首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hyperhomocysteinemia (HHcy) is associated with impaired endothelial-dependent vasodilatation and increased risk of atherosclerosis and thrombosis. Here, we summarize some of our previous work on the effect of HHcy on pathways involved in endothelium-dependent vasodilatation, and present new data concerning the endothelium-derived hyperpolarizing factor (EDHF)-mediated vasodilatation. We showed that the 894 G>T single-nucleotide polymorphism in the human endothelial nitric oxide synthase gene (eNOS) increased the risk of recurrent venous thrombosis in individuals with elevated homocysteine levels, indicating that the pathophysiological mechanism in HHcy involves impaired NO-mediated vasodilatation. In addition, the EDHF-mediated vasodilatation of the renal artery was disturbed in diet-induced hyperhomocysteinemic rats. Interestingly, we demonstrated that pretreatment of rats with periodate-oxidized adenosine (Adox), which is an inhibitor of S-adenosylhomocysteine hydrolase, prevented the methionine-induced rise in plasma total Hcy (tHcy) levels but not the inhibition of the EDHF pathway. Furthermore, we demonstrated that S-adenosylhomocysteine (AdoHcy) and S-adenosylmethionine (AdoMet) levels were increased in the kidneys of diet-induced HHcy rats, resulting in a decreased AdoMet:AdoHcy ratio. In addition, we demonstrated that mRNA expression of Connexin 40, which is one of the structural subunits of gap-junctions, was down-regulated in endothelial cells of HHcy rats, and correlated with elevated AdoHcy levels in kidney of these rats. These finding suggest a key role for AdoHcy in relation to decreased Cx40 mRNA expression and impaired EDHF-mediated vasodilatation of HHcy rats.  相似文献   

2.
Endothelial dysfunction is considered as a major risk factor of cardiovascular complications of type I and types II diabetes. Impaired endothelium-dependent vasodilatation can be directly linked to a decreased synthesis of the endothelium-derived nitric oxide (NO) and/or an increase in the production of reactive oxygen species such as superoxide. Administration of tetrahydrobiopterin, an important co-factor for the enzyme nitric oxide synthase (NOS), has been demonstrated to enhance NO production in prehypertensive rats, restore endothelium-dependent vasodilatation in coronary arteries following reperfusion injury, aortae from streptozotocin-induced diabetic rats and in patients with hypercholesterolemia. Tetrahydrobiopterin supplementation has been shown to improve endothelium-dependent relaxation in normal individuals, patients with type II diabetes and in smokers. These findings from different animal models as well as in clinical trials lead to the hypothesis that tetrahydrobiopterin, or a precursor thereof, could be a new and an effective therapeutic approach for the improvement of endothelium function in pathophysiological conditions. In addition to NO, the endothelium also produces a variety of other vasoactive factors and a key question is: Is there also a link to changes in the synthesis/action of these other endothelium-derived factors to the cardiovascular complications associated with diabetes? Endothelium-derived hyperpolarizing factor, or EDHF, is thought to be an extremely important vasodilator substance notably in the resistance vasculature. Unfortunately, the nature and, indeed, the very existence of EDHF remains obscure. Potentially there are multiple EDHFs demonstrating vessel selectivity in their actions. However, until now, identity and properties of EDHF that determine the therapeutic potential of manipulating EDHF remains unknown. Here we briefly review the current status of EDHF and the link between EDHF and endothelial dysfunction associated with diabetes.  相似文献   

