首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Galanin is a 29-amino-acid neuropeptide expressed in dorsal root ganglion (DRG) neurons which is thought to play a role in modulation of nociception in neuropathic states. Activation of galanin receptor 2 (GalR2) plays a pronociceptive role and enhances capsaicin-induced nociception in the periphery. GalR2 and vanilloid receptor 1 (VR1) are co-expressed in DRG neurons. Capsaicin evokes acute pain via activation of VR1 expressed in primary sensory neurons. It is not known to what extent galanin and its receptor GalR2 expression is regulated by capsaicin in DRG neurons. Effects of acute (4 h) or chronic (4 d) treatment with capsaicin at different concentrations (0.01, 0.1, 1 micromol/L) on galanin and GalR2 expression in primary cultured DRG neurons were investigated in the present study. Our results showed that acute exposure of high concentration capsaicin (1 micromol/L) increased galanin expression, whereas chronic exposure of low concentration capsaicin (0.01, 0.1 micromol/L) promoted galanin expression. Only chronic exposure of 0.1 micromol/L concentration capsaicin could elevate GalR2 expression, whereas capsaicin did not have this effect at any other conditions in this experiment. These results indicated that certain concentrations or exposure time of capsaicin stimulation may be relevant to upregulation of galanin and its receptor GalR2 expression in DRG cultures suggesting a response to peripheral neuronal stimulation. And also, capsaicin-induced GalR2 expression may be also modulated by capsaicin-induced galanin expression. The possible significance of the neurotransmission of nociceptive information involved in galanin or GalR2 expression caused by capsaicin is still to be clarified.  相似文献   

2.
The neuropeptide galanin and its three receptor subtypes (Gal R1-3) are highly expressed in the dorsal raphe nucleus (DRN), a region of the brain that contains a large population of serotonergic neurons. Galanin is co-expressed with serotonin in approximately 40% of the DRN neurons, and galanin and GALR2 expression are elevated by antidepressants like the SSRI fluoxetine, suggesting an interaction between serotonin and galanin. The present study examines the effect of galanin (Gal 1–29), a pan ligand for GalR (1–3) and the GalR2/GalR3-selective ligand, Gal 2–11, on the electrophysiological properties of DRN serotonergic neurons in a slice preparation. We recorded from cells in the DRN with electrophysiological characteristics consistent with those of serotonergic neurons that exhibit high input resistance, large after-hyperpolarizations and long spike duration as defined by Aghajanian and Vandermaelen. Both Gal 1–29 and Gal 2–11 decreased the amplitudes pharmacologically-isolated GABAergic inhibitory postsynaptic potentials (IPSPs) in these putative serotonergic neurons. Furthermore, based on paired pulse facilitation studies, we show that Gal 1–29 likely decreases GABA release through a presynaptic mechanism, whereas Gal 2–11 may act postsynaptically. These findings may enhance understanding of the cellular mechanisms underlying the effects of antidepressant treatments on galanin and galanin receptors in DRN. Special issue article in honor of Dr. Frode Fonnum.  相似文献   

3.
Neuropeptide galanin and its three receptors, galanin receptor type 1–galanin receptor type 3, are known to be involved in the regulation of numerous psychological processes, including depression. Studies have suggested that stimulation of galanin receptor type 2 (GalR2) leads to attenuation of the depression-like behavior in animals. However, due to the lack of highly selective galanin subtype specific ligands the involvement of different receptors in depression-like behavior is yet not fully known. In the present study we introduce a novel GalR2 selective agonist and demonstrate its ability to produce actions consistent with theorized GalR2 functions and analogous to that of the anti-depressant, imipramine.  相似文献   

4.
To define the specific role of the galanin receptors when mediating the effect of galanin, effective tools for distinct activation and inhibition of the different receptor subtypes are required. Several of the physiological effects modulated by galanin are implicated to be mediated via the GalR2 subtype and have been distinguished from GalR1 effects by utilizing the Gal(2–11) peptide, recognizing only GalR2 and GalR3. In this study, we have performed a mutagenesis approach on the GalR2 subtype and present, for the first time, a molecular characterization of the interactions responsible for ligand binding and receptor activation at this receptor subtype. Our results identify four residues, His252 and His253 located in transmembrane domain 6 and Phe264 and Tyr271 in the extracellular loop 3, to be of great significance. We show evidence for the N-terminal tail of GalR2 to participate in ligand binding and that selective binding of Gal(2–11) includes interaction with the Ile256 residue, located at the very top of TM 6. In conclusion, we present a mutagenesis study on GalR2 and confer interactions responsible for ligand binding and receptor activation as well as selective recognition of the Gal(2–11) peptide at this receptor subtype. The presented observations could be of major importance for the design and development of new and improved peptide and non-peptide ligands, selectively activating the GalR2 subtype.  相似文献   

