a key parameter influencing foraging decisions involving the risk of predation. Through genetic manipulation, transgenic salmon bred to contain and transmit a growth hormone transgene are able to achieve growth rates significantly greater than those of unmanipulated salmon. Using such growth-enhanced transgenic Atlantic salmon, we directly tested the hypothesis that relative growth rates should be correlated with willingness to risk exposure to a predator. We used size-matched transgenic and control salmon in two experiments where these fish could either feed in safety, or in the presence of the predator. The first experiment constrained the predator behind a Plexiglas partition (no risk of mortality), the second required the fish to feed in the same compartment as the predator (a finite risk of mortality). During these experiments, transgenic salmon had rates of consumption that were approximately five times that of the control fish and rates of movement approximately double that of controls. Transgenic salmon also spent significantly more time feeding in the presence of the predator, and consumed absolutely more food at that location. When there was a real risk of mortality, control fish almost completely avoided the dangerous location. Transgenic fish continued to feed at this location, but at a reduced level. These data demonstrate that the growth enhancement associated with the transgenic manipulation increases the level of risk these fish are willing to incur while foraging. If the genetic manipulation necessary to increase growth rates is achievable through evolutionary change, these experiments suggest that growth rates of Atlantic salmon may be optimized by the risk of predation. Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   

4.
Animal species have usually evolved to be active at a specific time of the daily cycle, and so are either diurnal, nocturnal or crepuscular. However, we show here that the daily timing of activity in juvenile Atlantic salmon is related to the life-history strategy that they have adopted (i.e. the age at which they will migrate to the sea) and their current state (body size/relative nutritional state). Salmon can detect food more easily by day than by night, but the risk of predation is greater. Nocturnal foraging should generally be preferred, but the greater the need for growth, the greater should be the shift towards diurnal activity. In line with this prediction, all fish were predominantly nocturnal, but salmon preparing to migrate to the sea, which would experience size-dependent mortality during the forthcoming migration, were more diurnal than fish of the same age and size that were delaying migration for a further year. Moreover, the proportion of activity by day was negatively correlated with body size within the intending migrants. It has previously been shown that overwinter survival in fish delaying migration is maximized not by growth but by minimizing exposure to predators. As predicted, daytime activity in these fish was correlated with the prior rate of weight loss, fish being more diurnal when their risk of starvation was greater. To our knowledge, these are the first quantitative demonstrations of state-dependent variation in the timing of daily activity.  相似文献   

5.
Bremset G  Berg OK 《Animal behaviour》1999,58(5):1047-1059
This study, conducted in deep pools in three rivers, is the first to show a clear three-dimensional habitat segregation in size groups (equivalent to age groups) of juvenile Atlantic salmon, Salmo salar, and brown trout, S. trutta. Young-of-the-year (YOY) held position near the river bed and the river bank; height above bottom and distance from river bank increased significantly with fish size. Brown trout held position significantly further from the substratum, and were on average closer to the river bank, than salmon. The vertical segregation of young salmonids was most evident among young trout, with YOY being closest to the bottom. This size-dependent segregation is probably a result of different outcomes of the trade-off between the conflicting interests of higher food availability and greater predation risk in the upper part of the water column. We suggest that intercohort predation and competitive interactions were the main reasons why YOY of both species and salmon yearlings held positions close to the river bed. We found no evidence of salmon and trout parr preferring particular water depths, as studies in shallow parts of rivers have suggested, as the correspondence of use and availability of microhabitats at different water depths was high in the pools. Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   