3.
Jack AM  Keegan A  Cotter MA  Cameron NE 《Life sciences》2002,71(16):1863-1877
Diabetes causes endothelial dysfunction, with deleterious effects on nitric oxide (NO) mediated vasodilatation. However, in many vessels other local vasodilators such as endothelium-derived hyperpolarizing factor (EDHF), prostacyclin, epoxides or endocannabinoids are also important. Several of these factors may be derived from omega-6 essential fatty acids via arachidonate metabolism. Diabetes inhibits this pathway, a defect that may be bypassed by diets enriched with omega-6 gamma-linolenic acid-containing oils such as evening primrose oil (EPO). The aim was to examine the effects of preventive EPO treatment on endothelium-dependent and neurally mediated vasorelaxation. Diabetes was induced by streptozotocin in rats; duration was 8 weeks. Vascular responses were examined in vitro on thoracic aorta, corpus cavernosum and perfused mesenteric bed preparations. Diabetes caused 25% and 35% deficits, respectively, in aorta and corpus cavernosum NO-mediated endothelium-dependent relaxation to acetylcholine that were largely unaffected by EPO treatment. Moreover, a 44% reduction in maximum corpus cavernosum vasorelaxation to nitrergic nerve stimulation was not prevented by EPO. However, for the mesenteric vascular bed, a 29% diminution of responses to acetylcholine, mediated by both NO and EDHF, was 84% attenuated by EPO treatment. When the EDHF component was isolated during NO synthase inhibition, a 76% diabetic deficit was noted. This was completely prevented by EPO treatment, which also caused supernormal EDHF responses in nondiabetic rats. EPO treatment prevented the development of deficits in endothelium-dependent relaxation in diabetic rats. Effects were particularly marked on the resistance vessel EDHF system, which may have potential therapeutic relevance for diabetic microvascular complications.  相似文献   

4.

Introduction

Cardiovascular disease is the leading cause of death in patients with end stage renal disease (ESRD). The vasodilator mechanisms in small resistance arteries are in earlier studies shown to be reduced in patients with end stage renal disease. We studied whether endothelium dependent vasodilatation were diminished in ESRD patients and the interaction between the macro- and microcirculation.

Methods

Eleven patients with ESRD had prior to renal transplant or insertion of peritoneal dialysis catheter measured pulse wave velocity. During surgery, a subcutaneous fat biopsy was extracted. Resistance arteries were then dissected and mounted on a wire myograph for measurements of dilator response to increasing concentrations of acetylcholine after preconstriction with noradrenaline. Twelve healthy kidney donors served as controls.

Results

Systolic blood pressure was elevated in patients compared to the healthy controls; no difference in the concentration of asymmetric dimethyl arginine was seen. No significant difference in the endothelium dependent vasodilatation between patients and controls was found. Correlation of small artery properties showed an inverse relationship between diastolic blood pressure and nitric oxide dependent vasodilatation in controls. Pulse pressure was positively correlated to the total endothelial vasodilatation in patients. A negative association between S-phosphate and endothelial derived hyperpolarisation-like vasodilatation was seen in resistance arteries from controls.

Conclusion

This study finds similar vasodilator properties in kidney patients and controls. However, correlations of pulse pressure and diastolic blood pressure with resistance artery function indicate compensating measures in the microcirculation during end stage renal disease.  相似文献   

5.
Increased cardiovascular risk after mercury exposure has been described, but the underlying mechanisms are not well explored. We analyzed the effects of chronic exposure to low mercury concentrations on endothelium-dependent responses in aorta and mesenteric resistance arteries (MRA). Wistar rats were treated with mercury chloride (1st dose 4.6 microg/kg, subsequent dose 0.07 microg.kg(-1).day(-1) im, 30 days) or vehicle. Blood levels at the end of treatment were 7.97 +/- 0.59 ng/ml. Mercury treatment: 1) did not affect systolic blood pressure; 2) increased phenylephrine-induced vasoconstriction; 3) reduced acetylcholine-induced vasodilatation; and 4) reduced in aorta and abolished in MRA the increased phenylephrine responses induced by either endothelium removal or the nitric oxide synthase (NOS) inhibitor N(G)-nitro-l-arginine methyl ester (l-NAME, 100 microM). Superoxide dismutase (SOD, 150 U/ml) and the NADPH oxidase inhibitor apocynin (0.3 mM) decreased the phenylephrine-induced contraction in aorta more in mercury-treated rats than controls. In MRA, SOD did not affect phenylephrine responses; however, when coincubated with l-NAME, the l-NAME effect on phenylephrine response was restored in mercury-treated rats. Both apocynin and SOD restored the impaired acetylcholine-induced vasodilatation in vessels from treated rats. Endothelial NOS expression did not change in aorta but was increased in MRA from mercury-treated rats. Vascular O2(-) production, plasmatic malondialdehyde levels, and total antioxidant status increased with the mercury treatment. In conclusion, chronic exposure to low concentrations of mercury promotes endothelial dysfunction as a result of the decreased NO bioavailability induced by increases in oxidative stress. These findings offer further evidence that mercury, even at low concentrations, is an environmental risk factor for cardiovascular disease.  相似文献   

