首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Three species of lizards (Agama agama, Mabuya perrotetii, and Sceloporus orcutti) were tested for a possible increase in mean selected body temperature (MSBT) in response to intraperitoneal injection of alcohol-killed Aeromonas sobria, a gram-negative bacterium known to be pathogenic to reptiles. A paired experimental design was utilized in which each animal was given an injection of sterile saline and 1 · 1010 A. sobria. Body temperatures were monitored via indwelling cloacal thermocouples at 4-min intervals for one 12-h light period under saline injection and for two consecutive 12-h light periods under bacteria injection. Agama agama demonstrated a significant increase in MSBT on both day 1 and day 2 of bacteria injection with increases of 2.7 and 2.3°C, respectively. The latency period on day 1 averaged 6.4 h. Sceloporus orcutti demonstrated a significant decrease in MSBT on day 1 of bacteria injection and a significant increase in MSBT of 1.0°C on day 2 of bacteria injection. No fever was evident in S. orcutti until the beginning of day 2. Mabuya perrotetii did not exhibit a significant change in MSBT on either day 1 or day 2 of bacteria injection. Agama agama (family Agamidae) is the first Old World reptile to exhibit a fever response to bacteria injection, and with these results fever has now been demonstrated in the lizard families Agamidae, Iguanidae, and Teiidae.Abbreviations MSBT mean selected body temperature - T b body temperature  相似文献   

2.
Effect of bacterial pyrogen on three lizard species   总被引:1,自引:0,他引:1  
1. Three lizard species (Callopistes maculatus, Gerrhosaurus major, and Varanus exanthematicus) were tested for their response to intraperitoneal injection of alcohol-killed Aeromonas sobria. 2. A paired experimental design, in which each animal received an injection of sterile saline and 1 x 10(10) A. sobria, was utilized. 3. C. maculatus demonstrated a statistically significant increase in mean selected body temperature (MSBT) after bacteria injection. 4. G. major and V. exanthematicus did not demonstrate a statistically significant increase in MSBT. 5. C. maculatus is the first lizard species outside of the family Iguanidae to exhibit a febrile response to bacterial pyrogen.  相似文献   

3.
1. Mean selected body temperatures (MSBTs), measured by radiotelemetry, are presented for 15 chuckwallas on 26 animal days. 2. MSBT, during the period of activity, ranged from 37.3 to 39.8 degrees C (means = 38.8 +/- 0.2 SE degrees C) while MSBTs, from the time lizards attained their first high set point to the time that solar radiation ceased, ranged from 36.1 to 39.6 degrees C (means = 38.3 +/- 0.2 SE degrees C). 3. On cloudy, cool days, animals could not maintain high Tbs because of the absence of solar radiation. 4. On sunny March and April days, animals were active for 5-6 hr but Tb then fell rapidly to low levels. 5. From late April to mid May, animals were active for 7-8 hr and Tbs did not fall as drastically because of higher Tas after sunset. 6. August was the time of year (for this study) when chuckwallas had the highest effective 24 hr Tb but it was also the time when they had the shortest activity interval.  相似文献   

4.
The septal region of the brains of conscious, adult, male New Zealand White rabbits were perfused by means of a push-pull system before and after an intravenous administration of bacterial pyrogen extracted from Salmonella abortus equi. Perfusion of the septal area with sucrose solution (260 mM) had no significant effect on the resulting fever (1.13 +/- 0.09 degrees C) when compared to a control fever without the push-pull perfusion (1.06 +/- 0.12 degrees C). Arginine vasopressin (AVP) added to the perfusing solution (20 micrograms/ml) caused a significant attenuation of the fever (0.81 +/- 0.20 degrees C). An antiserum specific to AVP when added to the perfusing solution resulted in a fever which was significantly greater (2.38 +/- 0.13 degrees C) than the control. Radioimmunoassay of perfusates collected from the control perfusions before and during fever showed that, as the body temperature rose in response to the pyrogen, the level of AVP in the perfusate collected from the septal area decreased. These results provide further evidence that AVP may act in the septal area of the brain to modulate the febrile response.  相似文献   

