首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Chlorophyll fluorescence measurements were used to evaluate the effect of temperature on photoinhibition inSpirulina platensis cultures grown in tubular reactors outdoors. Cultures grown at 35 °C during the day time showed a lower reduction in the Fv/Fm ratio as compared to cultures grown at 25 °C. It is demonstrated that the lower temperature photoinhibited cells can undergo a complete recovery once transferred to low light and higher temperature. This recovery does not take place when 100 µg ml-1 chloramphenicol is added to cells. The recovery is light dependent and cells incubated in the dark at low temperature do not show a recovery in the Fv/Fm ratio. The data presented strongly support the hypothesis that photoinhibition takes place in outdoorSpirulina cultures. At the same time it is demonstrated that fluorescence measurements can be used as a fast reliable indication for photoinhibition in outdoor algal cultures.Author for correspondencePublication No. 69 of the Microalgal Biotechnology Laboratory.  相似文献   

2.
Outdoor experiments carried out in Florence, Italy (latitude 43.8° N, longitude 11.3° E), using tubular photobioreactors have shown that in summer the average net productivity of a Spirulina platensis culture grown at the optimal temperature of 35 °C was superior by 23% to that observed in a culture grown at 25 °C. The rates of night biomass loss were higher in the culture grown at 25 °C (average 7.6% of total dry weight) than in the one grown at 35 °C (average 5%). Night biomass loss depended on the temperature and light irradiance at which the cultures were grown, since these factors influenced the biomass composition. A net increase in carbohydrate synthesis occurred when the culture was grown at a low biomass concentration under high light irradiance or at the suboptimal temperature of 25 °C. Excess carbohydrate synthesized during the day was only partially utilized for night protein synthesis.  相似文献   

3.
Photoinhibition of photosynthesis and its recovery in the cyanobacteriumSpirulina platensis was studied to find how photosynthetic rates were influenced by light and temperature. By exposing cell samples from a turbidostat culture to combinations of light and temperature, a connection between light, temperature and photoinhibition was found. The experiments showed that a 10 degree increase from 20 °C to 30 °C considerably reduced the photoinhibition. At 25 °C a photon flux density of 1720 µmol m–2 s–1 reduced the photosynthetic rate by 50 % in 1 h, but a similarly high photon flux density had nearly no negative effect at 35 °C. Reactivation in low light from 50% photoinhibition was fast and complete in 60 min at 30 °C, while at 20 °C only about 1/6 of the full capacity was regained in the same time. Addition of the protein synthesis inhibitor streptomycin to cultures undergoing photoinhibition and regeneration indicated the presence also in this organism of a repair mechanism based on protein synthesis.Author for correspondence  相似文献   

4.
环境强光诱导玉簪叶片光抑制的机制   总被引:2,自引:0,他引:2       下载免费PDF全文
为进一步阐述光抑制的强光诱导和发生机制, 该文以喜阴植物玉簪(Hosta spp.)为材料研究其光抑制发生规律及其与环境光强的关系。结果表明, 全日照和遮阴条件下玉簪叶片发育分别形成适应强光和弱光的形态特征; 与遮阴处理相比, 强光下生长的玉簪光合速率和叶绿素含量较低, 但两种处理叶片最大光化学效率差异很小, 证明强光下植株可以正常生长且光合机构未发生严重的光抑制。将遮阴处生长的植株转移到全日照下, 光合速率和最大光化学效率急剧下降; 荧光诱导动力学曲线发生明显改变, 而且光系统II供体侧和受体侧荧光产量的变化幅度分别达到24.3%和34.2%, 表明玉簪由弱光转入强光后光系统II发生不可逆失活, 且受体侧受到的伤害较供体侧更严重。因此, 作者认为环境光强骤然提高并超过玉簪生长光强时很容易诱导其光合机构发生严重的光抑制。该研究对于理解植物适应光环境的策略以及喜阴植物的优质栽培有重要意义。  相似文献   

