首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The antigenically-active polypeptides of the Sm and RNP autoimmune ribonucleoprotein complexes from rabbit thymus were distinguished using protein blots. The complexes were fractionated electrophoretically by SDS gel electrophoresis, transferred to nitrocellulose and probed with individual autoimmune sera. Anti-Sm sera recognized a 13,000 molecular weight protein almost exclusively. Anti-RNP sera consistently recognized proteins of 70,000 (a doublet) and 40,000 molecular weight. Reactivities of the immobilized proteins were not dependent on RNA. RNA was necessary for activity when assayed by counterimmunoelectrophoresis, as demonstrated by RNase sensitivity, suggesting a role for RNA in mediating a precipitin reaction of the two antigens.  相似文献   

2.
Immunoaffinity purified Sm/RNP antigens from buffalo and goat liver were studied to determine the role of RNA and proteins towards the antigenicity of Sm and RNP antigens. A more direct approach using enzyme-linked immunosorbent assay on nylon beads has been utilized to look into the problem. The effect of enzyme treatment and the role of RNA and protein fractions in influencing antigenicity have been described. RNA seems to be involved in the maintenance of RNP specific polypeptides in suitable conformation so as to keep them in solution. Removal of RNA leads to insolubilization of RNP specific polypeptides. Antibodies to Sm and RNP antigens have been shown to cross react with poly A containing heterogeneous nuclear ribonucleoprotein with no cross reactivity with thymus RNA or DNA.  相似文献   

3.
The Sm small nuclear ribonucleoproteins (snRNPs) from mammalian cells have been characterized as containing U1, U2, U4, U5, and U6 RNA associated with some subset of at least 10 distinct polypeptides (called 68K, A, A', B, B', C, D, E, F, and G) that range in molecular weight from 68,000 to 11,000. Whereas this entire collection of snRNP particles is precipitated by patient anti-Sm autoantibodies, anti-(U1)RNP autoantibodies specifically recognize U1 snRNPs. Here, we have performed immunoblots using the sera from 29 patients and a mouse anti-Sm monoclonal antibody to identify which HeLa cell snRNP proteins carry anti-Sm or anti-(U1)RNP antigenic determinants. Strikingly, every serum surveyed, as well as the monoclonal antibody, recognizes determinants on two or more snRNP protein components. The three proteins, 68K, A, and C, that uniquely fractionate with U1 snRNPs are specifically reactive with anti-(U1)RNP sera in blots. Anti-Sm patient sera and the mouse monoclonal antibody react with proteins B, B', D, and sometimes E, one or more of which must be present on all Sm snRNPs. The blot results combined with data obtained from a refined 32P-labeled RNA immunoprecipitation assay reveal that, in our collection of the sera from 29 patients, anti-Sm rarely exists in the absence of equal or higher titers of anti-(U1)RNP; moreover, (U1)RNP sera often contain detectable levels of anti-Sm. Our findings further define the protein composition of the Sm snRNPs and raise intriguing questions concerning the relatedness of snRNP polypeptides and the mechanism of autoantibody induction.  相似文献   

