首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Guidance of primordial germ cell migration by the chemokine SDF-1   总被引:19,自引:0,他引:19  
The signals directing primordial germ cell (PGC) migration in vertebrates are largely unknown. We demonstrate that sdf-1 mRNA is expressed in locations where PGCs are found and toward which they migrate in wild-type as well as in mutant embryos in which PGC migration is abnormal. Knocking down SDF-1 or its receptor CXCR4 results in severe defects in PGC migration. Specifically, PGCs that do not receive the SDF-1 signal exhibit lack of directional movement toward their target and arrive at ectopic positions within the embryo. Finally, we show that the PGCs can be attracted toward an ectopic source of the chemokine, strongly suggesting that this molecule provides a key directional cue for the PGCs.  相似文献   

2.
Autonomous modes of behavior in primordial germ cell migration   总被引:2,自引:0,他引:2  
Zebrafish primordial germ cells (PGCs) are guided toward their targets by the chemokine SDF-1a. PGCs were followed during three phases of their migration: when migrating as individual cells, while remaining in a clustered configuration, and when moving as a cell cluster within the embryo. We found that individually migrating PGCs alternate between migratory and pausing modes. Pausing intervals are characterized by loss of cell polarity and correlate with subsequent changes in the direction of migration. These properties constitute an intrinsic behavior of PGCs, enabling erasure of prior polarity and re-sampling of the environment. Following migration arrest at a site of high SDF-1a levels, PGCs resume migration as a cluster. The seemingly coordinated cluster migration is a result of single-cell movement in response to local variations in SDF-1a distribution. Together, these behavioral modes allow the cells to arrive at specific destinations with high fidelity and remain at their target site.  相似文献   

3.
Information obtained mainly from in vitro culture studies and genetic analysis of mouse mutants White spotting and Steel indicate a pivotal role of growth factors in the development of mouse primordial germ cells (PGCs). While stem cell factor (SCF) and TGFβ1 seem to have a role in PGC migration (as an adhesion factor and a chemoattractant, respectively), the former is certainly required for PGC survival in vitro and probably in vivo as well. Recent findings suggest that the mechanism by which SCF supports PGC survival is by preventing PGC apoptosis. A similar action appears to be exerted by leukemia inhibitory factor (LIF), a further growth factor influencing PGC growth in culture.PGC proliferation seems to be mainly induced by cAMP dependent mechanisms, but futther investigations are needed to clarify the interrelationships among the different molecular pathways activated by SCF, LIF, cAMP and other putative PGC growth factors (i.e. bFGF). Stimulation of long-term proliferation of PGCs, leading to derivation of ES-like cells (embryonal germ cells) obtained by using a combination of growth factors (bFGF, SCF and LIF), opens new intriguing perspectives for such studies and transgenic technology.  相似文献   

4.
Trans-epithelial migration describes the ability of migrating cells to cross epithelial tissues and occurs during development, infection, inflammation, immune surveillance, wound healing and cancer metastasis. Here we investigate Drosophila primordial germ cells (PGCs), which migrate through the endodermal epithelium. Through live imaging and genetic experimentation we demonstrate that PGCs take advantage of endodermal tissue remodeling to gain access to the gonadal mesoderm and are unable to migrate through intact epithelial tissues. These results are in contrast to the behavior of leukocytes, which actively loosen epithelial junctions to migrate, and raise the possibility that in other contexts in which migrating cells appear to breach tissue barriers, they are actually exploiting existing tissue permeability. Therefore, the use of active invasive programs is not the sole mechanism to infiltrate tissues.  相似文献   

5.
In mammals, the final number of oocytes available for reproduction of the next generation is defined at birth. Establishment of this oocyte pool is essential for fertility. Mammalian primordial germ cells form and migrate to the gonad during embryonic development. After arriving at the gonad, the germ cells are called oogonia and develop in clusters of cells called germ line cysts or oocyte nests. Subsequently, the oogonia enter meiosis and become oocytes. The oocyte nests break apart into individual cells and become packaged into primordial follicles. During this time, only a subset of oocytes ultimately survive and the remaining immature eggs die by programmed cell death. This phase of oocyte differentiation is poorly understood but molecules and mechanisms that regulate oocyte development are beginning to be identified. This review focuses on these early stages of female germ cell development.  相似文献   