5.
This work describes the long-term acclimation of the halotolerant microalga Dunaliella viridis to different photon irradiance, ranging from darkness to 1500 μmol m−2 s−1. In order to assess the effects of long-term photoinhibition, changes in oxygen production rate, pigment composition, xanthophyll cycle and in vivo chlorophyll fluorescence using the saturating pulse method were measured. Growth rate was maximal at intermediate irradiance (250 and 700 μmol m−2 s−1). The increase in growth irradiance from 700 to 1500 μmol m−2 s−1 did not lead to further significant changes in pigment composition or EPS, indicating saturation in the pigment response to high light. Changes in Photosystem II optimum quantum yield (Fv/Fm) evidenced photoinhibition at 700 and especially at 1500 μmol m−2 s−1. The relation between photosynthetic electron flow rate and photosyntetic O2 evolution was linear for cultures in darkness shifting to curvilinear as growth irradiance increased, suggesting the interference of the energy dissipation processes in oxygen evolution. Carbon assimilation efficiencies were studied in relation to changes in growth rate, internal carbon and nitrogen composition, and organic carbon released to the external medium. All illuminated cultures showed a high capability to maintain a C:N ratio between 6 and 7. The percentage of organic carbon released to the external medium increased to its maximum under high irradiance (1500 μmol m−2 s−1). These results suggest that the release of organic carbon could act as a secondary dissipation process when the xanthophyll cycle is saturated. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
The relaxation of the non-photochemical quenching of chlorophyll fluorescence has been investigated in cells of the green alga Dunaliella following illumination. The relaxation after the addition of DCMU or darkening was strongly biphasic. The uncoupler NH4Cl induced rapid relaxation of both phases, which were therefore both energy-dependent quenching, qE. The proportion of the slow phase of qE increased at increasing light intensity. In the presence of the inhibitors rotenone and antimycin the slow phase of qE was stabilised for in excess of 15 min. NaN3 inhibited the relaxation of almost all the qE. The implications of these results are discussed in terms of the interpretation of the non-photochemical quenching of chlorophyll fluorescence in vivo and the mechanism of qE.Abbreviations PS II Photosystem II - qQ photochemical quenching of chlorophyll fluorescence - qNP non-photochemical quenching of chlorophyll fluorescence - qE energy-dependent quenching of chlorophyll fluorescence - F m maximum level of chlorophyll fluorescence for dark adapted cells - F m level of fluorescence at any time when qQ is zero  相似文献   

7.
The effects of a 60 min exposure to photosynthetic photon flux densities ranging from 300 to 2200 mol m–2s–1 on the photosynthetic light response curve and on PS II heterogeneity as reflected in chlorophyll a fluorescence were investigated using the unicellular green alga Chlamydomonas reinhardtii. It was established that exposure to high light acts at three different regulatory or inhibitory levels; 1) regulation occurs from 300 to 780 mol m–2s–1 where total amount of PS II centers and the shape of the light response curve is not significantly changed, 2) a first photoinhibitory range above 780 up to 1600 mol m–2s–1 where a progressive inhibition of the quantum yield and the rate of bending (convexity) of the light response curve can be related to the loss of QB-reducing centers and 3) a second photoinhibitory range above 1600 mol m–2s–1 where the rate of light saturated photosynthesis also decreases and convexity reaches zero. This was related to a particularly large decrease in PS II centers and a large increase in spill-over in energy to PS I.Abbreviations Chl chlorophyll - DCMU 3,(3,4-dichlorophenyl)-1,1-dimethylurea - FM maximal fluorescence yield - Fpl intermediate fluorescence yield plateau level - F0 non-variable fluorescence yield - Fv total variable fluorescence yield (FM-F0) - initial slope to the light response curve, used as an estimate of initial quantum yield - convexity (rate of bending) of the light response curve of photosynthesis - LHC light-harvesting complex - Pmax maximum rate of photosynthesis - PQ plastoquinone - Q photosynthetically active photon flux density (400–700 nm, mol m–2s–1) - PS photosystem - QA and QB primary and secondary quinone electron acceptor of PS II  相似文献   

8.
高温胁迫对新疆榛光合参数和叶绿素荧光特性的影响   总被引:2,自引:0,他引:2  
在5个温度梯度处理下,研究高温胁迫对4种新疆榛光合参数和叶绿素荧光特性的影响.结果表明:随着温度从25℃持续升高至45℃,新疆榛叶片的净光合速率、气孔导度、胞间CO2浓度、水分利用效率和光能利用效率逐渐降低,且在35~ 45℃之间降幅最大;光系统Ⅱ的实际光化学效率、电子传递速率和光化学猝灭系数随温度的升高缓慢上升,至35℃后急速下降;蒸腾耗水和热耗散随温度的升高而增大.4种新疆榛品种中,新榛3号的光合作用对高温的耐受力较高,属耐热性品种.  相似文献   