4.
Although useful for specific purposes, immunofluorescence, precipitation in agarose gels, and the m.w. estimation of RNA or proteins immunoprecipitated from transformed cells often provide partial or ambiguous definition of autoantibody specificity. We have analyzed organ and cell extracts by one-and two-dimensional electrophoresis together with Western blotting to define the fine specificities of antibodies to the ribonucleoprotein (RNP) antigens Ro, La, Sm, RNP and Jo-1. One-dimensional analysis identified the Ro protein as a 57 kilodalton (kd) protein, although many anti-Ro sera also react with a 50 kd protein. La antisera react with 50 and 43 kd proteins. The 50 kd La protein readily breaks down into 43, 25, and smaller immunoreactive cleavage products. Partial proteolysis of Ro and La proteins in human spleen extracts produces similar immunoreactive products, providing evidence for a common structure. The major immunoreactive Sm antigens defined by human polyclonal antisera and a mouse monoclonal antiserum were doublets of 25/26 and 16/18 kd, whereas anti-RNP sera reacted with a protein of 68 kd. Most Sm-RNP antisera contained antibodies reactive with additional proteins, especially when whole cell extracts were used as a source of antigens. Two-dimensional analysis provided characteristic maps of the antigens. Ro and La were acidic, and La showed a unique set of acidic charge isomers at 50 and 43 kd. Anti-Sm antibodies reacted with discrete dots corresponding to both the acidic and basic regions of the first-dimension (charge) gels, whereas the RNP antigen showed a series of basic charge isomers of 68 kd. Many anti-Sm-RNP sera reacted with other closely spaced proteins of a similar charge and size to the Sm and RNP antigens, suggesting antibody cross-reactivity or reactivity with closely related functional proteins. Although Jo-1 had the same m.w. as the undegraded La antigen, the fingerprints were quite distinctive on two-dimensional electrophoresis. The results of this study indicate how the source and preparation of antigen extracts, as well as protein degradation, influence the m.w. determinations of soluble protein antigens. With these factors taken into account, two-dimensional fractionation with immunoblotting provides a highly discriminating, sensitive, and reproducible method of analysis of autoantibody specificity. This technique can be used to standardize reference antisera and to study protein antigens in normal and abnormal cell and tissue extracts, and could lead to new or more precise correlations with clinical disease.  相似文献   

5.
Whole nuclear and cytoplasmic fractions from HeLa cells were analyzed in protein gel blots probed with either monoclonal anti-Sm or polyclonal anti-(U1)RNP antibodies. The cells were fractionated by a nonaqueous procedure, to minimize proteolysis and artifactual leakage of nuclear components to the cytoplasmic fraction. Unexpectedly, more reactive proteins were detected in the nucleus than shown earlier in partially purified small nuclear ribonucleoprotein particles (snRNPs). In addition, reactive polypeptides were now found in the cytoplasm. These results are discussed in reference to the possibility that the nucleus and cytoplasm of adult somatic human cells may have a more complex than anticipated set of populations of polypeptides bearing Sm or RNP antigenic determinants, including some proteins that might not be in snRNP form.  相似文献   

6.
Polyclonal antibodies were raised against purified protein components of the U2 small nuclear ribonucleoprotein (snRNP) from Trypanosoma brucei. Through immunoblot and immunoprecipitation analyses three antisera were characterized that reacted specifically with U2 snRNP proteins of molecular weights 40,000 (anti-40K) and 16,500 (anti-16.5K), and with each of four proteins of molecular weights 14,000, 12,500, 10,000, and 8,500 (anti-CP). Anti-40K antibodies specifically immunoprecipitated the U2 snRNP from trypanosomal extracts, whereas anti-CP antibodies recognized several snRNPs, including the SL RNP and the U2 and U4/U6 snRNPs; in addition, minor RNAs were detected, suggesting that a family of snRNPs with common or related protein components exists in trypanosomes. None of these antibodies cross-reacted significantly with total mammalian snRNP proteins, indicating that the trypanosomal snRNP proteins are immunologically distinct from their mammalian counterparts. Using immunofluorescence microscopy, the snRNP proteins exhibited a differential cellular distribution. Whereas the 40-kDa protein is localized exclusively in the nucleus, with the nucleolus being excluded, a fraction of the common proteins also resides in the cytoplasm.  相似文献   

7.
Small nuclear ribonucleoprotein particles containing the five major nucleoplasmic snRNAs U1, U2, U4, U5 and U6 as well as two smaller sized snRNAs were purified from broad bean nuclear extracts by anti-m3G, monoclonal antibody, immunoaffinity chromatography. We have so far defined 13 polypeptides of approximate mol. wts. of 11 kd, 11.5 kd, 12.5 kd, 16 kd, 17 kd, 17.5 kd, 18.5 kd, 25 kd (double band), 30 kd, 31 kd, 35 kd, 36 kd and 54 kd. Upon fractionation of the UsnRNPs by anion exchange chromatography, essentially pure U5 snRNPs were obtained, containing the 11 kd, 11.5 kd, 12.5 kd, 16 kd, 17 kd, 17.5 kd, 35 kd and 36 kd polypeptides. These may therefore represent the common snRNP polypeptides and which may also be present in the other snRNPs. By immunoblotting studies, using anti-Sm sera and mouse monoclonal antibodies we show that the 35 kd and 36 kd proteins are immunologically related to the mammalian common B/B' proteins. The broad bean 16 kd and 17 kd proteins appear to share structural elements with the mammalian D protein. The three proteins of mol. wts. 11 kd, 11.5 kd and 12.5 kd probably represent the broad bean polypeptides E, F, and G. Cross-reactivity of proteins of mol. wts of 30 kd and 31 kd with Anti-(U1/U2)RNP antibodies suggests that they may represent the broad bean A and B" polypeptides. The 54 kd protein and the 18.5 kd protein could be candidates for the U1 specific 70 k and C polypeptides. Our results demonstrate a strong similarity between the overall structure of broad bean and mammalian snRNPs.  相似文献   

