首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Desquamation or cell shedding in mammalian skin is known to involve serine proteases, aspartic proteases and glycosidases. In addition, evidence continues to accumulate that papain-like cysteine proteases and an inhibitor cystatin M/E largely confined to the cutaneous epithelia also play key roles in the process. This involves the complete proteolysis of cell adhesive structures of the stratum corneum, the corneodesmosomes and notably of the desmogleins. Continual cell replacement in the epidermis is the result of the balance between the loss of the outer squames and mitosis of the cells in the basal cell layer. This article provides a brief account of the salient features of the characteristics and catalytic mechanism of cysteine proteases, followed by a discussion of the relevant epidermal biology. The proteases include the asparaginyl endopeptidase legumain, which exerts a strict specificity for the hydrolysis of asparaginyl bonds, cathepsin-V and cathepsin-L. The control of these enzymes by cystatin M/E regulates the processing of transglutaminases and is crucial in the biochemical pathway responsible for regulating the cross-linking and desquamation of the stratum corneum. In addition, caspase-14 has now been shown to play a major part in epidermal maturation. Uncontrolled proteolytic activity leads to abnormal hair follicle formation and deleterious effects on the skin barrier function.  相似文献   

2.
Cystatin M/E is a high affinity inhibitor of the asparaginyl endopeptidase legumain, and we have previously reported that both proteins are likely to be involved in the regulation of stratum corneum formation in skin. Although cystatin M/E contains a predicted binding site for papain-like cysteine proteases, no high affinity binding for any member of this family has been demonstrated so far. We report that human cathepsin V (CTSV) and human cathepsin L (CTSL) are strongly inhibited by human cystatin M/E. Kinetic studies show that Ki values of cystatin M/E for the interaction with CTSV and CTSL are 0.47 and 1.78 nM, respectively. On the basis of the analogous sites in cystatin C, we used site-directed mutagenesis to identify the binding sites of these proteases in cystatin M/E. We found that the W135A mutant was rendered inactive against CTSV and CTSL but retained legumain-inhibiting activity. Conversely, the N64A mutant lost legumain-inhibiting activity but remained active against the papain-like cysteine proteases. We conclude that legumain and papain-like cysteine proteases are inhibited by two distinct non-overlapping sites. Using immunohistochemistry on normal human skin, we found that cystatin M/E co-localizes with CTSV and CTSL. In addition, we show that CTSL is the elusive enzyme that processes and activates epidermal transglutaminase 3. The identification of CTSV and CTSL as novel targets for cystatin M/E, their (co)-expression in the stratum granulosum of human skin, and the activity of CTSL toward transglutaminase 3 strongly imply an important role for these enzymes in the differentiation process of human epidermis.  相似文献   

3.
Cystatins are cysteine protease inhibitors that are widespread in the plant and animal kingdoms. Cystatins are expressed by helminth parasites that may employ these proteins to regulate parasite cysteine protease activity and to modulate host immune responses. Here, we describe the cloning of a cDNA encoding a high molecular weight protein of Fasciola hepatica that contains two domains with significant identity to the cardinal cystatin signatures and four domains with degenerated cystatin signatures. This is the first report of a multi-domain cystatin in an invertebrate species. While cystatins are divided into three evolutionary related families, our phylogenetic analysis shows that all cystatin domains within this protein, like several other helminth cystatins, belong to the cystatin family 2. The DNA region encoding the domain 4 that is the best conserved at the level of its cystatin signatures was expressed in Drosophila cells and a recombinant protein was produced and purified. This protein was a potent inhibitor of the papain and of the major cysteine protease of F. hepatica, the cathepsin L1.  相似文献   