6.
Obstructive sleep apnoea (OSA) is a risk factor for cardiovascular disorders and in some cases is complication of pulmonary hypertension. We simulated OSA by exposing rats to cyclic intermittent hypoxia (CIH) to investigate its effect on pulmonary vascular endothelial dysfunction. Sprague-Dawley Rats were exposed to CIH (FiO2 9% for 1 min, repeated every 2 min for 8 h/day, 7 days/wk for 3 wk), and the pulmonary arteries of normoxia and CIH treated rats were analyzed for expression of endothelin-1 (ET-1) and ET receptors by histological, immunohistochemical, RT-PCR and Western Blot analyses, as well as for contractility in response to ET-1. In the pulmonary arteries, ET-1 expression was increased, and ET-1 more potently elicited constriction of the pulmonary artery in CIH rats than in normoxic rats. Exposure to CIH induced marked endothelial cell damage associated with a functional decrease of endothelium-dependent vasodilatation in the pulmonary artery. Compared with normoxic rats, ETA receptor expression was increased in smooth muscle cells of the CIH rats, while the expression of ETB receptors was decreased in endothelial cells. These results demonstrated endothelium-dependent vasodilation was impaired and the vasoconstrictor responsiveness increased by CIH. The increased responsiveness to ET-1 induced by intermittent hypoxia in pulmonary arteries of rats was due to increased expression of ETA receptors predominantly, meanwhile, decreased expression of ETB receptors in the endothelium may also participate in it.  相似文献   

7.
Vascular tissues express heme oxygenase (HO), which metabolizes heme to form carbon monoxide (CO). Heme-derived CO inhibits nitric oxide synthase and promotes endothelium-dependent vasoconstriction. After 4 wk of high-salt diet, Dahl salt-sensitive (Dahl-S) rats display hypertension, increased vascular HO-1 expression, and attenuated vasodilator responses to ACh that can be completely restored by acute treatment with an inhibitor of HO. In this study, we examined the temporal development of HO-mediated endothelial dysfunction in isolated pressurized first-order gracilis muscle arterioles, identified the HO product responsible, and studied the blood pressure effects of HO inhibition in Dahl-S rats on a high-salt diet. Male Dahl-S rats (5-6 wk) were placed on high-salt (8% NaCl) or low-salt (0.3% NaCl) diets for 0-4 wk. Blood pressure increased gradually, and responses to an endothelium-dependent vasodilator, ACh, decreased gradually with the length of high-salt diet. Flow-induced dilation was abolished in hypertensive Dahl-S rats. Acute in vitro pretreatment with an inhibitor of HO, chromium mesoporphyrin (CrMP), restored endothelium-dependent vasodilation and abolished the differences between groups. The HO product CO prevented the restoration of endothelium-dependent dilation by CrMP. Furthermore, administration of an HO inhibitor lowered blood pressure in Dahl-S rats with salt-induced hypertension but did not do so in low-salt control rats. These results suggest that hypertension and HO-mediated endothelial dysfunction develop gradually and simultaneously in Dahl-S rats on high-salt diets. They also suggest that HO-derived CO underlies the impaired endothelial dysfunction and contributes to hypertension in Dahl-S rats on high-salt diets.  相似文献   

