首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The aim of this work was to study l-DOPA-containing neuronal structures of the rat posterior and dorsal hypothalamus by means of immunohistochemistry using antiserum against glutaraldehyde conjugated l-DOPA. Aspects and distribution of l-DOPA immunoreaction among cells of the supramammillary nucleus and the A11, A13c and A13 cell groups are described and compared to dopamine immunoreactivity, mainly through a double colored labelling procedure employing a color modification of the DAB reaction by metallic ions. Differences between l-DOPA and dopamine stainings within cell groups as the presence of cells with predominant or exclusive l-DOPA coloration are tentatively explained under the light of previous findings using immunohistochemistry of catecholamines synthesizing enzymes and catecholamines histofluorescence.  相似文献   

2.
Larvae of the nudibranch Phestilla sibogae are induced to metamorphose by a factor from their adult prey, the coral Porites compressa. Levels of endogenous catecholamines increase 6 to 9 days after fertilization, when larvae become competent for metamorphosis. Six- to nine-day larvae, treated with the catecholamine precursor L-DOPA (0.01 mM for 0.5 h), were assayed for metamorphosis in response to coral inducer and for catecholamine content by high-performance liquid chromatography. L-DOPA treatment caused 20- to 50-fold increases in dopamine, with proportionally greater increases in younger larvae, so that L-DOPA-treated larvae of all ages contained similar levels of dopamine. A much smaller (about twofold) increase in norepinephrine occurred in all larvae. The treatment significantly potentiated the frequency of metamorphosis of 7- to 9-d larvae at low concentrations of inducer. In addition, L-DOPA treatment at 9 d increased aldehyde-induced fluorescence in cells that were also labeled in the controls, and revealed additional cells. However, all labeled cells were consistent with the locations of cells showing tyrosine-hydroxylase-like immunoreactivity. Catecholamines are likely to modulate metamorphosis in P. sibogae, but rising levels of catecholamines around the time of competence are insufficient alone to account for sensitivity to inducer in competent larvae.  相似文献   

3.
Parkinson's disease is a neurodegenerative disorder which is mainly characterized by degeneration of the dopaminergic cells in the nigro-striatal system. Due to a lowered L-tyrosine 3-monooxygenase activity, L-tyrosine is not sufficiently transformed to L-DOPA. To date the most common therapy is the administration of the dopamine precursor L-DOPA, with severe collateral effects. Therefore, the substitution of the lacking tyrosine hydroxylase with tyrosinase might be a novel therapeutical approach that would generate specifically L-DOPA from L-tyrosine. We present here evidence that stereotaxic injection of liposome-entrapped tyrosinase is able to significatively increase the levels of dopamine in the rat brain. The catecholamines L-DOPA, dopamine, L-epinephrine, L-norepinephrine were extracted by acid treatment from the brains and detected by HPLC.  相似文献   

4.
A decrease in reduced glutathione levels in dopamine containing nigral cells in Parkinson's disease may result from the formation of cysteinyl-adducts of catecholamines, which in turn exert toxicity on nigral cells. We show that exposure of neurons (CSM 14.1) to 5-S-cysteinyl conjugates of dopamine, L-DOPA, DOPAC or DHMA causes neuronal damage, increases in oxidative DNA base modification and an elevation of caspase-3 activity in cells. Damage to neurons was apparent 12-48 h of post-exposure and there were increases in caspase-3 activity in neurons after 6 h. These changes were paralleled by large increases in pyrimidine and purine base oxidation products, such as 8-OH-guanine suggesting that 5-S-cysteinyl conjugates of catecholamines are capable of diffusing into cells and stimulating the formation of reactive oxygen species (ROS), which may then lead to a mechanism of cell damage involving caspase-3. Indeed, intracellular ROS were observed to rise sharply on exposure to the conjugates. These results suggest one mechanism by which oxidative stress may occur in the substantia nigra in Parkinson's disease.  相似文献   

5.
Administration of L-DOPA is commonly used to treat Parkinson's disease, yet controversy continues as to whether the dopamine arising from it aggravates neuronal loss. Several authors have reported cytotoxic effects of L-DOPA and dopamine on cultured cells, but others have not. In this report using the rat pheochromocytoma cell line PC12 and the M14 human melanoma cell line we show that dopamine-mediated cell death is not specific for neuronal cells. Moreover, our data show that both L-DOPA and dopamine interact with commonly used cell culture media, undergoing oxidation to generate hydrogen peroxide and dopamine semiquinones/quinones. Catalase and reduced glutathione could protect against cytotoxicity. These results suggest that caution needs to be employed when using cell culture studies to predict effects of L-DOPA and/or dopamine in vivo because of the extracellular generation of reactive species in the culture media.  相似文献   