4.
Cystatins, together with stefins and kininogens, are members of the cystatin superfamily of cysteine protease inhibitors (CPI) present across the animal and plant kingdoms. Their role in parasitic organisms may encompass both essential developmental processes and specific interactions with the parasite's vector and/or final host. We summarise information gathered on three cystatins from the human filarial nematode Brugia malayi (Bm-CPI-1, -2 and -3), and contrast them those expressed by other parasites and by the free-living nematode Caenorhabditis elegans. Bm-CPI-2 differs from C. elegans cystatin, having acquired the additional function of inhibiting asparaginyl endopeptidase (AEP), in a manner similar to some human cystatins. Thus, we propose that Bm-CPI-2 and orthologues from related filarial parasites represent a new subset of nematode cystatins. Bm-CPI-1 and CPI-3 share only 25% amino acid identity with Bm-CPI-2, and lack an evolutionarily conserved glycine residue in the N-terminal region. These sequences group distantly from the other nematode cystatins, and represent a second novel subset of filarial cystatin-like genes. Expression analyses also show important differences between the CPI-2 and CPI-1/-3 groups. Bm-cpi-2 is expressed at all time points of the parasite life cycle, while Bm-cpi-1 and -3 expression is confined to the late stages of development in the mosquito vector, terminating within 48h of infection of the mammalian host. Hence, we hypothesise that CPI-2 has evolved to block mammalian proteases (including the antigen-processing enzyme AEP) while CPI-1 and -3 function in the milieu of the mosquito vector necessary for transmission of the parasite.  相似文献   

5.
Family 1 cystatins are cytosolic inhibitors of cysteine proteases, and they are conserved in higher eukaryotes. We characterized two newly identified family 1 cystatins of the cellular slime mold Dictyostelium discoideum, cystatin A1 and A2. Their recombinant proteins showed specific inhibitory activity against papain and cathepsin B, respectively. Using specific polyclonal antibodies, we found that cystatin A1 is stably expressed throughout the life cycle of Dictyostelium, whereas cystatin A2 expression is up-regulated during the course of development.  相似文献   

6.
MsCYS1, a developmentally-regulated cystatin from alfalfa.   总被引:1,自引:0,他引:1  
Several roles have been attributed to cystatins in plants, ranging from the regulation of host [endogenous] cysteine proteases to the inhibition of herbivorous pest [exogenous] proteases. We report here the cloning, expression and functional characterization of a novel cystatin from alfalfa, Medicago sativa L. The new sequence, isolated from a cDNA expression library prepared from young leaves, encodes a protein, MsCYS1, with the typical inhibitory motifs of cystatins, namely the central signature motif QxVxG, a GG doublet in the N-terminal trunk, and a W residue in the C-terminal region, about 30 amino acids distant from the central inhibitory motif. As shown by a protein-based phylogenetic reconstruction, MsCYS1 is a close relative of other cystatins from Fabaceae presumably involved in the regulation of endogenous proteases. This cystatin is developmentally regulated in stems and leaves, and not induced by stress signals including methyl jasmonate, known to activate cystatins involved in plant defense. A recombinant form of MsCYS1 expressed in Escherichia coli was shown to strongly inhibit alfalfa leaf cysteine proteases while showing weak affinity for the digestive cysteine proteases of different herbivorous pests. Overall, these observations suggest an endogenous protease regulatory role for MsCYS1, possibly associated with the early development of stems and leaves.  相似文献   

7.
Two genes coding for cysteine peptidase inhibitors of the cystatin family (Om-cystatin 1 and 2) were isolated from a gut-specific cDNA library of the soft tick Ornithodoros moubata. Both cystatins were clearly down-regulated after a blood meal. Om-cystatin 1 is mainly expressed in the tick gut, while Om-cystatin 2 mRNA was also found in other tick tissues. Authentic Om-cystatin 2 was significantly more abundant than Om-cystatin 1 in the gut contents of fasting ticks and was associated with hemosome-derived residual bodies accumulated in the gut lumen. Om-cystatin 2 was also expressed by type 2 secretory cells in the salivary glands of unfed ticks. The inhibitory specificity of recombinant Om-cystatins 1 and 2 was tested with mammalian cysteine peptidases, as well as endogenous cysteine peptidases present in the tick gut. Both cystatins efficiently inhibited papain-like peptidases, including cathepsin B and H, but differed significantly in their affinity towards cathepsin C and failed to block asparaginyl endopeptidase. Our results suggest that the secreted cystatin isoinhibitors are involved in the regulation of multiple proteolytic targets in the tick digestive system and tick-host interaction.  相似文献   