8.
In this paper, an analogue of hirsutine (compound 1) has been synthesized and evaluated as an anti-hypertension agent, which exhibits extraordinary effects on the contractile response of thoracic aorta rings from male SD rats in vitro (IC50 = 1.129×10-9±0.5025) and the abilities of reducing the systolic blood pressure (SBP) and heart rate (HR) of SHR in vivo. The mechanism investigation reveals that the vasodilatation induced by compound 1 is mediated by both endothelium-dependent and -independent manners. The relaxation in endothelium-intact aortic rings induced by compound 1 can be inhibited by L-NAME (1×10-6 mol•L-1) and ODQ (1×10-6 mol•L-1). Moreover, compound 1 can also block Ca2+ influx through L-type Ca2+ channels and inhibit intracellular Ca2+ release while no effect on K+ channel has been observed. All these data demonstrated that the NO/cyclic GMP pathway can be involved in endothelium-dependent manner induced by compound 1. Meanwhile the mechanism on the vasodilatation of compound 1 probably also related to blockade of Ca2+ influx through L-type Ca2+ channels and inhibition of intracellular Ca2+ release may have no relationship with K+ channels.  相似文献   

9.
Cytokine levels are elevated in many cardiovascular diseases and seem to be implicated in the associated disturbances in vascular reactivity reported in these diseases. Arterial blood pressure is maintained within a normal range by changes in peripheral resistance and cardiac output. Peripheral resistance is mainly determined by small resistance arteries and arterioles. This review focuses on the effects of cytokines, mainly TNF-alpha, IL-1beta, and IL-6, on the reactivity of resistance arteries. The vascular effects of cytokines depend on the balance between the vasoactive mediators released under their influence in the different vascular beds. Cytokines may induce a vasodilatation and hyporesponsiveness to vasoconstrictors that may be relevant to the pathogenesis of septic shock. Cytokines may also induce vasoconstriction or increase the response to vasoconstrictor agents and impair endothelium-dependent vasodilatation. These effects may help predispose to vessel spasm, thrombosis, and atherogenesis and reinforce the link between inflammation and vascular disease.  相似文献   

10.
Hereditary hypertriglyceridemic (hHTG) rats are characterized by increased blood pressure and impaired endothelium-dependent relaxation of conduit arteries. The aim of this study was to investigate the effect of long-term (4 weeks) treatment of hHTG rats with three drugs which, according to their mechanism of action, may be able to modify the endothelial function: simvastatin (an inhibitor of 3-hydroxy-3-methylglutaryl-CoA reductase), spironolactone (an antagonist of aldosterone receptors) and L-arginine (a precursor of nitric oxide formation). At the end of fourth week the systolic blood pressure in the control hHTG group was 148+/-2 mm Hg and in control normotensive Wistar group 117+/-3 mm Hg. L-arginine failed to reduce blood pressure, but simvastatin (118+/-1 mm Hg) and spironolactone (124+/-4 mm Hg) treatment significantly decreased the systolic blood pressure. In isolated phenylephrine-precontracted aortic rings from hHTG rats endothelium-dependent relaxation was diminished as compared to control Wistar rats. Of the three drugs used, only simvastatin improved acetylcholine-induced relaxation of the aorta. We conclude that both simvastatin and spironolactone reduced blood pressure but only simvastatin significantly improved endothelial dysfunction of aorta. Prominent increase in the expression of eNOS in large conduit arteries may be the pathophysiological mechanism underlying the protective effect of simvastatin in hHTG rats.  相似文献   

11.
Magnesium (Mg) deficiency is implicated in the development of numerous disorders of the cardiovascular system. Moreover, the data regarding the efficacy of different magnesium compounds in the correction of impaired functions due to low magnesium intake are often fragmentary and inconsistent. The aim of this study was to compare the effects of the most bioavailable Mg compounds (Mg l-aspartate, Mg N-acetyltaurate, Mg chloride, Mg sulphate and Mg oxybutyrate) on systemic inflammation and endothelial dysfunction in rats fed a low Mg diet for 74 days. A low Mg diet decreased the Mg concentration in the plasma and erythrocytes, which was accompanied by a reduced concentration of eNOs and increased levels of endothelin-1 level in the serum and impaired endothelium-dependent vasodilatation. These effects increased the concentration of proinflammatory molecules, such as VCAM-1, TNF-α, IL-6 and CRP, indicating the development of systemic inflammation and endothelial dysfunction. The increased total NO level, which estimated from the sum of the nitrate and nitrite concentrations in the serum, may also be considered to be a proinflammatory marker. Two weeks of Mg supplementation partially or fully normalised the ability of the vascular wall to effect adequate endothelium-dependent vasodilatation and reversed the levels of most endothelial dysfunction and inflammatory markers (except CRP) to the mean values of the control group. Mg sulphate had the smallest effect on the endothelin-1, TNF-α and VCAM-1 levels. Mg N-acetyltaurate was significantly more effective in restoring the level of eNOS compared to all other studied compounds, except for Mg oxybutyrate. Taken together, the present findings demonstrate that all Mg compounds equally alleviate endothelial dysfunction and inflammation caused by Mg deficiency. Mg sulphate tended to be the least effective compound.  相似文献   