9.
The kinetics of non-photochemical quenching (NPQ) of chlorophyll fluorescence was studied in pea leaves at different temperatures between 5 and 25°C and during rapid jumps of the leaf temperature. At 5°C, NPQ relaxed very slowly in the dark and was sustained for up to 30 min. This was independent of the temperature at which quenching was induced. Upon raising the temperature to 25°C, the quenched state relaxed within 1 min, characteristic for qE, the energy-dependent component of NPQ. Measurements of the membrane permeability (ΔA515) in dark-adapted and preilluminated leaves and NPQ in the presence of dithiothreitol strongly suggest that the effect of low temperature on NPQ was not because of limitation by the lumenal pH or the de-epoxidation state of the xanthophylls. These data are consistent with the notion that the transition from the quenched to the unquenched state and vice versa involves a structural reorganization in the photosynthetic apparatus. An eight-state reaction scheme for NPQ is proposed, extending the model of Horton and co-workers (FEBS Lett 579:4201–4206, 2005), and a hypothesis is put forward concerning the nature of conformational changes associated with qE. Electronic supplementary material The online version of this article (doi: ) contains supplementary material, which is available to authorized users.  相似文献   

10.
The effects of low temperature acclimation and photoinhibitory treatment on Photosystem 2 (PS 2) have been studied by thermoluminescence and chlorophyll fluorescence decay kinetics after a single turnover saturating flash. A comparison of unhardened and hardened leaves showed that, in the hardened case, a decrease in overall and B-band thermoluminescence emissions occurred, indicating the presence of fewer active PS 2 reaction centers. A modification in the form of the B-band emission was also observed and is attributed to a decrease in the apparent activation energy of recombination in the hardened leaves. The acclimated leaves also produced slower QA reoxidation kinetics as judged from the chlorophyll fluorescence decay kinetics. This change was mainly seen in an increased lifetime of the slow reoxidation component with only a small increase in its amplitude. Similar changes in both thermoluminescence and fluorescence decay kinetics were observed when unhardened leaves were given a high light photoinhibitory treatment at 4°C, whereas the hardened leaves were affected to a much lesser extent by a similar treatment. These results suggest that the acclimated plants undergo photoinhibition at 4°C even at low light intensities and that a subsequent high light treatment produces only a small additive photoinhibitory effect. Furthermore, it can be seen that photoinhibition eventually gives rise to PS 2 reaction centers which are no longer functional and which do not produce thermoluminescence or variable chlorophyll fluorescence.Abbreviations D1 The 32 kDa protein of Photosystem 2 reaction center - Fm maximum chlorophyll fluorescence yield - F0 minimal chlorophyll fluorescence yield obtained when all PS 2 centers are open - Fi intermediate fluorescence level corresponding to PS 2 centers which are loosely or not connected to plastoquinone (non-B centers) - Fv maximum variable chlorophyll fluorescence yield (Fv=Fm–F0) - PS 2 Photosystem 2 - QA and QB respectively, primary and secondary quinonic acceptors of PS 2 - S1, S2 and S3 respectively, the one, two and three positively charged states of the oxygen evolving system - Z secondary donor of PS 2  相似文献   

11.
D. H. Greer  W. A. Laing 《Planta》1989,180(1):32-39
Intact leaves of kiwifruit (Actinidia deliciosa (A. Chev.) C.F. Liang et A.R. Ferguson) from plants grown in a range of controlled temperatures from 15/10 to 30/25°C were exposed to a photon flux density (PFD) of 1500 μmol·m−2·s−1 at leaf temperatures between 10 and 25°C. Photoinhibition and recovery were followed at the same temperatures and at a PFD of 20 μmol·m−2·s−1, by measuring chlorophyll fluorescence at 77 K and 692 nm, by measuring the photon yield of photosynthetic O2 evolution and light-saturated net photosynthetic CO2 uptake. The growth of plants at low temperatures resulted in chronic photoinhibition as evident from reduced fluorescence and photon yields. However, low-temperature-grown plants apparently had a higher capacity to dissipate excess excitation energy than leaves from plants grown at high temperatures. Induced photoinhibition, from exposure to a PFD above that during growth, was less severe in low-temperature-grown plants, particularly at high exposure temperatures. Net changes in the instantaneous fluorescence,F 0, indicated that little or no photoinhibition occurred when low-temperature-grown plants were exposed to high-light at high temperatures. In contrast, high-temperature-grown plants were highly susceptible to photoinhibitory damage at all exposure temperatures. These data indicate acclimation in photosynthesis and changes in the capacity to dissipate excess excitation energy occurred in kiwifruit leaves with changes in growth temperature. Both processes contributed to changes in susceptibility to photoinhibition at the different growth temperatures. However, growth temperature also affected the capacity for recovery, with leaves from plants grown at low temperatures having moderate rates of recovery at low temperatures compared with leaves from plants grown at high temperatures which had negligible recovery. This also contributed to the reduced susceptibility to photoinhibition in low-temperature-grown plants. However, extreme photoinhibition resulted in severe reductions in the efficiency and capacity for photosynthesis.  相似文献   