6.
Fertilized eggs of chicken and quail were incubated under the simulated microgravity condition provided by a clinostat. The number of Primordial Germ Cells (PGCs) was counted in early embryogenesis, and the reproductive capacity of quail hatched following the simulated microgravity was investigated.Simulated microgravity caused significant decline of PGCs in the blood of early chicken embryos and in the gonads. The numbers of spermatogonia in the hatchling testis were also fewer than those in the control groups. Therefore, simulated microgravity may retard gonadial development and reduce the reproductive capacity.  相似文献   

7.
8.
Lo KH  Hui MN  Yu RM  Wu RS  Cheng SH 《PloS one》2011,6(9):e24540

Background

As a global environmental concern, hypoxia is known to be associated with many biological and physiological impairments in aquatic ecosystems. Previous studies have mainly focused on the effect of hypoxia in adult animals. However, the effect of hypoxia and the underlying mechanism of how hypoxia affects embryonic development of aquatic animals remain unclear.

Methodology/Principal Findings

In the current study, the effect of hypoxia on primordial germ cell (PGC) migration in zebrafish embryos was investigated. Hypoxic embryos showed PGC migration defect as indicated by the presence of mis-migrated ectopic PGCs. Insulin-like growth factor (IGF) signaling is required for embryonic germ line development. Using real-time PCR, we found that the mRNA expression levels of insulin-like growth factor binding protein (IGFBP-1), an inhibitor of IGF bioactivity, were significantly increased in hypoxic embryos. Morpholino knockdown of IGFBP-1 rescued the PGC migration defect phenotype in hypoxic embryos, suggesting the role of IGFBP-1 in inducing PGC mis-migration.

Conclusions/Significance

This study provides novel evidence that hypoxia disrupts PGC migration during embryonic development in fish. IGF signaling is shown to be one of the possible mechanisms for the causal link between hypoxia and PGC migration. We propose that hypoxia causes PGC migration defect by inhibiting IGF signaling through the induction of IGFBP-1.  相似文献   

9.
10.
Migration of primordial germ cells (PGCs) from their site of specification towards the developing gonad is controlled by directional cues from somatic tissues. Although in several animals the PGCs are attracted by signals emanating from their final target, the gonadal mesoderm, little is known about the mechanisms that control earlier steps of migration. We provide evidence that a key step of zebrafish PGC migration, in which the PGCs become organized into bilateral clusters in the anterior trunk, is regulated by attraction of PGCs towards an intermediate target. Time-lapse observations of wild-type and mutant embryos reveal that bilateral clusters are formed at early somitogenesis, owing to migration of PGCs towards the clustering position from medial, posterior and anterior regions. Furthermore, PGCs migrate actively relative to their somatic neighbors and they do so as individual cells. Using mutants that exhibit defects in mesoderm development, we show that the ability to form PGC clusters depends on proper differentiation of the somatic cells present at the clustering position. Based on these findings, we propose that these somatic cells produce signals that attract PGCs. Interestingly, fate-mapping shows that these cells do not give rise to the somatic tissues of the gonad, but rather contribute to the formation of the pronephros. Thus, the putative PGC attraction center serves as an intermediate target for PGCs, which later actively migrate towards a more posterior position. This final step of PGC migration is defective in hands off mutants, where the intermediate mesoderm of the presumptive gonadal region is mispatterned. Our results indicate that zebrafish PGCs are guided by attraction towards two signaling centers, one of which may represent the somatic tissues of the gonad.  相似文献   

11.
In Drosophila, primordial germ cells (PGCs) are set aside from somatic cells and subsequently migrate through the embryo and associate with somatic gonadal cells to form the embryonic gonad. During larval stages, PGCs proliferate in the female gonad, and a subset of PGCs are selected at late larval stages to become germ line stem cells (GSCs), the source of continuous egg production throughout adulthood. However, the degree of similarity between PGCs and the self-renewing GSCs is unclear. Here we show that many of the genes that are required for GSC maintenance in adults are also required to prevent precocious differentiation of PGCs within the larval ovary. We show that following overexpression of the GSC-differentiation gene bag of marbles (bam), PGCs differentiate to form cysts without becoming GSCs. Furthermore, PGCs that are mutant for nanos (nos), pumilio (pum) or for signaling components of the decapentaplegic (dpp) pathway also differentiate. The similarity in the genes necessary for GSC maintenance and the repression of PGC differentiation suggest that PGCs and GSCs may be functionally equivalent and that the larval gonad functions as a "PGC niche".  相似文献   