8.
Cystatin F is a cysteine protease inhibitor that is selectively expressed in immune cells and unlike other cystatin family members is targeted to a significant extent to intracellular compartments. Initially made as an inactive glycosylated disulfide-linked dimer, cystatin F is converted to an active monomer by proteolytic cleavage following transport to the endosomal/lysosomal system. This active form of cystatin F targets cathepsin C/DPPI and probably other cathepsins in immune cells. We show that efficient targeting of cystatin F to the endocytic pathway is dependent not on its unique dimeric conformation but rather on its oligosaccharide chains. We demonstrate the unusual addition of N -linked sugars to an Asn-X-Cys motif in cystatin F and provide evidence that the mannose 6-phosphate sorting machinery is used to divert cystatin F from the secretory pathway and to mediate its uptake from extracellular pools. These studies identify a function for the oligosaccharides on cystatin F and raise the possibility that cystatin F might regulate proteases in trans by secretion in an inactive form by one cell and subsequent internalization and activation by another cell.  相似文献   

9.
The general potential of plant cystatins for the development of insect‐resistant transgenic plants still remains to be established given the natural ability of several insects to compensate for the loss of digestive cysteine protease activities. Here we assessed the potential of cystatins for the development of banana lines resistant to the banana weevil Cosmopolites sordidus, a major pest of banana and plantain in Africa. Protease inhibitory assays were conducted with protein and methylcoumarin (MCA) peptide substrates to measure the inhibitory efficiency of different cystatins in vitro, followed by a diet assay with cystatin‐infiltrated banana stem disks to monitor the impact of two plant cystatins, oryzacystatin I (OC‐I, or OsCYS1) and papaya cystatin (CpCYS1), on the overall growth rate of weevil larvae. As observed earlier for other Coleoptera, banana weevils produce a variety of proteases for dietary protein digestion, including in particular Z‐Phe‐Arg‐MCA‐hydrolyzing (cathepsin L–like) and Z‐Arg‐Arg‐MCA‐hydrolyzing (cathepsin B–like) proteases active in mildly acidic conditions. Both enzyme populations were sensitive to the cysteine protease inhibitor E‐64 and to different plant cystatins including OsCYS1. In line with the broad inhibitory effects of cystatins, OsCYS1 and CpCYS1 caused an important growth delay in young larvae developing for 10 days in cystatin‐infiltrated banana stem disks. These promising results, which illustrate the susceptibility of C. sordidus to plant cystatins, are discussed in the light of recent hypotheses suggesting a key role for cathepsin B–like enzymes as a determinant for resistance or susceptibility to plant cystatins in Coleoptera. © 2009 Wiley Periodicals, Inc.  相似文献   

10.
Cancer metastasis involves multiple factors, one of which is the production and secretion of matrix degrading proteases by the cancer cells. Many metastasizing cancer cells secrete the lysosomal proteases, cathepsins L and B, which implicates them in the metastatic process. Cathepsins L and B are regulated by endogenous cysteine proteinase inhibitors (CPI) known as cystatins. An imbalance between cathepsin L and/or B and cystatin expression/activity may be a characteristic of the metastatic phenotype. To determine whether cystatins can attenuate the invasive ability of PC3 prostate cancer cells, cells were transfected with a cDNA coding for chicken cystatin. Expression of chicken cystatin mRNA was determined by PCR analysis. Total cysteine proteinase inhibitory activity, cathepsins L+B activity, and invasion through a Matrigel® matrix were assessed. Stably transfected cells expressed the chicken cystatin mRNA and exhibited a significant decrease in secreted cathepsin L+B activity and a small increase in secreted cysteine proteinase inhibitor activity. The ability of cystatin transfected cells to invade the reconstituted basement membrane, Matrigel®, was attenuated compared to nontransfected cells or cells transfected with vector alone. We have demonstrated that the cysteine proteinases cathepsins L and B participate in the invasive ability of the PC3 prostate cancer cell line, and we discuss here the potential of using cysteine proteinase inhibitors such as the cystatins as anti-metastatic agents.  相似文献   