12.
脱落酸对低温下雷公藤幼苗光合作用及叶绿素荧光的影响   总被引:3,自引:1,他引:3  
以1年生雷公藤扦插苗为试材,研究低温胁迫下不同浓度外源脱落酸(ABA,0、5、10、15、20、25 mg·L-1)叶面喷施处理对雷公藤叶片光合作用及叶绿素荧光参数的影响.结果表明:喷施20 mg·L-1的ABA能显著提高雷公藤幼苗的抗冷性,减缓低温下雷公藤叶片净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(gs)、胞间CO2浓度(Ci)的下降幅度,提高幼苗叶片的光合能力.低温处理6 d后,随着ABA浓度上升,雷公藤叶片的初始荧光(Fo)下降,最大荧光(Fm)和PSII最大光化学效率(Fv/Fm)上升,PSII实际光化学量子产量(ΦPS)、光化学猝灭系数(qP)先下降后上升,而非光化学猝灭系数(qN)呈下降-上升-下降趋势.Pn、gs、qP、Fm和Fv/Fm均在20 mg·L-1ABA处理时达到峰值.不同浓度ABA的相对电子传递速率(rETR)随着光化光强度增加呈先上升后下降的趋势,当光化光强度(PAR)达到395 μmol·m-2s-1时,各处理的rETR达到最高值,其中25 mg·L-1和20 mg·L-1ABA处理分别比对照高17.1%和5.2%.雷公藤叶片ΦPSⅡ的光响应曲线均随光化光强度升高而下降,qN的光响应曲线则呈相反趋势.  相似文献   

13.
The effects of drought on photochemical efficiency of PSII in leaves of 22 hybrids of Festuca pratensis × Lolium multiflorum and Festuca pratensis × Lolium perenne and of Festuca pratensis cv. Skra were investigated. A significant decrease of electron transport efficiency (about 25%) in PSII (ΦPSII) was not found before 9 days of seedling growth in hydroponics with water potential (Ψw) equal to −0.8 MPa (simulated “soil drought”). The decrease of ΦPSII was similarly related to that of excitation energy capture by open PSII reaction centre (Fv’/Fm’) and also to the decrease of the proportion of oxidized to reduced QA (photochemical fluorescence quenching, qp). According to the drought prolongation, variation of all parameters of fluorescence between genotypes significantly increased. The seedlings of some genotypes were able to recover electron transport efficiency in PSII after increasing water potential in nutrient solution (removing the “soil drought”). When plants grew in containers with soil and 4 genotypes with the highest sensitivity of electron transport to drought (S) as well as 4 genotypes with the highest tolerance (T) were compared 17 days after watering ceased, Ψw in leaves considerably decreased, but the differences between S and T genotypes were often not significant in this respect. The differences between S and T genotypes, as values of Fv/Fm were concerned, also appeared small (about 5%), similarly as that of Fv’/Fm’ (5%), qp (12%) and ΦPSII (about 15%). Drought stress increased non-photochemical quenching of chlorophyll fluorescence (NPQ) 15 to 47% and this could protect the PSII reaction centres from damages because of energy excess. The increase of NPQ was not closely connected with drought resistance of plants because it was similar in some genotypes tolerant to dehydration as well as in sensitive ones. The results of the experiments suggest that resources of genetic variability in Festulolium may be sufficient for revealing differences between genotypes on the basis of measurement of chlorophyll a fluorescence, as far as their tolerance to soil drought is concerned. As the tolerance of PSII against drought is high, the determinations of fluorescence should be performed rather under severe stress. Such methods seem to be useful for selection of genotypes with high drought tolerance as well as with the ability to at least partial repairing of PSII after drought.  相似文献   