12.
The development of mouse primordial germ cells is followed from their first appearance in the extraembryonic mesoderm of the posterior amniotic fold (7 dpc embryo) to their settlement in the genital ridges (12.5 dpc embryo). The role of fibronectin as adhesive substrate and/or in stimulating cell motility during PGC migration is discussed. Recent papers showing how PGCs migrate when cultured in vitro on cellular monolayers are reviewed. The process of PGC homing is proposed to be controlled by chemotaxis as well by developmentally regulated cell-to-cell interactions. Finally, evidence that survival and proliferation of PGCs is strictly dependent on growth factors such as LIF and MGF, and possibly on a cAMP-dependent mechanism is reported.  相似文献   

13.
This study was conducted to evaluate whether immunomagnetic treatment could improve the retrieval and migration capacity of avian gonadal primordial germ cells (gPGCs) collected from gonads in 5.5-day-old chick and 5-day-old quail embryos, respectively. Collected gPGCs were loaded into a magnetic-activated cell sorter (MACS) after being conjugated with specific gPGC antibodies and either MACS-treated or non-treated cells in each species were subsequently transferred to the recipient embryos. MACS treatment significantly (P < 0.05) increased the population ratio of gPGCs in gonadal cells retrieved (0.74 to 33.4% in the chicken and 2.68 to 45.1% in the quail). This was due to decreased number of non-gPGCs in total cell population. MACS treatment further enhanced gonadal migration of gPGCs transferred in both species (10% vs. 80-85% in the chicken and 10-15% vs. 70-80% in the quail). Increase in the number of microinjected cells up to 600 cells/embryo did not eliminate such promoting effect. In conclusion, MACS treatment greatly increased the population ratio of avian gPGCs in gonadal cells, resulting improved gonadal migration in recipient embryos.  相似文献   

14.
原始生殖细胞特化在精子和卵子生成过程中发挥着重要的作用,而PR结构域蛋白质(PR-domain protein,PRDM)家族部分成员参与了该过程。PRDM1可抑制体细胞程序化过程中基因的表达,而PRDM1和PRDM14共同参与了潜在的全能性细胞的重新获取和基因组范围内表观遗传学重编程。这三个过程都是原始生殖细胞特化所必需的。此外,原始生殖细胞特化还需要一些其他因素如骨形态发生蛋白4(bone morphogenetic protein4,Bmp4)和RNA结合蛋白Lin28,这些因素通过影响PRDM发挥生理作用。对原始生殖细胞特化的理解有利于生殖细胞发育和相关问题的研究。  相似文献   

15.
Previous studies have shown that medaka primordial germ cells (PGC) are first distinguishable by olvas expression during late gastrulation, and that they migrate to the gonadal region through the lateral plate mesoderm. Here, we demonstrate that medaka nanos expression marks the germ line at early gastrulation stage. By marking the germ line with green fluorescent protein (GFP) fused to the nanos 3' untranslated region, we were able to visualize the behavior of PGC using time-lapse imaging. We show that there are three distinct modes of PGC migration that function at different stages of development. At early gastrulation stage, PGC actively migrate towards the marginal zone, a process that requires the function of a chemokine receptor, CXCR4. However, at late gastrulation stage, PGC change the mode and direction of their movement, as they are carried towards the midline along with somatic cells undergoing convergent movements. After aligning bilaterally, PGC actively migrate to the posterior end of the lateral plate mesoderm. This posterior movement depends on the activity of both HMGCoAR and a ligand of CXCR4, SDF-1a. These results demonstrate that PGC undergo different modes of migration to reach the prospective gonadal region of the embryo.  相似文献   