6.
It has been shown that intraperitoneal injections of L-DOPA cause an increase in the matrix activity of chromatin and stimulate the incorporation of [3H]uridine into the nuclear fraction of rat brain cells by 35%. In vitro studies have shown that preincubation of brain chromatin with L-DOPA diminishes the inhibiting effect of actinomycin D on RNA synthesis. It has been found that the rate of RNA synthesis in vitro depends on concentrations of catecholamines (L-DOPA, dopamine, norepinephrine) and serotonin.  相似文献   

7.
Aromatic L-amino acid decarboxylase (AADC) is necessary for conversion of L-DOPA to dopamine. Therefore, AADC gene therapy has been proposed to enhance pharmacological or gene therapies delivering L-DOPA. However, addition of AADC to the grafts of genetically modified cells expressing tyrosine hydroxylase (TH) and GTP cyclohydrolase 1 (GCH1), which produce L-DOPA in parkinsonian rats, resulted in decreased production of L-DOPA and dopamine owing to feedback inhibition of TH by dopamine. End-product feedback inhibition has been shown to be mediated by the regulatory domain of TH, and site-specific mutation of serine 40 makes TH less susceptible to dopamine inhibition. Therefore, we investigated the efficacy of using TH with serine 40 mutated to leucine (mTH) in an ex vivo gene-therapy paradigm. Primary fibroblasts (PF) from Fischer 344 rats were transduced with retrovirus to express mTH or wild-type rat TH cDNA (wtTH). Both cell types were also transduced with GCH1 to provide the obligate TH cofactor, tetrahydrobiopterin. PF transfected with AADC were used as coculture and cografting partners. TH activities and L-DOPA production in culture were comparable between PFwtTHGC and PFmTHGC cells. In cocultures with PFAADC cells, PFmTHGC cells showed significant reduction in the inhibitory effect of dopamine compared with PFwtTHGC cells. In vivo microdialysis measurement showed that cografting PFAADC cells with PFmTHGC cells resulted in smaller decreases in L-DOPA and no reduction in dopamine levels compared with cografts of PFAADC cells with PFwtTHGC cells, which decreased both L-DOPA and dopamine levels. Maintenance of dopamine levels with lower levels of L-DOPA would result in more focused local delivery of dopamine and less potential side-effects arising from L-DOPA diffusion into other structures. These data support the hypothesis that mutation of serine 40 attenuates TH end-product inhibition in vivo and illustrates the importance of careful consideration of biochemical pathways and interactions between multiple genes in gene therapy.  相似文献   

8.
Tyrosinase and L-DOPA decarboxylase activities have been investigated during Bufo bufo development since catecholamines and melanin are formed from common substrates in homologous cells. Catecholamines first appear at stage 13 (neural plate), but tyrosinase, at a very low level, and L-DOPA decarboxylase are present throughout all of prior development. Hence, L-DOPA decarboxylase activity is not likely to be correlated with the control of catecholamine synthesis, although at stage 17 it is mainly localized in the nonneural part of the embryo. The distribution of young melanosomes and L-DOPA decarboxylase suggest a separation between melanogenesis and catecholamine synthesis.  相似文献   

9.
Using reverse phase high-performance liquid chromatography and electrochemical detection with mobile phases composed of simple acids, we have developed an assay technique to measure multiple catecholamines and their catechol metabolites in plasma or brain tissue with sensitivity to the picomole level. Ion-pairing chromatography with nitric or trichloroacetic acid as the mobile phase permits separation and quantitation of norepinephrine, α-methylnorepinephrine, epinephrine, dopamine, α-methyldopamine, l -DOPA, α-methyldopa, carbidopa, and DOPAC. Alumina extraction selectively isolates catechols which are then separated on a reverse-phase column and measured by a commercially available electrochemical detector. This method has been applied to measurement of L-DOPA metabolites in patients with Parkinson's disease treated with L-DOPA and carbidopa and to measurement of catecholamines in rat hypothalamus in the course of studies on L-DOPA and α-methyldopa metabolism. Dihydroxybenzylamine is added as an internal standard and standard curves are linear over two orders of magnitude in concentration with coefficients of variation averaging 3.1%. Quantitation is routinely done to 20 pmol with absolute sensitivity possible to 0.5 pmol.  相似文献   