14.
Particularly high population densities are readily sustainable in newly designed glass column reactors. The optimal density ofIsochrysis galbana in these columns in summer was 4.6 g L–1 dry algal mass at which value the highest sustainable productivity obtained was a record of 1.6 g L–1 d–1. The population density exerted a direct effect on productivity: The higher the light intensity, the more pronounced was the dependence of the output rate on the population density, variations of 10%± from the optimal density resulting in a significant decline in productivity. The population density had also a very significant effect on the course of photoadaptation which took place during the first days after transferring the cultures from the laboratory to the outdoors. The output rate was lower by 5 to 35% on the first day of such transfer as compared to the light-adapted control. The higher the cell density, the faster was the process of photoadaptation as indicated by the rise of the productivity and O2 tension to the control level. The potential for excess light damages was most prominent in the column reactors used, in which the light path was much reduced compared with that in open raceways. Significant photoinhibition took place at below optimal population density (2.8–3.8 g L–1), and when cell density was further reduced (1.9 to 1.1 g L–1), exposure to full sunlight caused photooxidative death within a few hours. The pattern of O2 concentration in the culture that emerged along the day served as a useful indicator of photolimitation.Author for correspondence  相似文献   

15.
An instrument capable of imaging chlorophyll a fluorescence, from intact leaves, and generating images of widely used fluorescence parameters is described. This instrument, which is based around a fluorescence microscope and a Peltier-cooled charge-coupled device (CCD) camera, differs from those described previously in two important ways. First, the instrument has a large dynamic range and is capable of generating images of chlorophyll a fluorescence at levels of incident irradiance as low as 0.1 μmol m?2 s?1. Secondly, chlorophyll fluorescence, and consequently photosynthetic performance, can be resolved down to the level of individual cells and chloroplasts. Control of the instrument, as well as image capture, manipulation, analysis and presentation, are executed through an integrated computer application, developed specifically for the task. Possible applications for this instrument include detection of early and differential responses to environmental stimuli, including various types of stress. Images illustrating the instrument's capabilities are presented.  相似文献   

16.
研究分布于新疆的雪莲(Saussurea involucrata)中的sikRbcs2基因在低温条件下对植物光合作用的影响,以16、10、6、4℃温度梯度处理非转基因型和转sikRbcs2基因型烟草,每个温度处理72 h,比较研究其叶绿素荧光特性和光合特性。实验分析结果:低温胁迫下,转基因型烟草叶片叶绿素a(Chla)、叶绿素b(Chlb)、叶绿素a+b(Chla+Chlb)、类胡萝卜素(Car)含量都显著高于非转基因型烟草。叶绿素荧光参数分析:低温胁迫下,转基因烟草PSⅡ最大光化学效率(Fv/Fm)、q P(光化学猝灭系数)、ETR(电子传递效率)都显著或极显著高于非转基因型,光合参数测定:随着低温胁迫程度的加剧,转基因烟草和非转基因型烟草净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)、胞间CO_2浓度(Ci)总体都呈下降趋势,但转基因烟草的净光合速率有一个明显的动态变化,先急剧下降后有一个稳定上升的趋势。通过对生长指标的测定发现:在低温处理后和恢复后转基因烟草生物量的积累都显著高于非转基因型烟草。研究结果表明:转新疆雪莲sikRbcs2基因的烟草在低温条件下具有较高的Fv/Fm、q P、ETR,对光合机构的损伤小,降低了低温胁迫效应,提高了烟草在低温胁迫条件下的耐受性。  相似文献   