5.
A series of cognitive enhancers (CEs) have been reported to increase spatial memory in rodents, information on behavioral effects, however, is limited. The aim of the study was therefore to examine the behavioral effects of three CEs in two well-documented inbred mouse strains. C57BL/6J and DBA/2 mice were administered intraperitonial. D-cycloserine (DCS; NMDA receptor agonist), 1-(4-Amino-5-chloro-2-methoxyphenyl)-3-[1-butyl-4-piperidinyl]-1-propanone hydrochloride (RS67333; 5HT4-receptor agonist), and (R)-4-{[2-(1-methyl-2-pyrrolidinyl)ethyl]thio}phenol hydrochloride (SIB-1553A; beta-4-nicotinic receptor agonist) and tested in the open field (OF), elevated plus maze (EPM), neurological observational battery and rota-rod. Cognitive performance was tested in the Morris water maze. All compounds modified behavioral performance in the OF, DCS showed an anxiolytic effect in the EPM, and differences in the observational battery were observed i.e. vestibular drop was decreased by SIB-1553A and RS67333 treatment in C57BL/6J and increased with DCS treatment in DBA/2 mice. In the rota rod SIB-1553A improved motor performance. DCS effects on learning and memory was comparable to controls whereas the other compounds impaired performance in the Morris water maze. In conclusion, behavioral testing of CEs in the mouse revealed significant changes that may have to be taken into account for evaluation of CEs, interpretation of cognitive studies and warrant further neurotoxicological studies. Moreover, strain-dependent differences were observed that in turn may confound results obtained from behavioral and cognitive testing.  相似文献   

6.
Abstract: The diverse physiological actions of galanin are thought to be mediated through activation of galanin receptors (GalRs). We report the genomic and cDNA cloning of a mouse GalR that possesses a genomic structure distinct from that of GalR1 and encodes a functional galanin receptor. The mouse GalR gene consists of two exons separated by a single intron within the protein-coding region. The splicing site for the intron is located at the junction between the third transmembrane domain and the second intracellular loop. The cDNA encodes a 370-amino acid putative G protein-coupled receptor that is markedly different from human GalR1 and rat GalR3 (38 and 57%) but shares high homology with rat GalR2 (94%). In binding studies utilizing membranes from COS-7 cells transfected with mouse GalR2 cDNA, the receptor displayed high affinity ( K D = 0.47 n M ) and saturable binding with 125I-galanin ( B max = 670 fmol/mg). The radioligand binding can be displaced by galanin and its analogues in a rank order: galanin ⋍ M40 ⋍ M15 ⋍ M35 ⋍ C7 ⋍ galanin (2–29) ⋍ galanin (1–16) ≫ galanin (10–29) ⋍ galanin (3–29), which resembles the pharmacological profile of the rat GalR2. Receptor activation by galanin in COS-7 cells stimulated phosphoinositide metabolism, which was not reversed by pertussis toxin. Thus, the galanin receptor encoded in the cloned mouse GalR gene is the type 2 galanin receptor and is active in both ligand binding and signaling assays.  相似文献   

7.
Membrane cholesterol modulates galanin-GalR2 interaction.   总被引:3,自引:0,他引:3  
L Pang  M Graziano  S Wang 《Biochemistry》1999,38(37):12003-12011
The neuropeptide galanin mediates a number of diverse physiological and pathophysiological actions via interaction with membrane-bound receptors. The role that membrane cholesterol plays in modulating the interaction between galanin and one of the three cloned galanin receptor subtypes (GalR2) expressed in Chinese hamster ovary (CHO) cells was examined. Reduction of membrane cholesterol by treatment with methyl-beta-cyclodextrin (CD) or by culturing cells in lipoprotein-deficient serum markedly decreased galanin binding to the receptor. Addition of cholesterol back to CD-treated, cholesterol-depleted membranes restored galanin binding to control levels. Hill analysis suggests that the GalR2 binds multiple molecules of cholesterol (n >/= 3) in a positively cooperative manner. This interaction appears to be cholesterol-specific as only cholesterol and a limited number of cholesterol analogues were able to rescue galanin binding. The inability of some of these analogues to rescue the binding activity also suggests that binding of galanin to GalR2 is independent of membrane fluidity as, like cholesterol, cholesterol analogues generally rigidize membranes. In addition, treatment of the membranes with other modulators of membrane fluidity, e.g. ethanol, did not affect galanin binding to the GalR2. In contrast, treatment of membranes, with filipin, a molecule that clusters cholesterol within the membranes, or with cholesterol oxidase resulted in markedly reduced galanin binding. Incubation of membranes with 100 microM GTP-gamma-S did not alter the IC(50) for CD in the prebinding assay treatment suggesting that the effect of cholesterol was independent of G protein interaction. Preincubation of intact cells with CD also drastically impaired the ability of galanin to activate intracellular inositol phosphate accumulation in GalR2-transfected CHO cells. These data detail a new mechanism for the regulation of galanin receptor signaling which may link altered functions of GalRs with abnormal cholesterol metabolism.  相似文献   