16.
Primordial Germ Cell (PGC) migration in zebrafish is guided by SDF-1a. Binding of this chemokine to its receptor CXCR4b activates downstream signalling cascades leading to cell polarization and directed migration towards the attractant source. Despite the detailed information available concerning the role of SDF-1 in guiding the PGCs to their targets, little was known regarding the molecular mechanisms controlling the distribution of SDF-1a within the tissue. We have recently shown that the activity of a second SDF-1/CXCL12 receptor, CXCR7 is crucial for proper migration of PGCs. Although CXCR4 and CXCR7 are structurally related and serve as receptors for the same ligand, they appear to serve very different functions during PGC migration. Here we discuss a model according to which CXCR4b translates the polarized distribution of SDF-1 into directed PGC migration, while CXCR7 acts as a high-affinity decoy receptor and facilitates the migration of PGCs by shaping the distribution of the chemokine in the environment.Key words: cell migration, CXCR4, CXCR7, SDF-1, chemokine, chemotaxisChemokine-guided cell migration is central for many processes in normal development and homeostasis (e.g., embryogenesis) as well as in pathological conditions (e.g., inflammation). Zebrafish primordial germ cells (PGCs) serve as a useful model for studying chemokine-controlled cell migration in vivo as the migrating PGCs sense and respond to the dynamic distribution of the chemokine SDF-1a through its receptor CXCR4b.1,2Recent reports identified CXCR7 as a receptor for SDF-13,4 that controls processes such as cell adhesion, survival and tumor progression. A role for this receptor in regulating cell migration during development was demonstrated in the zebrafish lateral line.5,6 The zebrafish lateral line primordium migrates directionally on a stripe of uniform sdf-1a expression to deposit a set of sensory organs along the fish tail. While the authors raised the hypothesis that antagonistic interactions between CXCR4b and CXCR7 polarize the developing organ to allow its migration, the precise function of CXCR7 in this process remained unclear.To address this question in an in vivo context, we examined the role CXCR7 plays in zebrafish PGC migration.7 Our experiments revealed that knockdown of cxcr7 translation using morpholino antisense oligo nucleotides results in impaired polarity and aberrant migration of PGCs. Unlike cxcr4b, cxcr7 is not specifically expressed in the PGCs but is initially uniformly distributed throughout the embryo. Furthermore, in contrast to activity of CXCR4, CXCR7 function was found to be required in tissues surrounding the migrating cells rather than in the PGCs themselves.To examine the function of CXCR7 in somatic cells we determined the subcellular localization of the protein as compared with that of CXCR4b and SDF-1a. Interestingly, while CXCR4b is predominantly localized to the plasma membrane, CXCR7 is found primarily in intracellular structures. The fact that SDF-1α and CXCR7 colocalized in the cell and that SDF-1α was found in vesicles that contained the lysosomal marker LAMP-1 suggested that the prime role of CXCR7 is to bind and internalize SDF-1a thereby controlling the level of the diffusible chemokine in the extracellular space. Indeed, observing PGCs expressing CXCR4b on their membrane we detected strong receptor internalization when CXCR7 function was knocked down. The enhanced internalization, a typical response to high levels of SDF-1a8 could be reversed by concomitant removal of SDF-1.These findings provided an explanation for the CXCR7 knock-down phenotype as abnormally high levels of SDF-1a in the environment have been shown before to interfere with cell motility.1,2 Indeed, PGCs in CXCR7 knocked-down embryos displayed strong inhibition of motility manifested in short migration tracks—a phenotype that could be reversed by simultaneous removal of CXCR7 and SDF-1.The implication of the results presented above is that the sole function of CXCR7 in the context of PGC migration is ligand sequestration. Consistent with this idea, two typical signalling responses acting downstream of chemokine receptors namely, elevation of intracellular calcium levels and PI3K activation913 were not altered in cells knocked down for CXCR7. Thus, consistent with other reports,4,14 our results imply that CXCR7 signalling is not required for PGC migration.An important outstanding question concerns the molecular basis for the dramatic difference between the activity of CXCR4 and that of CXCR7. Defining domains and amino acids responsible for this difference would provide extensive information regarding chemokine receptor signalling and trafficking within the cell. Whereas random mutagenesis and generation of various CXCR4-CXCR7 chimeric molecules might provide an answer to this question, it is tempting to speculate that known protein motifs are responsible for the differences between the two receptors. For example, an obvious candidate region is that around its DRY motif,14 a motif within the second intracellular loop that is important for Gprotein coupling and signalling.15 Whereas uncoupling downstream signalling in the case of CXCR7 is an interesting research avenue, other non-mutually exclusive options should be examined (Fig. 1). For example, CXCR7 could possess domains that facilitate interaction with components that enhance internalization. Such an interaction could remove the receptor from the location where it normally interacts with the signalling machinery, while effectively internalizing SDF-1a.Open in a separate windowFigure 1Proposed model for differential functions of CXCR4b and CXCR7. (A) CXCR4b signalling in PGCs controls cell polarization and directional migration in response to SDF-1a binding (squares), through interaction with G-proteins and elevation of calcium levels. (B) Binding of SDF-1a by CXCR7 does not elicit signalling. Endocytosis of the lignad-bound CXCR7 leads to sequestration and degradation of SDF-1a in the somatic environment.Taken together, we show that proper PGC migration requires a mechanism to remove the guidance cue thereby allowing the formation of an informative chemotactic gradient. It would be very interesting to examine whether the paradigm demonstrated for the PGC migration model applies for other chemokine-guided events in development and disease.  相似文献   