11.
12.
Cancer metastasis involves multiple factors, one of which is the production and secretion of matrix degrading proteases by the cancer cells. Many metastasizing cancer cells secrete the lysosomal proteases, cathepsins L and B, which implicates them in the metastatic process. Cathepsins L and B are regulated by endogenous cysteine proteinase inhibitors (CPI) known as cystatins. An imbalance between cathepsin L and/or B and cystatin expression/activity may be a characteristic of the metastatic phenotype. To determine whether cystatins can attenuate the invasive ability of PC3 prostate cancer cells, cells were transfected with a cDNA coding for chicken cystatin. Expression of chicken cystatin mRNA was determined by PCR analysis. Total cysteine proteinase inhibitory activity, cathepsins L+B activity, and invasion through a Matrigel® matrix were assessed. Stably transfected cells expressed the chicken cystatin mRNA and exhibited a significant decrease in secreted cathepsin L+B activity and a small increase in secreted cysteine proteinase inhibitor activity. The ability of cystatin transfected cells to invade the reconstituted basement membrane, Matrigel®, was attenuated compared to nontransfected cells or cells transfected with vector alone. We have demonstrated that the cysteine proteinases cathepsins L and B participate in the invasive ability of the PC3 prostate cancer cell line, and we discuss here the potential of using cysteine proteinase inhibitors such as the cystatins as anti-metastatic agents.  相似文献   

13.
Cystatins are extensively studied cysteine protease inhibitors, found in wide range of organisms with highly conserved structural folds. S-type of cystatins is well known for their abundance in saliva, high selectivity and poorer activity towards host cysteine proteases in comparison to their immediate ancestor cystatin C. Despite more than 90% sequence similarity, the members of this group show highly dissimilar binding affinity towards papain. Cystatin M/E is a potent inhibitor of legumain and papain like cysteine proteases and recognized for its involvement in skin barrier formation and potential role as a tumor suppressor gene. However, the structures of these proteins and their complexes with papain or legumain are still unknown. In the present study, we have employed computational methods to get insight into the interactions between papain and cystatins. Three-dimensional structures of the cystatins are generated by homology modelling, refined with molecular dynamics simulation, validated through numerous web servers and finally complexed with papain using ZDOCK algorithm in Discovery Studio. A high degree of shape complementarity is observed within the complexes, stabilized by numerous hydrogen bonds (HB) and hydrophobic interactions. Using interaction energy, HB and solvent accessible surface area analyses, we have identified a series of key residues that may be involved in papain–cystatin interaction. Differential approaches of cystatins towards papain are also noticed which are possibly responsible for diverse inhibitory activity within the group. These findings will improve our understanding of fundamental inhibitory mechanisms of cystatin and provide clues for further research.  相似文献   