8.
Galanin effects are mediated by three G-protein-coupled receptors: galanin receptor 1 (GalR1), GalR2 and GalR3. We quantified mRNA levels of GalR1, GalR2 and GalR3 in the rat stomach, small and large intestine using real-time RT-PCR. All three GalR mRNAs were detected throughout the gut at different levels. GalR1 and GalR2 mRNA levels were higher in the large than in the small intestine. GalR2 mRNA was most abundant in the stomach. GalR3 mRNA levels were generally quite low. The differential regional distribution of GalRs suggests that the complex effects of galanin in the gut are the result of activating multiple receptor subtypes, whose density, subtype and signaling vary along the gastrointestinal tract.  相似文献   

9.
Xu X  Yang X  Zhang P  Chen X  Liu H  Li Z 《PloS one》2012,7(5):e37621
A large number of neuroanatomical, neurophysiologic, and neurochemical mechanisms are thought to contribute to the development and maintenance of neuropathic pain. However, mechanisms responsible for neuropathic pain have not been completely delineated. It has been demonstrated that neuropeptide galanin (Gal) is upregulated after injury in the dorsal root ganglion (DRG) and spinal dorsal horn (SDH) where it plays a predominantly antinociceptive role. In the present study, sciatic nerve-pinch injury rat model was used to determine the effects of exogenous Gal on the expression of the Gal and its receptors (GalR1, GalR2) in DRG and SDH, the alterations of pain behavior, nerve conduction velocity (NCV) and morphology of sciatic nerve. The results showed that exogenous Gal had antinociceptive effects in this nerve-pinch injury induced neuropathic pain animal model. It is very interesting that Gal, GalR1 and GalR2 change their expression greatly in DRG and SDH after nerve injury and intrathecal injection of exougenous Gal. Morphological investigation displays a serious damage after nerve-pinch injury and an amendatory regeneration after exogenous Gal treatment. These findings imply that Gal, via activation of GalR1 and/or GalR2, may have neuroprotective effects in reducing neuropathic pain behaviors and improving nerve regeneration after nerve injury.  相似文献   

10.
The three cloned galanin receptors show a higher affinity for galanin than for galanin N-terminal fragments. Galanin fragment (1–15) binding sites were discovered in the rat Central Nervous System, especially in dorsal hippocampus, indicating a relevant role of galanin fragments in central galanin communication. The hypothesis was introduced that these N-terminal galanin fragment preferring sites are formed through the formation of GalR1–GalR2 heteromers which may play a significant role in mediating galanin fragment (1–15) signaling. In HEK293T cells evidence for the existence of GalR1–GalR2 heteroreceptor complexes were obtained with proximity ligation and BRET2 assays. PLA positive blobs representing GalR1–GalR2 heteroreceptor complexes were also observed in the raphe-hippocampal system. In CRE luciferase reporter gene assays, galanin (1–15) was more potent than galanin (1–29) in inhibiting the forskolin-induced increase of luciferase activity in GalR1–GalR2 transfected cells. The inhibition of CREB by 50 nM of galanin (1–15) and of galanin (1–29) was fully counteracted by the non-selective galanin antagonist M35 and the selective GalR2 antagonist M871. These results suggested that the orthosteric agonist binding site of GalR1 protomer may have an increased affinity for the galanin (1–15) vs galanin (1–29) which can lead to its demonstrated increase in potency to inhibit CREB vs galanin (1–29). In contrast, in NFAT reporter gene assays galanin (1–29) shows a higher efficacy than galanin (1–15) in increasing Gq/11 mediated signaling over the GalR2 of these heteroreceptor complexes. This disbalance in the signaling of the GalR1–GalR2 heteroreceptor complexes induced by galanin (1–15) may contribute to depression-like actions since GalR1 agonists produce such effects.  相似文献   