10.
Although L-DOPA is the drug of choice for Parkinson's disease, prolonged L-DOPA therapy results in decreased drug effectiveness and the appearance of motor complications. This may be due in part to the progressive loss of the enzyme, aromatic L-amino acid decarboxylase (AADC). We have developed an adeno-associated virus vector (AAV-hAADC) that contains human AADC cDNA under the control of the cytomegalovirus promoter. Infusion of this vector into the striatum of parkinsonian rats and monkeys improves L-DOPA responsiveness by improving AADC-mediated conversion of L-DOPA to dopamine. This is now the basis of a proposed therapy for advanced Parkinson's disease. A key concern has been that over-production of dopamine in striatal neurons could cause dopamine toxicity. To investigate this possibility in a controlled system, mixed striatal primary rat neuronal cultures were prepared. Exposure of cultures to high concentrations of L-DOPA induced the following changes: cell death in nigral and striatal neurons, aggregation of neurofilaments and focal axonal swellings, abnormal expression of DARPP-32, and activation of astroglia and microglial cells. Transduction of cultures with AAV-hAADC resulted in efficient and sustained neuronal expression of the AADC protein and prevented all the L-DOPA-induced toxicities. The protective effects were due primarily to AADC-dependent conversion of L-DOPA to dopamine and an increase in induction of vesicular monoamine transporter resulting in dopamine storage in cultured cells. These results suggest a neuroprotective role for AADC gene transfer against L-DOPA toxicity.  相似文献   

11.
We have investigated whether Schwann cells can be modified by gene transfer to synthesize L-3,4-dihydroxyphenylalanine (L-DOPA), the immediate precursor in the formation of dopamine. By using a retrovirus containing a rat tyrosine hydroxylase (TH) cDNA, we established an immortalized rodent Schwann cell line that stably expressed high levels of TH and secreted L-DOPA in vitro when supplied with tyrosine and the essential cofactor biopterin. We also infected primary Schwann cells and demonstrated that cells expressing TH secreted L-DOPA while maintaining their capacity to myelinate neurons in vitro. This study indicate that it may be feasible to utilize autotransplantation of genetically modified Schwann cells to alleviate the movement disorders in Parkinson's disease.  相似文献   

12.
Further studies of dopamine metabolism and function in Tetrahymena   总被引:1,自引:0,他引:1  
The large amounts of dopamine accumulated by cells of Tetrahymena pyriformis strain NT-1 and secreted into their growth medium were found to depend primarily upon an extracellular, non-enzymatic conversion of tyrosine to L-dihydroxyphenylalanine (L-DOPA); L-DOPA was then rapidly taken into the cells and transformed into dopamine enzymatically. Efforts to find physiologically significant dopamine binding sites on the cell surface or dopamine-sensitive adenylate cyclase activity were unsuccessful, suggesting that the catecholamine does not function in Tetrahymena as it does in higher animals.  相似文献   

13.
Enhancing Effect of Manganese on L-DOPA-Induced Apoptosis in PC12 Cells   总被引:8,自引:0,他引:8  
L-DOPA and manganese both induce oxidative stress-mediated apoptosis in catecholaminergic PC12 cells. In this study, exposure of PC12 cells to 0.2 mM MnCl2 or 10-20 microM L-DOPA neither affected cell viability, determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, nor induced apoptosis, tested by flow cytometry, fluorescence microscopy, and the TUNEL technique. L-DOPA (50 microM) induced decreases in both cell viability and apoptosis. When 0.2 mM MnCl2 was associated with 10, 20, or 50 microM L-DOPA, a concentration-dependent decrease in cell viability was observed. Apoptotic cell death also occurred. In addition, manganese inhibited L-DOPA effects on dopamine (DA) metabolism (i.e., increases in DA and its acidic metabolite levels in both cell lysate and incubation medium). The antioxidant N-acetyl-L-cysteine significantly inhibited decreases in cell viability, apoptosis, and changes in DA metabolism induced by the manganese association with L-DOPA. An increase in autoxidation of L-DOPA and of newly formed DA is suggested as a mechanism of manganese action. These data show that agents that induce oxidative stress-mediated apoptosis in catecholaminergic cells may act synergistically.  相似文献   

14.
An analytical scheme using high-performance liquid chromatography (HPLC) has been developed to separate radiolabeled catecholamines in cell extracts derived from mammalian cells grown in tissue culture. Four different types of chromatographic systems have been employed to effect separations of groups of metabolites that possess similar organic functional groups. Data obtained by thin-layer chromatography are also presented and it is demonstrated that HPLC is the system of choice for the separation and quantitative analysis of metabolites of dopamine in physiological fluids.  相似文献   

15.
The large amounts of dopamine accumulated by cells of Tetrahymena pyriformis strain NT-1 and secreted into their growth medium were found to depend primarily upon an extracellular, non-enzymatic conversion of tyrosine to L-dihydroxyphenylalanine (L-DOPA); L-DOPA was then rapidly taken into the ceils and transformed into dopamine enzymatically. Efforts to find physiologically significant dopamine binding sites on the cell surface or dopamine-sensitive adenylate cyclase activity were unsuccessful, suggesting that the catecholamine does not function in Tetrahymena as it does in higher animals.  相似文献   