12.
《Life sciences》1997,62(4):PL55-PL62
We demonstrated that the fructose-induced hypertensive rat, representative of the principal metabolic abnormalities found in a majority of hypertensive patients, i.e. hypertriglyceridemia, hyperinsulinemia and insulin resistance (Syndrome X), is associated with an impaired response to endothelium-dependent vasodilators and that fructose may directly contribute to this impairment. Twelve male Wistar rats were divided into two groups, one given 10% fructose (n=6); the other no fructose (n=6) for 40 days in the drinking water. Systolic blood pressure was measured via the tail cuff method. Perfusion pressure responses to acetylcholine, were measured in the isolated perfused mesenteric vascular bed. Constrictor or dilator responses were measured as increases or decreases, respectively, of the perfusion pressure at a constant flow (4 ml/min). Fructose-fed rats had significantly higher blood pressure, insulin and triglyceride levels than control animals. In phenylephrine constricted beds, the endothelium-dependent dilatation to acetylcholine (0.001 to 1 μmol) was attenuated in the fructose-fed group compared to control animals. Whether this abnormality results from the syndromes (hyperinsulinemia, hypertension and hypertriglyceridemia) associated with the fructose-fed animal model is unknown. We therefore hypothesized that fructose can impair the endothelium-dependent vasodilator response. This was evaluated by perfusing mesenteric arteries from normal rats with control mannitol (40 mM) or fructose (40 mM). Endothelium-dependent dilation to acetylcholine was impaired in fructose-perfused mesenteric arteries. Indomethacin restored the vasodilator response to acetylcholine, suggesting that a cyclooxygenase derivative mediates the impaired response. Thus, we conclude that fructose can contribute to the impaired endothelium-dependent response in the fructose-induced hypertensive rat model. Published by Elsevier Science Inc.  相似文献   

13.
The goal of this study was to determine whether endothelium-dependent responses of the microcirculation are altered during cardiomyopathy. We examined in vivo responses of cheek pouch arterioles to an endothelium-dependent agonist (acetylcholine) and an endothelium-independent agonist (nitroglycerin) in normal and in cardiomyopathic hamsters. In normal hamsters, acetylcholine produced dose-related dilatation of arterioles. In contrast, acetylcholine produced constriction of arterioles in cardiomyopathic hamsters. Nitroglycerin produced similar dose-related dilatation in normal and cardiomyopathic hamsters. We also examined whether impaired responses to acetylcholine in cardiomyopathic hamsters were related to an alteration in the L-arginine/nitric oxide pathway. We found that L-arginine (100 microM) restored endothelium-dependent vasodilatation to acetylcholine in cardiomyopathic hamsters. Thus, cardiomyopathy impairs endothelium-dependent responses of the microcirculation which is reversed by L-arginine.  相似文献   