5.
To study their thermal responses to climatic stress, we implanted seven greater kudu (Tragelaphus strepsiceros) with intra-abdominal, brain, carotid, and subcutaneous temperature data loggers, as well as an activity logger. Each animal was also equipped with a collar holding a miniature black globe thermometer, which we used to assess thermoregulatory behavior. The kudu ranged freely within succulent thicket vegetation of the Eastern Cape Province, South Africa. The kudu spontaneously developed a bacterial pneumonia and consequent fever that lasted between 6 and 10 days. The fever was characterized by a significant increase in mean 24-h abdominal temperature from 38.9 +/- 0.2 degrees C to 40.2 +/- 0.4 degrees C (means +/- SD, t(6) = 11.01, P < 0.0001), although the amplitude of body temperature rhythm remained unchanged (t(6) = 1.18, P = 0.28). Six of the kudu chose warmer microclimates during the fever than when afebrile (P < 0.0001). Despite the selection of a warmer environment, on the first day of fever, the abdominal-subcutaneous temperature difference was significantly higher than on afebrile days (t(5) = 3.06, P = 0.028), indicating vasoconstriction. Some kudu displayed increased frequency of selective brain cooling during the fever, which would have inhibited evaporative heat loss and increased febrile body temperatures, without increasing the metabolic maintenance costs of high body temperatures. Average daily activity during the fever decreased to 60% of afebrile activity (t(6) = 3.46, P = 0.014). We therefore have recorded quantitative evidence for autonomic and behavioral fever, as well as sickness behavior, in the form of decreased activity, in a free-living ungulate species.  相似文献   

6.
Temperature probes were inserted into the stomachs of juvenile American alligators (Alligator mississippiensis) maintained outdoors at ambient fluctuating temperatures. Internal body temperatures (T(b)) were measured every 15 min for two days, and then the alligators were injected with bacterial lipopolysaccharide (LPS), pyrogen-free saline, or left untreated. Alligators injected intraperitoneally with LPS exhibited maximum T(b)s 2.6+/-1.1 degrees C and 3.5+/-1.2 degrees C higher than untreated control animals on days one and two after treatment, respectively. T(b)s for these animals fell to within control ranges by day three postinjection. Similarly, mean preferred body temperatures (MPBTs) were significantly higher for LPS-injected alligators on days one (4.2+/-1.8 degrees C) and two (3.5+/-1.6 degrees C) after treatment. Intraperitoneal injection of heat-killed Aeromonas hydrophila, a gram-negative bacterium known to infect crocodilians, resulted in a fever while injection of Staphylococcus aureus (gram positive) did not elicit a febrile response. Injection of LPS in alligators maintained indoors in a constant temperature environment resulted in no increase in internal T(b). These results indicate that alligators did not exhibit a febrile response in the absence of a thermal gradient, and suggest that febrile responses observed are probably behavioral in nature.  相似文献   

7.
A previous study demonstrated that California ground squirrels (Spermophilus beecheyi) living in the natural environment had, independent of season, a significantly higher mean diurnal body temperature (T(b)) (39.6 degrees C) than either summer (37.5 degrees C) or winter (36.5 degrees C) laboratory maintained animals. Based upon the previous study it has been suggested that California ground squirrels living in the natural environment may have an elevated set-point for body temperature in a manner analogous to a stress fever response. The present study was conducted to determine if season and/or duration of laboratory open-field exposure influenced the magnitude of laboratory open-field stress fever. If stress fever was involved to some extent in the higher body temperature observed in animals from the natural environment, laboratory maintained animals should exhibit a lower magnitude stress fever during the summer months and a higher magnitude stress fever during the winter months. It was hypothesized that laboratory maintained animals would exhibit the same set-point for stress fever T(b) independent of season, and that the duration of open-field exposure would not influence the magnitude of stress fever. Adult California ground squirrels were acclimated to an ambient temperature of 20+/-1.0 degrees C under either LD 14:10 (summer) or LD 10:14 (winter) photoperiod conditions and individuals from both photoperiod conditions were exposed for periods of 2, 4, and 6 h to an open-field arena. An analysis of the data with a two-factor ANOVA demonstrated that season (photoperiod) significantly influenced the magnitude of the stress fever response (1.1+/-0.1 degrees C for summer animals; 2.1+/-0.2 degrees C for winter animals) while there was no significant influence of open-field exposure duration on stress fever magnitude. These results demonstrate that although the set-point for body temperature in unstressed laboratory maintained California ground squirrels varies with season, the set-point for body temperature in open-field stressed animals does not vary with season. These data lend support to the hypothesis that something like stress fever may play some role in the higher body temperature observed in California ground squirrels living in the natural environment.  相似文献   