6.
The muskellunge was introduced in the Saint John River system from stockings in a headwater lake in the 1970s. They have migrated down the system as far as the river’s first dam, Mactaquac Hydroelectric Facility, at Fredericton and appear to have established several reproducing populations along the river. This exotic invader represents a potential threat to the severely depleted Atlantic salmon stocks in the river. We radio-tracked muskellunge over a 2-year period in the middle reaches. Home ranges extended to ∼100 km in both riverine and lacustrine areas, including 78% of individuals trans-located upstream of the dam making their way back through the dam successfully. Downstream of the dam, home ranges were <25 km. No spawning areas were detected. An isotope analyses of diet indicated that the large sub-adults and adults had established the greatest proportion of their biomass in a more 15N depleted environment typical of areas farther upstream. Isotope mixing models could not accurately determine the proportion of Atlantic salmon smolts that may have been consumed by muskellunge, but anadromous salmon had ≤7% probabilities of being in the diet. A bioenergetics model suggested ≤5% of the annual food intake by muskellunge occurs during the smolt out-migration period. For the Saint John River, the impacts of growing numbers of muskellunge are multi-faceted creating a complex management challenge. Muskellunge appear to minimally increase predation risk for Atlantic salmon smolts while their increasing numbers are creating a growing recreational fishery and potential threat to the native fish community and ecosystem.  相似文献   

7.
Geographical variation in behaviour within species is common. However, how behavioural plasticity varies between and within locally adapted populations is less studied. Here, we studied behavioural plasticity induced by perceived predation risk and food availability in pond (low predation - high competition) vs. coastal marine (high predation - low competition) nine-spined sticklebacks (Pungitius pungitius) reared in a common garden experiment. Pond sticklebacks were more active feeders, more risk-taking, aggressive and explorative than marine sticklebacks. Perceived predation risk decreased aggression and risk-taking of all fish. Food restriction increased feeding activity and risk-taking. Pond sticklebacks became more risk-taking than marine sticklebacks under food shortage, whereas well-fed fish behaved similarly. Among poorly fed fish, males showed higher drive to feed, whereas among well-fed fish, females did. Apart from showing how evolutionary history, ontogenetic experience and sex influence behaviour, the results provide evidence for habitat-dependent expression of adaptive phenotypic plasticity.  相似文献   

8.
Blanchet S  Loot G  Dodson JJ 《Oecologia》2008,157(1):93-104
Using semi-natural stream channels, we estimated the effects of competition and predation exerted by juvenile and adult exotic rainbow trout (Oncorhynchus mykiss) on the diel activity pattern of juvenile native Atlantic salmon (Salmo salar), a secondary consumer. We also evaluated the direct and indirect effects of competition, predation and abiotic factors (water depth and velocity) on the growth rate of salmon, the biomass of invertebrate grazers (primary consumers) and the biomass of periphytic algae (primary producers; chlorophyll a). The presence of chemical cues emanating from adult predatory trout reduced the daily activity of juvenile Atlantic salmon. In contrast, competition imposed by juvenile rainbow trout forced Atlantic salmon to be more active during the day, even if adult rainbow trout were also present. We found no effect of either competition or of predatory cues on the growth rate of Atlantic salmon, and no evidence of indirect effects on either the biomass of invertebrates or the biomass of chlorophyll a. In contrast, we demonstrated that this food chain (fish--invertebrate grazers--periphytic algae) was under the control of a critical abiotic factor, the water velocity, and of bottom-up processes. We concluded that the exotic species directly increases the risk of predation of the native Atlantic salmon, but behavioral compensation probably limits the effects on growth rate. The competition and predation imposed by the invaders had no indirect effects on lower trophic levels. Top-down effects may have been mitigated by the dominant influence of water velocity controlling all components of the food chain and by elevated levels of primary production.  相似文献   

9.
Reservoir formation in a river system changes a lotic environment to more lacustrine conditions, with impacts throughout the ecosystem. In this study, a river reach containing typical salmonid riffle/run habitat was flooded to create a large, deep pool from June to September in each of 3 years. We test the hypothesis that juvenile Atlantic salmon (Salmo salar) with their preference for run/riffle habitats will respond to the transformation to a lentic environment by moving into adjacent lotic environments. Movements of juvenile Atlantic salmon were monitored using a combination of biotelemetry (radio- and passive integrated transponder-tagging) and electrofishing. Results showed that no tracked fish moved away from the created pool habitat. Mass-specific growth rates showed the created pool habitat resulted in net growth of juveniles. The results confirm that fish may not immediately (i.e., at least for an approximate 2 months) respond to rapid, large-scale habitat alterations by moving to find similar habitat conditions outside the altered habitat. This is most probably related to plasticity of behavior and habitat use, and no change in biological conditions to a point that would negatively impact fish growth and survival, for example food availability, competition, or predation. The results also support the hypothesis that the relative importance of physical habitat variables is not universal among streams and populations, therefore limiting the value of applying standard habitat suitability criteria and use.  相似文献   