11.
Galanin a 29/30-residue neuropeptide has been implicated in several functions in the central nervous system, including the regulation of food consumption. Galanin and its analogues administered intraventricularly or into the hypothalamic region of brain have been shown to reliably and robustly stimulate the consumption of food in sated rodents. Three galanin receptor subtypes have been isolated, all present in the hypothalamus, but little is known about their specific role in mediating this acute feeding response. Presently, we introduce several novel GalR2 selective agonists and then compare the most selective of these novel GalR2 subtype selective agonists to known GalR1 selective agonist M617 for their ability to stimulate acute consumption of several foods shown to be stimulated by central administration of galanin. GalR1 selective agonist M617 markedly stimulated acute consumption of high-fat milk, but neither GalR2 selective agonist affected either high-fat milk or cookie mash intake. The present results are consistent with the involvement of GalR1 in mediating the acute feeding consumption by galanin and suggest an approach applicable to exploring galanin receptor specificity in normal and abnormal behavior and physiology.  相似文献   

12.
甘丙肽(galanin, GAL)作为治疗抑郁症的可能靶点被关注已久,但目前仍未有广泛应用的GAL类抗抑郁药物。GAL可与3种G蛋白偶联受体(GalR1~3)结合,GalR1和GalR3介导促进抑郁的作用,GalR2介导抗抑郁的作用。GAL的N端有生物活性的片段GAL (1-15),通过其受体GalR1-GalR2异聚体(heteromer),介导比GAL更强的调节抑郁效应。GAL (1-15)还可以通过GalR1-GalR2异聚体与5-羟色胺1A受体(5-HT1AR)相互作用形成GalR1-GalR2-5-HT1AR异聚体的方式,加强5-HT1AR激动剂的抗抑郁效果。此外,GAL及其受体还与去甲肾上腺素、神经肽Y、脑源性神经营养因子、多巴胺等递质或因子交互作用调节抑郁。本文梳理GAL及其受体对抑郁的调节作用及其可能机制,并对以GAL及其受体为靶点开发的药物应用于临床治疗抑郁症的可能性进行探讨。  相似文献   

13.
The neuropeptide galanin is ascribed to a variety of biological effects, but selective compounds to examine the specific roles of the three receptor subtypes are currently lacking. The recently introduced chimeric peptide ligands M617 and M871 target the galanin receptors GalR1 and GalR2, respectively. These peptides have been used to examine receptor function in vitro and in vivo, but their affinity to GalR3 has not been tested. Here, we report the binding affinity of these peptides at human GalR3 and demonstrate that M617 binds GalR3 and stimulates this receptor in an agonistic manner, whereas M871 shows very low affinity towards GalR3 (K i 49.2 ± 9.4 nM and >10 μM, respectively). An l-alanine scan of M617 revealed the importance of the ligand C-terminus in GalR3 binding, which stands in contrast to the structural requirements for binding to GalR1 and GalR2. These data provide insights into galanin receptor ligand binding that should be considered when using these compounds in functional studies.  相似文献   

14.
Galanin peptide has recently been found to be highly abundant in early embryonic mouse mesenchyme, while galanin and its receptors are expressed in embryonic mouse stem cells. Bone marrow mesenchymal stem cells (BMMSCs) represent the primary source for adult stem cell therapy. In this study we examined the abundance of galanin and its receptors in BMMSCs and evaluated its possible function. Galanin mRNA and protein were highly expressed in BMMSCs cultures up to four passages, while among the three galanin receptor subtypes (GalR1, GalR2, and GalR3) only GalR2 and to a lesser extent GalR3 were expressed. Using chemotaxis and wound assays we found that galanin protein increased the migration of BMMSCs. Furthermore, increased serum galanin levels in a galanin transgenic model enhanced the mobilization (homing) of injected BMMSCs in vivo. These data suggest a role for galanin in BMMSC migration, probably through activation of the GalR2 receptor.  相似文献   

15.
本实验从新生大鼠嗅球中分离出嗅成鞘细胞,进行体外培养。运用RT—PCR方法检测甘丙肽及其受体在体外培养的嗅成鞘细胞中的表达;运用MTT法检测甘丙肽及其受体激动剂、拮抗剂对嗅成鞘细胞增殖的影响。结果显示:嗅成鞘细胞表达甘丙肽(GAL)及其受体GalR2,而不表达其他两种受体GalRl和GalR3;甘丙肽及两种受体激动剂GALl-11和GAL2-11能够明显地抑制体外培养的嗅成鞘细胞的增殖,这一效应可被非特异性甘丙肽受体拮抗剂M35所阻断。  相似文献   