8.
C-reactive protein reacts with the U1 small nuclear ribonucleoprotein   总被引:9,自引:0,他引:9  
C-reactive protein (CRP) was found to produce a small, discrete, speckled fluorescence pattern in the nucleus of HEp-2 cells. Double staining with anti-RNP serum and CRP produced very similar staining patterns. By counterimmunoelectrophoresis CRP was bound to extractable nuclear antigens found in rabbit thymus extract. The reactive components of the extract were only partially sensitive to treatment with RNase. CRP immunoprecipitated the U1 RNA species from [32P]labeled HeLa cells and the protein bands of the Sm/RNP complex from [35S]-methionine-labeled HeLa cells. By blotting, CRP bound to several discrete bands in a calcium-dependent, PC-inhibitable manner. Two of the bands comigrated with the 70K protein band associated with the U1 snRNP, and its major breakdown product. Binding to these bands was inhibited by both EDTA and PC indicating that CRP binds these proteins through the PC-binding site. Binding to the 70K protein of the U1 snRNP was confirmed by reactivity with the recombinant 70K protein in a dot blot. These findings indicate the CRP binds to the U1-RNP snRNP particle. Considering the ability of CRP to inhibit antibody responses to its ligands and its ability to activate C and promote phagocytosis it is suggested that CRP may play a role in the regulation of autoantibody responses to nuclear Ag.  相似文献   

9.
The biogenesis of the spliceosomal small nuclear ribonucleoproteins (snRNPs) U1, U2, U4, and U5 involves: (a) migration of the snRNA molecules from the nucleus to the cytoplasm; (b) assembly of a group of common proteins (Sm proteins) and their binding to a region on the snRNAs called the Sm-binding site; and (c) translocation of the RNP back to the nucleus. A first prerequisite for understanding the assembly pathway and nuclear transport of the snRNPs in more detail is the knowledge of all the snRNP proteins that play essential roles in these processes. We have recently observed a previously undetected 69- kD protein in 12S U1 snRNPs isolated from HeLa nuclear extracts under non-denaturing conditions that is clearly distinct from the U1-70K protein. The following evidence indicates that the 69-kD protein is a common, rather than a U1-specific, protein, possibly associating with the snRNP core particles by protein-protein interaction. (a) Antibodies raised against the 69-kD protein, which did not cross-react with any of the Sm proteins B'-G, precipitated not only U1 snRNPs, but also the other spliceosomal snRNPs U2, U4/U6 and U5, albeit to a lower extent. (b) U1, U2, and U5 core RNP particles reconstituted in vitro contain the 69-kD protein. (c) Xenopus laevis oocytes contain an immunologically related homologue of the human 69-kD protein. When U1 snRNA as well as a mutant U1 snRNA, that can bind the Sm core proteins but lacks the capacity to bind the U1-specific proteins 70K, A, and C, were injected into Xenopus oocytes to allow assembly in vivo, they were recognized by antibodies specific against the 69-kD protein in the ooplasm and in the nucleus. The 69-kD protein is under-represented, if present at all, in purified 17S U2 and in 25S [U4/U6.U5] tri-snRNPs, isolated from HeLa nuclear extracts. Our results are consistent with the working hypothesis that this protein may either play a role in the cytoplasmic assembly of the core domain of the snRNPs and/or in the nuclear transport of the snRNPs. After transport of the snRNPs into the nucleus, it may dissociate from the particles as for example in the case of the 17S U2 or the 25S [U4/U6.U5] tri-snRNP, which bind more than 10 different snRNP specific proteins each in the nucleus.  相似文献   