14.
When an excess of human cystatin C or chicken cystatin was mixed with papain, an enzyme-inhibitor complex was formed immediately. The residual free cystatin was then progressively converted to a form with different electrophoretic mobility and chromatographic properties. The modified cystatins were isolated and sequenced, showing that there had been cleavage of a single peptide bond in each molecule: Gly11-Gly12 in cystatin C, and Gly9-Ala10 in chicken cystatin. The residues Gly11 (cystatin C) and Gly9 (chicken cystatin) are among only three residues conserved in all known sequences of inhibitory cystatins. The modified cystatins were at least 1000-fold weaker inhibitors of papain than the native cystatins. An 18-residue synthetic peptide corresponding to residues 4-21 of cystatin C did not inhibit papain but was cleaved at the same Gly-Gly bond as cystatin C. When iodoacetate or L-3-carboxy-trans-2,3-epoxypropionyl-leucylamido-(4-guanidin o)butane was added to the mixtures of either cystatin with papain, modification of the excess cystatin was blocked. Papain-cystatin complexes were stable to prolonged incubation, even in the presence of excess papain. We conclude that the peptidyl bond of the conserved glycine residue in human cystatin C and chicken cystatin probably is part of a substrate-like inhibitory reactive site of these cysteine proteinase inhibitors of the cystatin superfamily and that this may be true also for other inhibitors of this superfamily. We also propose that human cystatin C and chicken cystatin, and probably other cystatins as well, inhibit cysteine proteinases by the simultaneous interactions with such proteinases of the inhibitory reactive sites and other, so far not identified, areas of the cystatins. The cleavage of the inhibitory reactive site glycyl bond in mixtures of papain with excess quantities of cystatins is apparently due to the activity of a small percentage of atypical cysteine proteinase molecules in the papain preparation that form only very loose complexes with cystatins under the conditions employed and degrade the free cystatin molecules.  相似文献   

15.
The cystatin superfamily of cysteine proteinase inhibitors consists of three major families. In the present study, we report the cloning of the cDNA for mouse cystatin T, which is related to family 2 cystatins. The deduced amino acid sequence of cystatin T contains regions of significant sequence homology including the four highly conserved cysteine residues in exact alignment with all cystatin family 2 members. However, cystatin T lacks some of the conserved motifs believed to be important for inhibition of cysteine proteinase activity. These characteristics are seen in two other recently cloned genes, CRES and Testatin. Thus, cystatin T appears to be the third member of the CRES/Testatin subgroup of family 2 cystatins. The mouse cystatin T gene was mapped on a region of chromosome 2 that contains a cluster of cystatin genes, including cystatin C and CRES. Northern blot analysis demonstrated that expression of mouse cystatin T is highly restricted to the mouse testis. Thus, a shared characteristic of the cystatin family 2 subgroup members is an expression pattern limited primarily to the male reproductive tract.  相似文献   

16.
A procedure for classifying proteins of known sequence into structurally similar groups was developed on the basis of the Argos parametric approach. It is shown that stefins and cystatins constitute two structurally well resolved, but homologous groups of proteins. Furthermore, it is very probable that segments of secondary structures within each family are conserved, although significant differences between stefins and cystatins are indicated at the level of secondary structure. Next, secondary structures of all sequenced stefins and cystatins were predicted and used in the construction of secondary structures of the "typical stefin" and the "typical cystatin". Results were interpreted in the light of evolution and inhibition mechanism: Alignment of the "typical stefin" versus the "typical cystatin" secondary structure segments suggests that the divergence of stefin and cystatin families did not occur by a gene fusion event, but only by a mechanism of substitution, insertion and/or deletion. The central region of low-molecular mass cystatins, which is assumed to interact with cysteine proteinases, is predicted to be in a beta-sheet conformation. This resembles the beta-sheet in the active site of "standard mechanism" serine proteinases inhibitors.  相似文献   

17.
Cystatins are natural inhibitors of papain-like (family C1) and legumain-related (family C13) cysteine peptidases. Cystatin D is a type 2 cystatin, a secreted inhibitor found in human saliva and tear fluid. Compared with its homologues, cystatin D presents an unusual inhibition profile with a preferential inhibition cathepsin S > cathepsin H > cathepsin L and no inhibition of cathepsin B or pig legumain. To elucidate the structural reasons for this specificity, we have crystallized recombinant human Arg(26)-cystatin D and solved its structures at room temperature and at cryo conditions to 2.5- and 1.8-A resolution, respectively. Human cystatin D presents the typical cystatin fold, with a five-stranded anti-parallel beta-sheet wrapped around a five-turn alpha-helix. The structures reveal differences in the peptidase-interacting regions when compared with other cystatins, providing plausible explanations for the restricted inhibitory specificity of cystatin D for some papain-like peptidases and its lack of reactivity toward legumain-related enzymes.  相似文献   