8.
1. Preferred body temperature of five diurnal, Psammophis philipsii and three nocturnal, Lamprophis fuliginosus, snakes was measured in a thermal gradient chamber by indwelling colonic thermocouples, before and after injection of a variety of pyrogens. 2. The snakes achieved their preferred body temperature by moving up and down in the gradient chamber; it was about 33 degrees C for P. phillipsii and 25 degrees C for L. fuliginosus. 3. The snakes did not develop fever in response to any of the pyrogens, whether gram-negative or gram-positive in origin, either on the day of injection or on the subsequent day. 4. We believe that fever is rare amongst reptiles.  相似文献   

9.
The aim of this study was to investigate the effect of previous warming on high-intensity intermittent running using nonmotorized treadmill ergometry. Ten male soccer players completed a repeated sprint test (10 x 6-second sprints with 34-second recovery) on a nonmotorized treadmill preceded by an active warm-up (10 minutes of running: 70% VO2max; mean core temperature (Tc) 37.8 +/- 0.2 degrees C), a passive warm-up (hot water submersion: 40.1 +/- 0.2 degrees C until Tc reached that of the active warm-up; 10 minutes +/- 23 seconds), or no warm-up (control). All warm-up conditions were followed by a 10-minute static recovery period with no stretching permitted. After the 10-minute rest period, Tc was higher before exercise in the passive trial (38.0 +/- 0.2 degrees C) compared to the active (37.7 +/- 0.4 degrees C) and control trials (37.2 +/- 0.2 degrees C; p < 0.05). There were no differences in pre-exercise oxygen consumption and blood lactate concentration; however, heart rate was greater in the active trial (p < 0.05). The peak mean 1-second maximum speed (MxSP) and group mean MxSP were not different in the active and passive trials (7.28 +/- 0.12 and 7.16 +/- 0.10 m x s(-1), respectively, and 7.07 +/- 0.33 and 7.02 +/- 0.24 m x s(-1), respectively; p > 0.05), although both were greater than the control. The percentage of decrement in performance fatigue was similar between all conditions (active, 3.4 +/- 1.3%; passive, 4.0 +/- 2.0%; and control, 3.7 +/- 2.4%). We conclude that there is no difference in high-intensity intermittent running performance when preceded by an active or passive warm-up when matched for post-warm-up Tc. However, repeated sprinting ability is significantly improved after both active and passive warm-ups compared to no warm-up.  相似文献   

10.
To investigate the freeze tolerance of the European common lizard, Lacerta vivipara, we froze 17 individuals to body temperatures as low as -4 degrees C under controlled laboratory conditions. The data show that this species tolerates the freezing of 50% of total body water and can survive freezing exposures of at least 24-h duration. Currently, this represents the best known development of freeze tolerance among squamate reptiles. Freezing stimulated a significant increase in blood glucose levels (16.15+/- 1.73 micromol x ml(-1) for controls versus 25.06 +/- 2.92 micromol x ml(-1) after thawing) but this increase had no significant effect on serum osmolality which was unchanged between control and freeze-exposed lizards (506.0 +/- 23.8 mosmol x l(-1) versus 501.0 +/- 25.3 mosmol x l(-1), respectively). Tests that assessed the possible presence of antifreeze proteins in lizard blood were negative. Recovery at 5 degrees C after freezing was assessed by measurements of the mean time for the return of breathing (5.9 +/- 0.5 h) and of the righting reflex (44.8 +/- 4.5 h). Because this species hibernates in wet substrates inoculative freezing may frequently occur in nature and the substantial freeze tolerance of this lizard should play a key role in its winter survival.  相似文献   