17.
Effects of the substratum on the migration of primordial germ cells   总被引:3,自引:0,他引:3  
It is now clear from work on defined cell types on artificial substrates that various chemical and physical inhomogeneities in the substrates can guide cell locomotion. It is also becoming clear that less well defined inhomogeneities in living cell substrates can guide the normal locomotion of embryonic migratory cells in vivo. The primordial germ cells (p.g.cs) of early anuran amphibian embryos are proving a useful model for the study of cell migration. When isolated from the embryo and cultured on living cellular substrate, p.g.cs become oriented by the shapes of the underlying cells or by their stress fibre cytoskeleton, or both. A combination of scanning and transmission electron microscopy in vivo shows a clearly aligned cellular substrate for p.g.c. migration along part of their route. Furthermore, we find that the glycoprotein fibronectin is involved in p.g.c. adhesion, which suggests a link between orientation of the substrate cells and p.g.c. guidance.  相似文献   

18.
The trafficking of primordial germ cells (PGCs) across multiple embryonic structures to the nascent gonads ensures the transmission of genetic information to the next generation through the gametes, yet our understanding of the mechanisms underlying PGC migration remains incomplete. Here we identify a role for the receptor tyrosine kinase-like protein Ror2 in PGC development. In a Ror2 mouse mutant we isolated in a genetic screen, PGC migration and survival are dysregulated, resulting in a diminished number of PGCs in the embryonic gonad. A similar phenotype in Wnt5a mutants suggests that Wnt5a acts as a ligand to Ror2 in PGCs, although we do not find evidence that WNT5A functions as a PGC chemoattractant. We show that cultured PGCs undergo polarization, elongation, and reorientation in response to the chemotactic factor SCF (secreted KitL), whereas Ror2 PGCs are deficient in these SCF-induced responses. In the embryo, migratory PGCs exhibit a similar elongated geometry, whereas their counterparts in Ror2 mutants are round. The protein distribution of ROR2 within PGCs is asymmetric, both in vitro and in vivo; however, this asymmetry is lost in Ror2 mutants. Together these results indicate that Ror2 acts autonomously to permit the polarized response of PGCs to KitL. We propose a model by which Wnt5a potentiates PGC chemotaxis toward secreted KitL by redistribution of Ror2 within the cell.  相似文献   

19.
Primordial germ cell migration   总被引:10,自引:0,他引:10  
  相似文献   

20.
Disruptions in the regulatory pathways controlling sex determination and differentiation can cause disorders of sex development, often compromising reproductive function. Although extensive efforts have been channeled into elucidating the regulatory mechanisms controlling the many aspects of sexual differentiation, the majority of disorders of sex development phenotypes are still unexplained at the molecular level. In this study, we have analyzed the potential involvement of Wnt5a in sexual development and show in mice that Wnt5a is male-specifically upregulated within testicular interstitial cells at the onset of gonad differentiation. Homozygous deletion of Wnt5a affected sexual development in male mice, causing testicular hypoplasia and bilateral cryptorchidism despite the Leydig cells producing factors such as Hsd3b1 and Insl3. Additionally, Wnt5a-null embryos of both sexes showed a significant reduction in gonadal germ cell numbers, which was caused by aberrant primordial germ cell migration along the hindgut endoderm prior to gonadal colonization. Our results indicate multiple roles for Wnt5a during mammalian reproductive development and help to clarify further the etiology of Robinow syndrome (OMIM 268310), a disease previously linked to the WNT5A pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号