10.
1.?Basal levels of metabolism vary significantly among individuals in many taxa, but the effects of this on fitness are generally unknown. Resting metabolic rate (RMR) in juvenile salmon and trout is positively related to dominance status and ability to obtain a feeding territory, but it is not clear how this translates into performance in natural conditions. 2.?The relationships between RMR, dominance, territoriality and growth rates of yearling Atlantic salmon Salmo salar were examined in relation to predictability in food supply and habitat complexity, using replicate sections of a large-scale controlled semi-natural stream. 3.?Estimated RMR was a strong predictor of dominance, and under conditions of a predictable food supply in a structurally simple habitat, high estimated RMR fish obtained the best feeding territories and grew faster. 4.?When the spatial distribution of food was made less predictable, dominant (high estimated RMR) fish were still able to occupy the most profitable feeding locations by periodically moving location to track the changes in food availability, but RMR was no longer a predictor of growth rate. Moreover, when a less predictable food supply was combined with a visually more complex (and realistic) habitat, fish were unable to track changes in food availability, grew more slowly and exhibited greater site fidelity, and there were no relationships between estimated RMR and quality of occupied territory or growth rate. 5.?The relative benefit of RMR is thus context dependent, depending on both habitat complexity and the predictability of the food supply. Higher habitat complexity and lower food predictability decrease the performance advantages associated with a high RMR.  相似文献   

11.
Time–place learning, or the ability to learn to be in different places at different times of day, is already known to occur in response to daily spatio-temporal patterns of food availability. However, the ability to learn daily patterns of predation risk and move between areas at the right time of day in order to avoid predation has never been tested. This study asked whether inangas, Galaxias maculatus , are capable of time–place learning based on food availability only, predation risk only, or the antagonistic combination of food availability and predation risk. Shoals of five inangas were kept in aquaria partially divided into a right and left section. Every day they were exposed to a stimulus on one side in the morning and on the other side in the afternoon. Depending on the experiment, the stimulus could be two deliveries of food, two simulated heron strikes, or both of the above within the same hour. After 14 d the stimuli were not given and the position of the fish was noted in both the morning and the afternoon. The majority of the fish learned to switch sides at the correct daily time in order to get food, but they remained on the same side at both daily times in response to either predation risk alone or the combination of predation risk and food. It seems that the potential for time–place learning based on predation risk is less than that based on food, and that predation risk can even curtail the expression of time–place learning based on food. Fish may resort to other tactics, such as shoaling and reduced movement, in response to predation risk. Daily habitat shifts could still be present in nature and rooted in the avoidance of predation, but instead of being the direct result of learning they would be mostly innate.  相似文献   

12.
Direct day and night underwater observations of juvenile Atlantic salmon Salmo salar during summer and autumn showed a duality in response to temperature between 7 and 11° C for young‐of‐the‐year (YOY) Atlantic salmon. They were predominantly diurnal in early summer and nocturnal in late summer although water temperatures were similar. Post‐YOY Atlantic salmon did not show a strong response to temperature as they were mostly nocturnal during the study period. It is suggested that the difference in activity patterns between YOY and post‐YOY Atlantic salmon can be explained by size‐dependent trade‐off between growth and predation risk.  相似文献   