10.
We report a new antibody specificity in 15 sera recovered from a group of dogs developing systemic lupus erythematosus (SLE) or clinically related disorders. This antibody stains in a speckled fashion the nucleus of human Hep-2 cells. Immunodiffusion tests with saline extracts of rabbit thymus showed that all 15 sera generate a common precipitation line which crosses the lines from reference sera to Sm, SS-A/ro, SS-B/La, and RNP antigens. The target nuclear antigen is a 40 kD polypeptide (p40). An important property of p40 resides in its ability to bind specifically Wheat Germ Agglutinin lectin but not Concanavalin A, supporting the notion that the antigen is a glycoprotein bearing a N-acetylglucosamine moiety.  相似文献   

11.
At least 20 major proteins make up the ribonucleoprotein (RNP) complexes of heterogeneous nuclear RNA (hnRNA) in mammalian cells. Many of these proteins have distinct RNA-binding specificities. The abundant, acidic heterogeneous nuclear RNP (hnRNP) K and J proteins (66 and 64 kDa, respectively, by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) are unique among the hnRNP proteins in their binding preference: they bind tenaciously to poly(C), and they are the major oligo(C)- and poly(C)-binding proteins in human HeLa cells. We purified K and J from HeLa cells by affinity chromatography and produced monoclonal antibodies to them. K and J are immunologically related and conserved among various vertebrates. Immunofluorescence microscopy with antibodies shows that K and J are located in the nucleoplasm. cDNA clones for K were isolated, and their sequences were determined. The predicted amino acid sequence of K does not contain an RNP consensus sequence found in many characterized hnRNP proteins and shows no extensive homology to sequences of any known proteins. The K protein contains two internal repeats not found in other known proteins, as well as GlyArgGlyGly and GlyArgGlyGlyPhe sequences, which occur frequently in many RNA-binding proteins. Overall, K represents a novel type of hnRNA-binding protein. It is likely that K and J play a role in the nuclear metabolism of hnRNAs, particularly for pre-mRNAs that contain cytidine-rich sequences.  相似文献   

12.
Messenger RNA processing in trypanosomes by cis and trans splicing requires spliceosomal small nuclear ribonucleoproteins (snRNPs) U1, U2, U4/U6, and U5, as well as the spliced leader (SL) RNP. As in other eukaryotes, these RNPs share a core structure of seven Sm polypeptides. Here, we report that the identity of the Sm protein constituents varies between spliceosomal snRNPs: specifically, two of the canonical Sm proteins, SmB and SmD3, are replaced in the U2 snRNP by two novel, U2 snRNP-specific Sm proteins, Sm15K and Sm16.5K. We present a model for the variant Sm core in the U2 snRNP, based on tandem affinity purification-tagging and in vitro protein-protein interaction assays. Using in vitro reconstitutions with canonical and U2-specific Sm cores, we show that the exchange of two Sm subunits determines discrimination between individual Sm sites. In sum, we have demonstrated that the heteroheptameric Sm core structure varies between spliceosomal snRNPs, and that modulation of the Sm core composition mediates the recognition of small nuclear RNA-specific Sm sites.  相似文献   

13.
U1 small nuclear ribonucleoprotein (snRNP) recognizes the 5′‐splice site early during spliceosome assembly. It represents a prototype spliceosomal subunit containing a paradigmatic Sm core RNP. The crystal structure of human U1 snRNP obtained from natively purified material by in situ limited proteolysis at 4.4 Å resolution reveals how the seven Sm proteins, each recognize one nucleotide of the Sm site RNA using their Sm1 and Sm2 motifs. Proteins D1 and D2 guide the snRNA into and out of the Sm ring, and proteins F and E mediate a direct interaction between the Sm site termini. Terminal extensions of proteins D1, D2 and B/B′, and extended internal loops in D2 and B/B′ support a four‐way RNA junction and a 3′‐terminal stem‐loop on opposite sides of the Sm core RNP, respectively. On a higher organizational level, the core RNP presents multiple attachment sites for the U1‐specific 70K protein. The intricate, multi‐layered interplay of proteins and RNA rationalizes the hierarchical assembly of U snRNPs in vitro and in vivo.  相似文献   