18.
A new member of the human cystatin multigene family has been cloned from a genomic library using a cystatin C cDNA probe. The complete nucleotide sequence of a 4.3-kilobase DNA segment, containing a complete gene with structure very similar to those of known Family 2 cystatin genes, was determined. The novel gene, called CST4, is composed of three exons and two introns. It contains the coding information for a protein of 142 amino acid residues, which has been tentatively called cystatin D. The deduced amino acid sequence includes a putative signal peptide and presents 51-55% identical residues with the sequences of either cystatin C or the secretory gland cystatins S, SN, or SA. The cystatin D sequence contains all regions of relevance for cysteine proteinase inhibitory activity and also the 4 cysteine residues that form disulfide bridges in the other members of cystatin Family 2. Northern blot analysis revealed that the cystatin D gene is expressed in parotid gland but not in seminal vesicle, prostate, epididymis, testis, ovary, placenta, thyroid, gastric corpus, small intestine, liver, or gall-bladder tissue. This tissue-restricted expression is in marked contrast with the wider distribution of all the other Family 2 cystatins, since cystatin C is expressed in all these tissues and the secretory gland cystatins are present in saliva, seminal plasma, and tears. Cystatin D, being the first described member of a third subfamily within the cystatin Family 2, thus appears to have a distinct function in the body in contrast to other cystatins.  相似文献   

19.
The liver fluke, Fasciola hepatica, apparently uses a number of cysteine proteases during its life cycle, most likely for feeding, immune evasion and invasion of tissues. A cathepsin B-like enzyme (herein referred to as FhcatB1) appears to be a major enzyme secreted by the invasive, newly excysted juvenile flukes of this parasite. To examine the processing mechanisms for this enzyme, a recombinant form was expressed in Pichia pastoris and purified to yield a homogenous pool of the enzyme. The purified enzyme could be autoactivated at low pH via a bi-molecular mechanism, a process that was greatly accelerated by the presence of large, negatively charged molecules such as dextran sulfate. The enzyme could also apparently be processed to the correct size by an asparaginyl endopeptidase via cleavage in an unusual insertion N-terminal to the normal cleavage site used to yield the active form of the enzyme. Thus, there appear to be a number of ways in which this enzyme can be processed to its optimally active form prior to secretion by F. hepatica.  相似文献   

20.
Cysteine proteinase inhibitors of the cystatin superfamily have several important functions in plants, including the inhibition of exogenous cysteine proteinases during herbivory or infection. Here we used a maximum-likelihood approach to assess whether plant cystatins, like other proteins implicated in host-pest interactions, have been subject to positive selection during the course of their evolution. Several amino acid sites were identified as being positively selected in cystatins from either Poaceae (monocots) and Solanaceae (dicots). These hypervariable sites were located at strategic positions on the protein: on each side of the conserved glycine residues in the N-terminal trunk, within the first and second inhibitory loops entering the active site of target enzymes, and surrounding the larfav motif, a sequence of unknown function conserved among plant cystatins. Supporting the assumption that positively selected, hypervariable sites are indicative of amino acid sites implicated in functional diversity, mutants of the 8th cystatin unit of tomato multicystatin including alternative residues at positively selected sites in the N-terminal trunk exhibited highly variable affinities for the cysteine proteases papain, cathepsin B and cathepsin H. Overall, these observations support the hypothesis that plant cystatins have been under selective pressure to evolve in response to predatory challenges by herbivorous enemies. They also indicate the potential of site-directed mutagenesis at positively selected sites for the generation of cystatins with improved binding properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号