11.
We investigated the capacity of two reptiles, an agamid lizard Pogona barbata and a chelid turtle Emydura signata, to compensate for the effects of temperature by making changes in their whole blood respiratory properties. This was accomplished by measuring the P50 (at 10, 20 and 30 degrees C), hematocrit (Hct), haemoglobin concentration ([Hb]) and mean cell haemoglobin concentration (MCHC) in field acclimatised and laboratory acclimated individuals. The acute effect of temperature on P50 in P. barbata, expressed as heat of oxygenation (deltaH), ranged from -16.8+/-1.84 to -28.5+/-2.73 kJ/mole. P50 of field acclimatised P. barbata increased significantly from early spring to summer at the test temperatures of 20 degrees C (43.1+/-1.2 to 48.8+/-2.1 mmHg) and 30 degrees C (54.7+/-1.2 to 65.2+/-2.3 mmHg), but showed no acclimation under laboratory conditions. For E. signata, deltaH ranged from -31.1+/-6.32 to -48.2+/-3.59 kJ/mole. Field acclimatisation and laboratory acclimation of P50 did not occur. However, in E. signata, there was a significant increase in [Hb] and MCHC from early spring to summer in turtles collected from the wild (1.0+/-0.1 to 1.7+/-0.2 mmol/L and 4.0+/-0.3 to 6.7+/-0.7 mmol/L, respectively).  相似文献   

12.
We examined the effect of hypertonic saline injection on heat-escape/cold-seeking behavior in desalivated rats. Rats were exposed to 40 degrees C heat after normal (154 mM NaCl, control) or hypertonic saline (2,500 mM NaCl) injection (1 ml/100 g body wt). The rats received a 0 degrees C air for 30 s when they entered a specific area in an experimental box. Core temperature (T(c)) surpassed 40 degrees C in both conditions when 0 degrees C air was not available. Hypertonic saline injection produced a lower baseline T(c) than control [36.9 +/- 0.2 and 37.9 +/- 0.2 degrees C (means +/- SE), P < 0.05] and a greater number of 0 degrees C air rewards during the 2-h heat with lower T(c) at the end (48 +/- 1 and 34 +/- 2, 37.6 +/- 0.1, and 37.3 +/- 0.1 degrees C in the control and hypertonic saline injection trial, respectively, P < 0.05, n = 6). However, T(c) was similar (37.7 +/- 0.2 and 37.6 +/- 0.4 degrees C in the control and hypertonic saline injection trial, n = 5) when 0 degrees C air was automatically and intermittently (35 times) given during the heat. Rats augment heat-defense mechanisms in response to osmotic stress by lowering the baseline T(c) and increasing heat-escape/cold-seeking behavior.  相似文献   

13.
Three turtles, Clemmys insculpta, were kept together in a terrarium in a climatic chamber at 18 degrees C, with lights on at 07:00 h and off at 19:00 h. In one corner of the terrarium an infrared lamp produced an operative temperature of 42.5 degrees C, thereby allowing behavioral temperature regulation during the light period. When the turtles were handled only once a day for the purpose of taking cloacal temperature, their body temperature held stable at about 22-23 degrees C. Immediately after being handled the turtles sought the radiant heat and regulated their body temperature at about 4 degrees C higher than before the handling. When repeatedly handled every 15 min for 2 h the turtles maintained a high body temperature by their behavior. When not repeatedly handled the turtles returned to their initial preferred body temperature ca 22-23 degrees C within 2 h. It is hypothesized that handling causes in turtles a fever similar to that observed in stressed mammals. The turtles were equipped with an electrocardiogram radio transmitter and their heart rate was recorded at a distance. Heart rate in undisturbed turtles was 28.3+/-0.6 bt/min. During a 1-min handling, their heart rate rose to 40.2+/-0.8 bt/min. This tachycardia persisted several minutes, then their heart rate returned to the baseline value in ca. 10 min. Stress fever and tachycardia are taken as signs of emotion in turtles.  相似文献   