13.
Atlantic salmon Salmo salar L. artificially infected with salmon lice Lepeophtheirus salmonis (Kr?yer 1837) recovered from detrimental physiological changes and skin damage induced by preadult lice as the parasites matured. Growth rates of Atlantic salmon remained unaffected by lice infection, but food consumption decreased with increasing feeding and movement of the lice prior to and post-mating, correlating with the appearance of head erosions and detrimental changes in physiological integrity. Food consumption of the fish increased as the lice moulted to the adult stage and gravid female lice settled in a posterior location on the fish, subsequently reducing the impact of infection and allowing recovery of the skin damage. However, the impact of preadults was limited, as the decrease in food consumption of fish at 21 d post-infection had no effect on either the specific growth rate or condition factor of the fish. Furthermore, the intensity of lice infections at each of the sample days was not correlated with food consumption, specific growth rate or any of the haematological or physiological parameters measured, either before or after infection, indicating that lice intensity was independent of social dominance/subordinance. This work has provided the first evidence that infected fish can recover from the detrimental changes caused by lice infection, even when they are still infected with lice. If fish can survive the preadult stage of lice, then the mortal impact of lice infections is greatly reduced.  相似文献   

14.
The current speed at which underyearling salmon parr held feeding stations was examined from late summer to early winter in laboratory flume tanks that offered a choice between (a) areas with high water flow, high food availability but high predation risk and (b) areas with low flow, little food but shelter from predators. In August, those fish that would become smolts aged 1 + (and which by late winter formed the upper modal group, UMG, of the bimodal size distribution) adopted positions in faster currents than did the fish which would take a further year to reach the smolt stage (the lower modal group, LMG). However, the chosen current speed of UMG fish decreased through the period of study, so that by December all fish were found in areas of low flow, and hence little food. Both date and water temperature had independent effects on the chosen current speed of UMG fish.
The effect of predation risk was investigated using a model trout. A brief sight of this predator caused 47% of fish that had been in the main, exposed currents to move to slacker, sheltered areas; they took 1 h, on average, to return to their previous position. The fish that remained in position upon seeing the predator reduced their rate of tail beating, presumably increasing crypticity. Eventual UMG parr were less likely than were LMG fish to move away upon seeing a predator. The fish moved to faster currents than normal 2–3 h after seeing the predator, possibly compensating for the earlier reduction in feeding rate.  相似文献   

15.
Among juvenile Atlantic salmon Salmo salar either being fed ad libitum throughout a 3 month experiment or deprived of food in the middle month, food deprivation led to a decrease in SMR, which increased again once food was supplied ad libitum again. While the rank order of SMR among fish fed throughout remained relatively stable, that within the deprived group was inconsistent, suggesting that individual fish vary in their ability to reduce metabolic costs when food availability is low.  相似文献   

16.
Using juvenile coho salmon, Oncorhynchus kisutch, we tested predictions arising from dynamic optimization models of foraging under predation risk. Coho juveniles from two size groups raised in the laboratory were individually fed varying food rations. Their willingness to risk predation was measured as the time to resume foraging after presentation of a predator model. Small fish (mean weight 1.5 g) resumed feeding earlier than larger fish (3.5 g) as predicted by dynamic models under summer photoperiod but not under autumn photoperiod. Contrary to predictions, larger fish did not increase risk taking and small fish decreased risk taking between summer and autumn treatments. Food ration significantly influenced time to resume feeding only in small coho. A simple mechanistic model we proposed to explain feeding motivation under risk as a function of body size and prior growth rate was not sufficient to explain observed variation in risk taking. This study suggests that coho salmon use photoperiod and their own body size as cues for long-term, state-dependent adjustments of feeding behaviour. The lower risk taking of larger fish is probably an example of asset protection, whereby larger animals accept less predation risk to protect their greater accumulated fitness value. The decrease of risk taking in small fish in the autumn was possibly caused by a switch of life history trajectory towards delayed smolting. Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   

17.
The 0+ cohort of perch can split into a slow-growing planktivorous and a fast-growing piscivorous cohort during their first months of life. Both cohorts are, however, vulnerable to predation by piscivorous fish. Laboratory experiments were performed to test the behavior of 0+ perch as a predator of cyprinids, and in the trade-off between food and shelter from the threat of predators. In the foraging trials, 0+ perch attacked bream faster than they did carp, and vegetation hampered the aggression against bream. In the second experiment, the habitat selection of two size classes of 0+ perch under the threat of predation was monitored. Overall, vegetation structures were preferred by both size classes of 0+ perch. When small fish were offered to the 0+ perch as food, the open water becomes more attractive. The results of the habitat use trials further show that the two size cohorts of 0+ perch may also differ in their behavior, in that the availability of fish as food becomes more important than the shelter of vegetation structures for the larger perch.  相似文献   