16.
The chimeric peptide M617, galanin(1–13)-Gln14-bradykinin(2–9)amide, is a novel galanin receptor ligand with increased subtype specificity for GalR1 and agonistic activity in cultured cells as well as in vivo. Displacement studies on cell membranes expressing hGalR1 or hGalR2 show the presence of a high affinity binding site for M617 on GalR1 (Ki=0.23±.12 nM) while lower affinity was seen towards GalR2 (Ki=5.71±1.28 nM) resulting in 25-fold specificity for GalR1. Activation of GalR1 upon stimulation with M617 is further confirmed by internalization of a GalR1-EGFP conjugate. Intracellular signaling studies show the ability of M617 to inhibit forskolin stimulated cAMP formation with 57% and to produce a 5-fold increase in inositol phosphate (IP) accumulation. Agonistic effects on signal transduction are shown on both receptors studied after treatment with M617 in the presence of galanin. In noradrenergic locus coeruleus neurons, M617 induces an outward current even in the presence of TTX plus Ca2+, high Mg2+, suggesting a postsynaptic effect. Intracerebroventricular (i.c.v.) administration of M617 dose-dependently stimulates food uptake in rats while, in contrast, M35 completely fails to affect the feeding behavior. Spinal cord flexor reflex is facilitated by intrathecal (i.t.) administration of M617 as well as galanin with no significant change upon pre-treatment with M617. M617 dose dependently antagonizes the spinal cord hyperexcitablility induced by C-fiber conditioning stimulus and does neither enhance nor antagonize the effect of galanin. These data demonstrate a novel galanin receptor ligand with subtype specificity for GalR1 and agonistic activity, both in vitro and in vivo.  相似文献   

17.
甘丙肽(galanin, GAL)作为治疗抑郁症的可能靶点被关注已久,但目前仍未有广泛应用的GAL类抗抑郁药物。GAL可与3种G蛋白偶联受体(GalR1~3)结合,GalR1和GalR3介导促进抑郁的作用,GalR2介导抗抑郁的作用。GAL的N端有生物活性的片段GAL (1-15),通过其受体GalR1-GalR2异聚体(heteromer),介导比GAL更强的调节抑郁效应。GAL (1-15)还可以通过GalR1-GalR2异聚体与5-羟色胺1A受体(5-HT1AR)相互作用形成GalR1-GalR2-5-HT1AR异聚体的方式,加强5-HT1AR激动剂的抗抑郁效果。此外,GAL及其受体还与去甲肾上腺素、神经肽Y、脑源性神经营养因子、多巴胺等递质或因子交互作用调节抑郁。本文梳理GAL及其受体对抑郁的调节作用及其可能机制,并对以GAL及其受体为靶点开发的药物应用于临床治疗抑郁症的可能性进行探讨。  相似文献   

18.
19.
Expression of the neuropeptide galanin is up-regulated in many brain regions following nerve injury and in the basal forebrain of patients with Alzheimer's disease. We have previously demonstrated that galanin modulates hippocampal neuronal survival, although it was unclear which receptor subtype(s) mediates this effect. Here we report that the protective role played by galanin in hippocampal cultures is abolished in animals carrying a loss-of-function mutation in the second galanin receptor subtype (GalR2-MUT). Exogenous galanin stimulates the phosphorylation of the serine/threonine kinase Akt and extracellular signal-regulated kinase (ERK) in wild-type (WT) cultures by 435 +/- 5% and 278 +/- 2%, respectively. The glutamate-induced activation of Akt was abolished in cultures from galanin knockout animals, and was markedly attenuated in GalR2-MUT animals, compared with WT controls. In contrast, similar levels of glutamate-induced ERK activation were observed in both loss-of-function mutants, but were further increased in galanin over-expressing animals. Using specific inhibitors of either ERK or Akt confirms that a GalR2-dependent modulation in the activation of the Akt and ERK signalling pathways contributes to the protective effects of galanin. These findings imply that the rise in endogenous galanin observed either after brain injury or in various disease states is an adaptive response that reduces apoptosis by the activation of GalR2, and hence Akt and ERK.  相似文献   

20.
本实验运用PCI2细胞和B104细胞对甘丙肽(GAL)在神经增殖上的作用进行了研究。运用RT-PCR方法检测GAL及其受体在PCI2细胞和B104细胞中的表达:运用MTT法检测GAL及其受体激动剂、拮抗剂对两种细胞增殖的影响。结果显示:PCI2细胞表达所有三种GAL受体(GalRs).而不表达GAL;B104细胞表达GAL及两种受体GaIR2和GalR3,而不表达GalRl;GAL及其受体激动剂GAL1-11和GAL2-11能够明显地抑制PC12细胞增殖、却会明显促进B104细胞的增殖。这些效应皆可被非特异性GAL受体拮抗剂M35所阻断。结果说明,GAL可以通过其受体影响细胞的增殖.并且不同受体可能介导不同的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号