17.
Chlorophyll fluorescence emission at 680 nm (F680) and the rate of CO2 fixation were measured simultaneously in sections along the length of wheat and maize leaves. These leaves possess a basal meristem and show a gradation in development towards the leaf tip. The redox state of the primary electron acceptor, Q, of photosystem II was estimated using a non-invasive method. Distal mature leaf sections displayed typical F680 induction curves which were generally anti-parallel with CO2 fixation and during which Q became gradually oxidised. In leaf-base sections net assimilation of CO2 was not detectable, F680 quenched slowly and monotonously without displaying any of the oscillations typical of mature tissue and Q remained relatively reduced. Sections cut from mid-regions of the leaf showed intermediate characteristics. There were no major differences between the wheat and maize leaf in the parameters measured. The results support the hypothesis that generation of the transthylakoid proton gradient and associated ATP production is not a major limitation to photosynthesis during leaf development in either C3 or C4 plants. Removal of CO2 from the mature leaf sections caused little change in steady-state F680 and produced about 50% reduction of Q. When O2 was then removed, F680 rose sharply and Q became almost totally reduced. In immature tissue unable to assimilate CO2, removal of O2 alone caused a similar large rise in F680 and reduction of Q whilst removal of CO2 had negligible effects on F680 and the redox state of Q. It is concluded that in leaf tissue unable to assimilate CO2, either because CO2 is absent or the tissue is immature, O2 acts as an electron acceptor and maintains Q in a partially oxidised state. The important implication that O2 may have a role in the prevention of photoinhibition of the photochemical apparatus in the developing leaf is discussed.Abbreviations F680 chlorophyll fluorescence emission at 680 nm - PSI photosystem I - PSII photosystem II - Q PSII primary electron acceptor - pH transthylakoid proton gradient  相似文献   

18.
19.
低温胁迫对2个茶树品种叶片叶绿素荧光特性的影响   总被引:3,自引:0,他引:3  
以茶树〔Camellia sinensis ( Linn.) O. Ktze.〕品种‘黄金芽’(‘Huangjinya’)和‘迎霜’(‘Yingshuang’)为实验材料,研究了4℃低温胁迫1、2、4和6d对茶树叶片叶绿素荧光特性的影响。结果表明:4℃低温胁迫条件下2个茶树品种叶片的PSⅡ最大光化学效率( Fv/Fm )、PSⅡ潜在活性( Fv/F0)和表观光合电子传递速率( ETR)均显著低于各自的对照(25℃),且总体上随胁迫时间延长逐渐下降;‘黄金芽’叶片的光化学淬灭系数(qP)随低温胁迫时间延长持续下降且低于其对照,而‘迎霜’叶片的qP较其对照的变幅较小,且2个品种的qP总体上与各自的对照无显著差异;随低温胁迫时间延长,2个品种叶片的非光化学淬灭系数( NPQ)均先升高后降低,并在胁迫2 d时达到最高,且总体上高于各自的对照;而2个品种叶片的光合功能相对限制值( LPFD )均随低温胁迫时间延长而增大,且大多高于各自的对照。与各自的对照相比,低温胁迫条件下‘迎霜’叶片的各项叶绿素荧光参数的变幅总体上低于‘黄金芽’。研究结果显示:低温胁迫可直接损伤茶树叶片的PSⅡ反应中心,致使过剩的激发能大量积累于PSⅡ反应中心,最终导致茶树光合作用能力减弱。根据叶绿素荧光参数的比较结果,可以初步判定品种‘迎霜’的耐寒性优于品种‘黄金芽’。  相似文献   

20.
Interspecific ecophysiological differences in response to different light environments are important to consider in regeneration behavior and forest dynamics. The diurnal changes in leaf gas exchange and chlorophyll fluorescence of two dipterocarps, Shorea leprosula (a high light-requiring) and Neobalanocarpus heimii (a low light-requiring), and a pioneer tree species (Macaranga gigantea) growing in open and gap sites were examined. In the open site, the maximum net photosynthetic rate (Pn), photosystem II (PSII) quantum yield (; F/Fm), and relative electron transport rate (r-ETR) through PSII at a given photosynthetic photon flux density (PPFD) was higher in S. leprosula and M. gigantea than in N. heimii, while non-photochemical quenching (NPQ) at a given PPFD was higher in N. heimii. The maximum values of net photosynthetic rate (Pn) in M. gigantea and S. leprosula was higher in the open site (8–11 mol m–2 s–1) than in the gap site (5 mol m–2 s–1), whereas that in N. heimii was lower in the open site (2 mol m–2 s–1) than in the gap site (4 mol m–2 s–1), indicating that N. heimii was less favorable to the open site. These data provide evidence to support the hypothesis that ecophysiological characteristics link with plants regeneration behavior and successional status. Although Pn and stomatal conductance decreased at midday in M. gigantea and S. leprosula in the open site, both r-ETR and leaf temperature remained unchanged. This indicates that stomatal closure rather than reduced photochemical capacity limited Pn in the daytime. Conversely, there was reduced r-ETR under high PPFD conditions in N. heimii in the open site, indicating reduced photochemical capacity. In the gap site, Pn increased in all leaves in the morning before exposure to direct sunlight, suggesting a relatively high use of diffuse light in the morning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号