14.
Systemic salt loading has been reported to facilitate operant heat-escape/cold-seeking behavior. In the present study, we hypothesized that the median preoptic nucleus (MnPO) would be involved in this mechanism. Rats were divided into two groups (n = 6 each): one group had the MnPO lesion with ibotenic acid (4.0 mug) and the other was the vehicle control. After subcutaneous injection (10 ml/kg) of either isotonic- (154 mM) or hypertonic-saline (2,500 mM), each rat was placed in a behavior box, where the ambient temperature was changed to 26 degrees C, 35 degrees C, and 40 degrees C every 1 h. The position of a rat in the box and the body core temperature (T(core)) were monitored. A rat could trigger 0 degrees C air for 45 s in the 35 degrees C and 40 degrees C heat when moved in a specific area in the box (operant behavior). In the control group, counts of the operant behavior were greater (P < 0.05) in the hypertonic- than in the isotonic-saline injection (17 +/- 2 and 10 +/- 2 at 35 degrees C, 24 +/- 2 and 18 +/- 1 at 40 degrees C). T(core) remained unchanged throughout the exposure, although the level was lower (P < 0.05) in the hypertonic- than in the isotonic-saline trial (36.6 +/- 0.2 degrees C and 37.4 +/- 0.1 degrees C at 26 degrees C and 36.9 +/- 0.2 degrees C and 37.4 +/- 0.1 degrees C at 40 degrees C, respectively). However, in the MnPO-lesion group, counts of the behavior were similar between the hypertonic- and isotonic-saline injection trials (10 +/- 2 and 8 +/- 1 at 35 degrees C, and 17 +/- 1 and 16 +/- 1 at 40 degrees C, respectively). T(core) increased (P < 0.05) in the heat in both trials (36.8 +/- 0.1 degrees C and 37.4 +/- 0.1 degrees C at 26 degrees C and 37.4 +/- 0.2 degrees C and 37.8 +/- 0.2 degrees C at 40 degrees C in the hypertonic- and isotonic-saline injection trials, respectively). These results may suggest that, at least in part, the MnPO is involved in the facilitation of heat-escape/cold-seeking behavior during osmotic stimulation.  相似文献   

15.
We examined body core and skin temperatures and thermal comfort in young Japanese women suffering from unusual coldness (C, n = 6). They were selected by interview asking whether they often felt severe coldness even in an air-conditioned environment (20-26 degrees C) and compared with women not suffering from coldness (N, n = 6). Experiments were conducted twice for each subject: 120-min exposure at 23.5 degrees C or 29.5 degrees C after a 40-min baseline at 29.5 degrees C. Mean skin temperature decreased (P < 0.05) from 33.6 +/- 0.1 degrees C (mean +/- SE) to 31.1 +/- 0.1 degrees C and from 33.5 +/- 0.1 degrees C to 31.1 +/- 0.1 degrees C in C and N during the 23.5 degrees C exposure. Fingertip temperature in C decreased more than in N (P < 0.05; from 35.2 +/- 0.1 degrees C to 23.6 +/- 0.2 degrees C and from 35.5 +/- 0.1 degrees C to 25.6 +/- 0.6 degrees C). Those temperatures during the 29.5 degrees C exposure remained at the baseline levels. Rectal temperature during the 23.5 degrees C exposure was maintained at the baseline level in both groups (from 36.9 +/- 0.2 degrees C to 36.8 +/- 0.1 degrees C and 37.1 +/- 0.1 degrees C to 37.0 +/- 0.1 degrees C in C and N). The rating scores of cold discomfort for both the body and extremities were greater (P < 0.05) in C than in N. Thus the augmented thermal sensitivity of the body to cold and activated vasoconstriction of the extremities during cold exposure could be the mechanism for the severe coldness felt in C.  相似文献   