14.
Lv PP  Fan Y  Chen WL  Shen YL  Zhu L  Wang LL  Chen YY 《生理学报》2007,59(5):674-680
本文旨在研究冠状动脉内皮和NO在选择性环加氧酶2(cyclooxygenase2,COX-2)抑制剂尼美舒利(nimesulide)对抗心肌氧化损伤中的作用。离体大鼠心脏行Langendorff灌流,给予H2O2(140Bmol/L)观察心脏收缩功能。用U-46619灌流心脏,使冠状动脉预收缩后,观察冠状动脉对内皮依赖性舒张因子5-HT和内皮非依赖性舒张因子硝普钠(sodiumnitroprusside,SNP)的反应。结果显示:(1)与空白对照组(100%)相比,H202灌流20min后,左心室发展压[left ventriculardevelo pedpressure,LVDP,(54.8±4.0)%],和心室内压最大变化速率【±dp/dtmax(50.8±3.1)%和(46.2±2.9)%]明显降低。H2O2灌流前尼美舒利(5μmol/L)预处理10min,能够显著抑制H2O2引起的LVDP和μdp/dtmax下降[(79.9±2.8)%,(80.3±2.6)%和(81.4±2.6)%,P〈0.0l]。(2)与空白对照组相比,H2O2灌流后,5-HT和SNP引起内皮依赖性和内皮非依赖性血管舒张功能均明显下降;而尼美舒利预处理10min能明显对抗内皮依赖性血管舒张功能的下降[(-22.2±4.2)%vsH2O2组(-6.0±2.5)%,P〈0.0l],但对其内皮非依赖性血管舒张功能的下降没有明显作用[(-2.0±1.8)%vsH202组(-7.0±3.5)%,P〉0.05]。(3)一氧化氮合酶(nitric oxide synthase,NOS)抑制剂L-NAME能够部分取消尼美舒利预处理对H20,应激心脏心功能指标的改善作用ILVDP和±dp/dtmax分别为(60.2±2.1)%,(63.9±2.4)%和(63.1±2.9)%,P〈0.01]。同时尼美舒利预处理10min能使H202应激心肌NO含量增加[(2.63±0.40)vs(1.36±0.23)nmol/gprotein,P〈0.051,而L-NAME抑制此作用。(4)选择性COX-1抑制剂吡罗昔康(piroxicam)预处理不能抑制H202引起的LVDP和±dp/dtmax下降,但促进左心室舒张末压(1eftventricular end diastolicpressure,LVEDP)升高;吡罗昔康对H202引起的内皮依赖性和内皮非依赖性血管舒张功能下降无显著作用。以上结果提示,选择性COX-2抑制剂尼美舒利能够对抗大鼠离体心肌氧化应激损伤,其机制可能是通过改善内皮依赖性血管舒张功能和增加心肌NO含量起作用。  相似文献   

15.
Ghrelin infusion improves cardiac function in patients suffering from cardiac failure, and bolus administration of ghrelin increases cardiac output in healthy subjects. The cardiovascular effects of more continuous intravenous ghrelin exposure remain to be studied. We therefore studied the cardiovascular effects of a constant infusion of human ghrelin at a rate of 5 pmol/kg per minute for 180 min. Fifteen healthy, young (aged 23.2 +/- 0.5 yr), normal-weight (23.0 +/- 0.4 kg/m(2)) men volunteered in a randomized double-blind, placebo-controlled crossover study. With the subjects remaining fasting, peak myocardial systolic velocity S', tissue tracking TT, left ventricular ejection fraction EF, and endothelium-dependent flow-mediated vasodilatation were measured. Ghrelin infusion increased S' 9% (P = 0.002) and TT 10% (P < 0.001), whereas EF, resting blood flow velocity, and endothelium-dependent flow-mediated vasodilatation did not change (P = 0.13). This was associated with a peak in serum growth hormone after 60 min of infusion (37.77 +/- 5.27 ng/ml, P < 0.001), a doubling of free fatty acid levels (P = 0.001), and a 1.6-fold increase in cortisol levels (P < 0.05), whereas glucose and catecholamine levels were constant. In conclusion, supraphysiological levels of ghrelin stimulate left ventricular function in terms of S' and TT in healthy young normal-weight men without changing resting blood flow velocity and endothelium-dependent flow-mediated vasodilatation. The effects did not translate into detectable increments in EF.  相似文献   