14.
Anti-Sm is an antibody specificity often associated with the autoimmune disease systemic lupus erythematosus. The polypeptides Sm-B'/B (estimated molecular mass 27 and 26 kDa, respectively) are primary targets of Sm antibodies. Sm-B'/B are part of the core polypeptides of small ribonucleoprotein particles (snRNP) involved in pre-mRNA splicing. Sm-B'/B share the same amino-terminal sequence as we determined by microsequence analyses of the purified polypeptides. Oligonucleotide probes based on that sequence were used to isolate seven clones from a human lymphoblastoid cDNA library in lambda gt10. The clones contained a single coding region for a protein of approximately 25 kDa. The predicted amino-terminal sequence was identical to that of the isolated Sm-B'/B polypeptides. In vitro translation experiments produced a protein immunoreactive with human polyclonal anti-Sm antibodies. The isolation of only one unique cDNA sequence suggests that Sm-B'/B may be post-translational variants encoded by a single message. The specific structural features which distinguish Sm-B' from Sm-B have yet to be determined. Northern blot analysis confirmed the diverse tissue and species distribution expected for these immunologically conserved polypeptides. The Sm-B'/B primary sequence is rich in proline (20%) and glycine (15%) residues. The prolines are concentrated in the carboxyl-terminal half of the protein and display a repetitive unit that is shared with other snRNP and nucleic acid binding proteins. Analysis of these arrays suggests an eight residue proline-rich consensus sequence with potential as either an RNA binding domain, or as a site of protein/protein interaction.  相似文献   

15.
RNP, Sm and SS-B nuclear antigens from calf thymus were studied with respect to the size distribution on sucrose gradients as well as to the molecular integrity and related structural changes when they were subjected to enzymatic digestions under different conditions. Making a difference with RNP particles, the Sm size distribution is concentration dependent, a property in accordance with the complexity of the Sm particles in comparison with the RNPs. The use of combined effects of temperature, endogenous proteases and RNase A, allowed us to gain insight into the limits of stability of the three antigenic particles. Following treatments in the absence of RNAse A, the degradation products (32-38 Kd molecular weight) of the 70 Kd RNP polypeptide remain stable and associated with other molecules within the RNP particle. It was also found that the phosphate groups of the SS-B protein moiety are only accessible to alkaline phosphatase if the RNA of the SS-B particle is degraded by the action of RNAse A.  相似文献   

16.
The association of Sm proteins with U small nuclear RNA (snRNA) requires the single-stranded Sm site (PuAU(4-6)GPu) but also is influenced by nonconserved flanking RNA structural elements. Here we demonstrate that a nonameric Sm site RNA oligonucleotide sufficed for sequence-specific assembly of a minimal core ribonucleoprotein (RNP), which contained all seven Sm proteins. The minimal core RNP displayed several conserved biochemical features of native U snRNP core particles, including a similar morphology in electron micrographs. This minimal system allowed us to study in detail the RNA requirements for Sm protein-Sm site interactions as well as the kinetics of core RNP assembly. In addition to the uridine bases, the 2' hydroxyl moieties were important for stable RNP formation, indicating that both the sugar backbone and the bases are intimately involved in RNA-protein interactions. Moreover, our data imply that an initial phase of core RNP assembly is mediated by a high affinity of the Sm proteins for the single-stranded uridine tract but that the presence of the conserved adenosine (PuAU.) is essential to commit the RNP particle to thermodynamic stability. Comparison of intact U4 and U5 snRNAs with the Sm site oligonucleotide in core RNP assembly revealed that the regions flanking the Sm site within the U snRNAs facilitate the kinetics of core RNP assembly by increasing the rate of Sm protein association and by decreasing the activation energy.  相似文献   