18.
There was a pronounced decline in activity of young pool-dwelling Atlantic salmon, Salmo salar, and brown trout, Salmo trutta, as the water temperatures dropped in the autumn and early winter, and the fish switched from a predominantly diurnal towards a nocturnal activity pattern. Such a switch in activity pattern has previously been observed in young brown trout, but the present study is the first documentation for juvenile Atlantic salmon under natural conditions. Juvenile fish fed actively even when water temperatures were below 0°C, although foraging behaviour at near-freezing temperatures was recorded exclusively during night surveys. This indicates that other proximate factors, in addition to water temperature, affect the activity of young salmon and trout in rivers. Trout kept feeding positions significantly higher above bottom than salmon in August and September, but both species reduced the height above bottom at the onset of winter, possibly due to reduced swimming performance and lowered food availability in the upper part of the water column.  相似文献   

19.
Increasingly, ecologists emphasize that prey frequently change behaviour in the presence of predators and these behavioural changes can reduce prey survival and reproduction as much or more than predation itself. However, the effects of behavioural changes on survival and reproduction may vary with prey density due to intraspecific competition. In field experiments, we varied grasshopper density and threat of avian predation and measured grasshopper behaviour, survival and reproduction. Grasshopper behaviour changed with the threat of predation and these behavioural changes were invariant with grasshopper density. Behavioural changes with the threat of predation decreased per capita reproduction over all grasshopper densities; whereas the behavioural changes increased survival at low grasshopper densities and then decreased survival at high densities. At low grasshopper densities, the total reproductive output of the grasshopper population remained unchanged with predation threat, but declined at higher densities. The effects of behavioural changes with predation threat varied with grasshopper density because of a trade-off between survival and reproduction as intraspecific competition increased with density. Therefore, resource availability may need to be considered when assessing how prey behavioural changes with predation threat affect population and food web dynamics.  相似文献   

20.
A. G. Nicieza 《Oecologia》2000,123(4):497-505
Age and size at metamorphosis are two important fitness components in species with complex life cycles. In anurans, metamorphic traits show remarkable phenotypic plasticity, especially in response to changes in growth conditions. It is also possible that the perception of risk directly determines changes in larval period and the size of metamorphs. This study examines how the perception of predation risk affects the timing of and size at metamorphosis in common frogs (Rana temporaria). I raised tadpoles at two risk levels (fish-conditioned water or unconditioned water) crossed with the availability or lack of food at night (all tadpoles had food available in the day). Tadpoles reacted to chemical cues from predatory fish by decreasing activity. A novel behavioural result was a predation×food interaction effect on refuge use, which also accounted for most of the predator main effect: predation risk only caused increased refuge use in the night-starved treatment. Despite these behavioural modifications, the perception of predation risk did not affect growth rate and mass at metamorphosis in a simple way: the effects of food regime on growth and size at metamorphosis were dependent on the level of predation risk as revealed by significant predation×food interaction effects. Tadpoles who had food withheld at night metamorphosed at the smallest size, suggesting a negative relationship between size at metamorphosis and refuge use. Tadpoles raised in fish-conditioned water had longer larval periods than those in unconditioned water, but these differences were significant only if food was available at night. These results conflict with the hypotheses that tadpoles should reduce their larval period or growth rates (and hence metamorphose at a smaller size) as the risk of predation increases. In contrast to predation risk, food availability strongly affected the length of the larval period: night-starved tadpoles metamorphosed relatively early with or without fish stimulus. Thus, early metamorphosis resulted from periods of low food availability, but not from a heightened ”perceived risk” of predation. This example counters the hypothesis of acceleration of the developmental rate (which shortens the time to metamorphosis) as a mechanism to escape a risky environment. Received: 18 August 1999 / Accepted: 10 January 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号