16.
Mathematical models and recordings of cloacal temperature suggest that leatherback turtles (Dermochelys coriacea) maintain core body temperature higher than ambient water temperature (T(W)) while freely swimming at sea. We investigated the thermoregulatory capabilities of free-ranging leatherbacks and, specifically, the effect that changes in diving patterns and ambient temperatures have on leatherback body temperatures (T(B)). Data loggers were used to record subcarapace and gastrointestinal tract temperatures (T(SC) and T(GT), respectively), T(W), swim speed, dive depth, and dive times of female leatherback turtles during internesting intervals off the coast of Guanacaste, Costa Rica. Mean T(SC) (28.7 degrees -29.0 degrees C) was significantly higher than mean T(W) (25.0 degrees -27.5 degrees C). There was a significant positive relationship between T(SC) and T(W) and a significant negative correlation between T(SC) and dive depth and T(GT) and dive depth. Rapid fluctuations in T(GT) occurred during the first several days of the internesting interval, which suggests that turtles were ingesting prey or water during this time. Turtles spent 79%-91% of the time at sea swimming at speeds greater than 0.2 m s(-1), and the average swim speed was 0.7 +/- 0.2 m s(-1). Results from this study show that alterations in diving behavior and T(W) affect T(B) of leatherback turtles in the tropics. Body temperatures of free-ranging leatherback turtles correspond well with values for T(B) predicted by mathematical models for tropical conditions.  相似文献   

17.
Over the last three decades, experiments in several mammalian species have shown that the febrile response to bacterial endotoxin is attenuated late in pregnancy. More recent evidence has established that the expression of nitric oxide synthase (NOS) enzymes is increased in the brain late in pregnancy. The current study investigated the possible role of brain nitric oxide in mediating the phenomenon of fever suppression. Core body temperature (Tb) of near-term pregnant rats (day 19 and 20) was measured following inhibition of brain NOS and intraperitoneal injection of LPS (50 microg/kg); they were compared with both day 15 pregnant and virgin animals. Intracerebroventricular injection with an inhibitor of NOS, NG-monomethyl-L-arginine citrate (L-NMMA; 280 microg), in near-term pregnant rats restored the febrile response to LPS. As expected, near-term dams that received intracerebroventricular vehicle + IP LPS did not increase Tb, in contrast to the 1.0 +/- 0.2 degrees C rise in Tb in dams treated with ICV L-NMMA + IP LPS (P < 0.01). In virgin females and day 15 pregnant controls receiving this treatment, the increases in Tb were 1.5 +/- 0.3 degrees C and 1.6 +/- 0.4 degrees C, respectively. Thus, blockade of brain NOS restored the febrile response to LPS in near-term dams; at 5 h postinjection, Tb was 60-70% of that observed in virgins and day 15 pregnant animals. Intracerebroventricular L-NMMA alone did not induce a significant change in Tb in any group. These results suggest that the mechanism underlying the suppression of the febrile response in near-term pregnancy is mediated by nitric oxide signaling in the brain.  相似文献   

18.
Despite much focus on species responses to environmental variation through space and time, many higher taxa and geographic areas remain poorly studied. We report the effects of temperature acclimation on thermal tolerance, desiccation rate and metabolic rate for adult Chirodica chalcoptera (Coleoptera: Chrysomelidae) collected from Protea nerifolia inflorescences in the Fynbos Biome in South Africa. After 7 days of acclimation at 12, 19 and 25 degrees C, critical thermal maxima (mean+/-s.e.: 41.8+/-0.2 degrees C in field-fresh beetles) showed less response (<1 degrees C change) to temperature acclimation than did the onset of the critical thermal minima (0.1+/-0.2, 1.0+/-0.2 and 2.3+/-0.2 degrees C, respectively). Freezing was lethal in C. chalcoptera (field-fresh SCP -14.6 degrees C) and these beetles also showed pre-freeze mortality. Survival of 2 h at -10.1 degrees C increased from 20% to 76% after a 2 h pre-exposure to -2 degrees C, indicating rapid cold hardening. Metabolic rate, measured at 25 degrees C and adjusted by ANCOVA for mass variation, did not differ between males and females (2.772+/-0.471 and 2.517+/-0.560 ml CO2 h(-1), respectively), but was higher in 25 degrees C-acclimated beetles relative to the field-fresh and 12 degrees C-acclimated beetles. Body water content and desiccation rate did not differ between males and females and did not respond significantly to acclimation. We place these data in the context of measured inflorescence and ambient temperatures, and predict that climate change for the region could have effects on this species, in turn possibly affecting local ecosystem functioning.  相似文献   