17.
Two structurally distinct RNP complexes (MI and MII), each with a sedimentation value of approx. 40S, were isolated from rat liver nuclear extracts by sucrose gradient centrifugation and subsequent native gel electrophoresis of the 40S hnRNP-containing fractions. MII RNP contained the bulk of hnRNA and hnRNP proteins (i.e. the 32-45KD core proteins and polypeptides of 60-80 and 110-130KD). MI RNP was characterized by the exclusive presence of U-snRNAs (U1, U2, U4, U5 and U6), their well known snRNP polypeptides and a number of Sm-associated proteins in the range of 50-210KD. Immunoselection experiments employing a monoclonal antibody with an established specificity for the U2-snRNP-specific B" polypeptide proved that the RNA and protein components characteristic of MI were part of a single multi-snRNP unit. The prominent 200/210KD protein doublet of MI was identified immunochemically as the rat homologue of the yeast PRP8 protein, a known U5-associated splicing component. Based on the major biochemical and immunochemical features of MI and MII RNP complexes, we conclude that MII represents the monomeric 40S hnRNP structure, whereas MI defines a novel multi-snRNP entity.  相似文献   

18.
Antibodies against naked U1RNA can be found in sera from patients with overlap syndromes of systemic lupus erythematosus (SLE) in addition to antibodies directed to the proteins of U1 ribonucleoproteins (U1RNP). We investigated the reactivity of these U1RNA specific autoantibodies with the native U1RNP particle both in vitro and inside the cell. For this purpose a method was developed to purify human autoantibodies directed to specific regions of U1RNA. The antibodies are specifically directed to either stemloop II or stemloop IV of U1RNA and do not crossreact with protein components of U1RNP. Both types of antibody are able to precipitate from cell extracts native U1snRNPs containing most, if not all, protein components. Immunofluorescence patterns indicate that the antigenic sites on the RNA, i.e. the stem of stemloop II and the loop of stemloop IV, are also available after fixation of the cells. Immunoelectron microscopy employing anti-stemloop IV antibodies and purified, complete U1snRNP particles showed that stemloop IV is located within the body of the U1RNP complex, which also comprises the Sm site and the common Sm proteins. The anti-U1RNA autoantibodies described in this paper recognize native U1RNP particles within the cell and can therefore be used as tools to study mechanisms involved in splicing of pre-mRNA.  相似文献   

19.
The 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (Chaps)-solubilized ryanodine receptor (RyR) of lobster skeletal muscle has been isolated by rate density centrifugation as a 30 S protein complex. Sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis of the purified 30 S receptor revealed a single high molecular weight protein band with a mobility intermediate between those of the mammalian skeletal and cardiac M(r) 565,000 RyR polypeptides. Immunoblot analysis showed no or only minimal cross-reactivity with the rabbit skeletal and canine cardiac RyR polypeptides. By immunofluorescence the lobster RyR was localized to the junctions of the A-I bands. Following planar lipid bilayer reconstitution of the purified 30 S lobster RyR, single channel K+ and Ca2+ currents were observed which were modified by ryanodine and optimally activated by millimolar concentrations of cis (cytoplasmic) Ca2+. Vesicle-45Ca2+ flux measurements also indicated an optimal activation of the lobster Ca2+ channel by millimolar Ca2+, whereas 45Ca2+ efflux from mammalian skeletal and cardiac muscle sarcoplasmic reticulum (SR) vesicles is optimally activated by micromolar Ca2+. Further, mammalian muscle SR Ca2+ release activity is modulated by Mg2+ and ATP, whereas neither ligand appreciably affected 45Ca2+ efflux from lobster SR vesicles. These results suggested that lobster and mammalian muscle express immunologically and functionally distinct SR Ca2+ release channel protein complexes.  相似文献   

20.
Our present data indicate that the Mr 34–40,000 polypeptides which are involved in the binding of a large fraction of hnRNA sequences, including mRNA, are for the most part metabolically stable species in mouse ascites tumor cells. An exception to this generalization is the smallest of 30S RNP core polypeptides, the Mr 34,000 protein, which has a relatively high turnover rate. The relationship of the various synthesis and degradation rates to the physiological state of mammalian cells remains to be determined, as does the pathway of assembly and disassembly of RNP substructures during re-utilization of the proteins and during their turnover. Immunofluorescent studies, which have confirmed the expected nucleoplasmic or euchromatic localization of the RNP core proteins, have also indicated that these species are stable during mitosis, at which time they are dispersed through the cell away from the condensed chromosomes. The proteins appear to relocate in the nucleus as soon as the nuclear envelope is reformed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号