16.
Tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis, is inhibited in vitro by catecholamines binding to two distinct sites on the enzyme. The N-terminal regulatory domain of TH contributes to dopamine binding to the high affinity site of the enzyme. We prepared an N-terminal deletion mutant of TH to examine the role of the N-terminal domain in dopamine binding to the low affinity site. Deletion of the N-terminus of TH removes the high affinity dopamine binding site, but does not affect dopamine binding to the low affinity site. The role of the low affinity site in situ was examined by incubating PC12 cells with L-DOPA to increase the cytosolic catecholamine concentration. This resulted in an inhibition of TH activity in situ under both basal conditions and conditions that promoted the phosphorylation of Ser40. Therefore the low affinity site is active in situ regardless of the phosphorylation status of Ser40.  相似文献   

17.
Insufficient levels of L-DOPA, released from the retinal pigment epithelium (RPE), in albino animals are considered responsible for the abnormal development of the underlying neural retina. L-DOPA normalizes retinal neurogenesis by reducing levels of cell proliferation either by acting on the cells directly or by being converted into dopamine. Here we report the effects of dopamine on mitosis in early postnatal neural retinae from albino and pigmented rats, using 4D (x, y, z and time) confocal microscopy. Exogenous dopamine significantly prolongs mitosis in retinae from albino, but not pigmented, animals. As fewer cells move into and divide in the ventricular zone (VZ) in the presence of dopamine, we conclude that the overall cell cycle is affected. The D1 receptor blocker, SCH 23390, inhibits these effects. Thus, the differential effects of dopamine on neural retinae from pigmented and albino rats in vitro must result from the activation of D1 receptors, which are present in the retina from birth. Immunohistochemical labeling of D1 receptors shows that the pattern of their distribution is similar between pigmentation phenotypes, but levels of expression may be elevated in albinos. Labeling is most intense in the inner plexiform layer but is present throughout the neuroblastic layer. These findings are discussed in light of previous reports of reduced catecholamine levels in the albino retina.  相似文献   

18.
Antisera were raised against L-3,4-dihydroxyphenylalanine (L-DOPA), dopamine (DA), noradrenaline (NA), and octopamine (OA). This was achieved by coupling each molecule to bovine serum albumin or human serum albumin using glutaraldehyde. The conjugated aromatic amines were kept in a reducing medium containing sodium metabisulfite. Antiserum specificity was tested using an enzyme-linked immunosorbent assay method for catecholamines. Competition experiments were done between the immunogen coated on the well plates and each catecholamine, either in the free state or in conjugated form, previously incubated with an antiserum. In each case, the nonconjugated compound was poorly recognized. The nonreduced conjugates of L-DOPA and DA were well recognized, whereas those of NA and OA were poorly immunoreactive. The cross-reactivity ratios established in the competition experiments allowed the specificity of the immune response to be defined. In each case, it was found to be high. The results suggest that the antibodies of L-DOPA and DA antisera recognize preferentially the catechol moiety, whereas for the anti-NA and anti-OA antibodies, the lateral chain is important.  相似文献   

19.
20.
Tyrosinase, which catalyzes both the hydroxylation of tyrosine and consequent oxidation of L-DOPA to form melanin in melanocytes, is also expressed in the brain, and oxidizes L-DOPA and dopamine. Replacement of dopamine synthesis by tyrosinase was reported in tyrosine hydroxylase null mice. To examine the potential benefits of autograft cell transplantation for patients with Parkinson’s disease, tyrosinase-producing cells including melanocytes, were transplanted into the striatum of hemi-parkinsonian model rats or mice lesioned with 6-hydroxydopamine. Marked improvement in apomorphine-induced rotation was noted at day 40 after intrastriatal melanoma cell transplantation. Transplantation of tyrosinase cDNA-transfected hepatoma cells, which constitutively produce L-DOPA, resulted in marked amelioration of the asymmetric apomorphine-induced rotation in hemi-parkinsonian mice and the effect was present up to 2 months. Moreover, parkinsonian mice transplanted with melanocytes from the back skin of black newborn mice, but not from albino mice, showed marked improvement in the apomorphine-induced rotation behavior up to 3 months after the transplantation. Dopamine-positive signals were seen around the surviving transplants in these experiments. Taken together with previous studies showing dopamine synthesis and metabolism by tyrosinase, these results highlight therapeutic potential of intrastriatal autograft cell transplantation of melanocytes in patients with Parkinson’s disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号