19.
This study was designed to determine the extent to which changes in the evaporative power of the environment (Emax) affect sweating and evaporative rates. Six male subjects undertook four 60-min bouts of cycle ergometer exercise at 56% maximal O2 uptake (VO2max).Emax was varied by differences in ambient temperature and airflow; two exercise bouts took place at 24 degrees C and two at 35 degrees C, with air velocity at < 0.2 and 3.0 m/s in both. Total sweat production was estimated from body weight loss, whereas whole body evaporative rate was measured continuously from a Potter beam balance. Body core temperature was measured continuously from a thermocouple in the esophagus (T(es)), with mean skin temperature (Tsk) computed each minute from thermocouples at eight sites. Total body sweat loss was significantly greater (P < 0.05) in the 0.2- than in the 3.0-m/s condition at both 24 and 35 degrees C. Tsk was higher (P < 0.05) in the still-air conditions at both temperatures, but final T(es) was significantly higher (P < 0.05) in still air only in the 35 degrees C environment. Thus the reduced Emax in still air caused a greater heat storage, thereby stimulating a greater total sweat loss. However, in part because of reduced skin wettedness, the slope of the sweat rate-to-T(es) relation at 35 degrees C in the 3.0-m/s condition was 118% that at 0.2 m/s (P < 0.005).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Rice hulls, a complex lignocellulosic material with high lignin (15.38 +/- 0.2%) and ash (18.71 +/- 0.01%) content, contain 35.62 +/- 0.12% cellulose and 11.96 +/- 0.73% hemicellulose and has the potential to serve as a low-cost feedstock for production of ethanol. Dilute H2SO4 pretreatments at varied temperature (120-190 degrees C) and enzymatic saccharification (45 degrees C, pH 5.0) were evaluated for conversion of rice hull cellulose and hemicellulose to monomeric sugars. The maximum yield of monomeric sugars from rice hulls (15%, w/v) by dilute H2SO4 (1.0%, v/v) pretreatment and enzymatic saccharification (45 degrees C, pH 5.0, 72 h) using cellulase, beta-glucosidase, xylanase, esterase, and Tween 20 was 287 +/- 3 mg/g (60% yield based on total carbohydrate content). Under this condition, no furfural and hydroxymethyl furfural were produced. The yield of ethanol per L by the mixed sugar utilizing recombinant Escherichia colistrain FBR 5 from rice hull hydrolyzate containing 43.6 +/- 3.0 g fermentable sugars (glucose, 18.2 +/- 1.4 g; xylose, 21.4 +/- 1.1 g; arabinose, 2.4 +/- 0.3 g; galactose, 1.6 +/- 0.2 g) was 18.7 +/- 0.6 g (0.43 +/- 0.02 g/g sugars obtained; 0.13 +/- 0.01 g/g rice hulls) at pH 6.5 and 35 degrees C. Detoxification of the acid- and enzyme-treated rice hull hydrolyzate by overliming (pH 10.5, 90 degrees C, 30 min) reduced the time required for maximum ethanol production (17 +/- 0.2 g from 42.0 +/- 0.7 g sugars per L) by the E. coli strain from 64 to 39 h in the case of separate hydrolysis and fermentation and increased the maximum ethanol yield (per L) from 7.1 +/- 2.3 g in 140 h to 9.1 +/- 0.7 g in 112 h in the case of simultaneous saccharification and fermentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号