16.
Nitric oxide and prostacyclin are endogenous endothelium-derived vasodilators, but little information is available on their release during hypothermia. This study was carried out to test the hypothesis that endothelium may modulate vascular reactivity to decreased temperature changes. Segments of contracted (prostaglandin F(2alpha), 2x10(-6)M) canine coronary, femoral, and renal arteries, with and without endothelium, were in vitro ("organ chambers") exposed to progressive hypothermia (from 37 to 10 degrees C) in graded steps. The study is limited to physiological measurements of vascular tone, in the presence or absence of PGI(2) and/or NOS inhibitors, which show correlation with the relaxation. Hypothermia induced vasodilatation of vessels with intact endothelium, which became endothelium-independent below 20 degrees C. This vasodilatation began at 35 degrees C and, in the presence of indomethacin (2x10(-6)M), at 30 degrees C. Endothelium-dependent vasodilatation to hypothermia was blocked by L-NMMA or L-NOARG (10(-5)M), two competitive inhibitors of nitric oxide synthase (n=5 each, P<0.05). Oxyhemoglobin (2x10(-6)M) also inhibited vasodilatation induced by hypothermia (n=6, P<0.05). Pretreatment with either atropine or pirenzepine (10(-6)M) inhibited hypothermia-mediated vasodilatation (n=5 each, P<0.05). The present in vitro study concluded that the endothelium is sensitive to temperature variations and indicated that PGI(2) and NO-dependent pathways may be involved endothelium-dependent relaxation to hypothermia. The endothelium-dependent vasodilatation to hypothermia, in systemic and coronary arteries, is mediated by the M1 muscarinic receptor.  相似文献   

17.
To compare the readings of blood pressure by the Riva-Rocci (RR) method with those of peripheral arterial pressure (PAP) as recorded by the Finapres (FP) device, exercise was performed by six male subjects on a cycle ergometer at a constant exercise intensity of 140 W. In addition, forearm volume was determined by impedance plethysmography. At rest, systolic FP values exceeded RR values by greater than or equal to 10 mmHg. During 60-min exercise both values at first increased almost in parallel with each other. While RR reached a plateau after 3 min, FP then started to decrease continuously up to the 10th min and finally stabilized at 20-30 mmHg below RR. The impedance values showed a similar declining slope, indicating vasodilatation. To separate the effects of sympathetic drive from heat elicited vasodilatation, a second experimental series was performed with ischaemic static calf exercise (5 min, 90 N), since this increases the sympathetic tone but prevents systemic heat distribution. In contrast to findings reported from intra-arterial measurements, no exercise effect on the pulse pressure amplification was obtained. However, the heating of one fingertip distal to the FP-cuff led to a significant decrease in PAP compared to the control recording made simultaneously from the other hand. It was concluded that heat induced vasodilatation may make FP unrepresentative of systemic blood pressure, in particular during exercise. Moreover, the FP-cuff seemed to induce substantial vasoconstriction due to venous occlusion. The FP method would therefore be useful for monitoring continuously systemic blood pressure if no (dilative) vasomotor changes occurred or their ranges and time courses were known sufficiently well.  相似文献   

18.
Blunted agonist-induced vasoconstriction after chronic hypoxia is associated with endothelium-dependent vascular smooth muscle (VSM) cell hyperpolarization and decreased vessel-wall Ca(2+) concentration ([Ca(2+)]). We hypothesized that myogenic vasoconstriction and pressure-induced Ca(2+) influx would also be attenuated in vessels from chronically hypoxic (CH) rats. Mesenteric resistance arteries isolated from CH [barometric pressure (BP), 380 Torr for 48 h] or normoxic control (BP, 630 Torr) rats were cannulated and pressurized. VSM cell resting membrane potential was recorded at intraluminal pressures of 40-120 Torr under normoxic conditions. VSM cells in vessels from CH rats were hyperpolarized compared with control rats at all pressures. Inner diameter was maintained for vessels from control rats, whereas vessels from CH rats developed less tone as pressure was increased. Pressure-induced increases in vessel-wall [Ca(2+)] were also attenuated for arteries from CH rats. Endothelium removal restored myogenic constriction to vessels from CH rats and normalized VSM cell resting membrane potential and pressure-induced Ca(2+) responses to control levels. Myogenic constriction and pressure-induced vessel-wall [Ca(2+)] increases remained blunted in the presence of nitric oxide (NO) synthase inhibition for arteries from CH rats. We conclude that blunted myogenic reactivity after chronic hypoxia results from a non-NO, endothelium-dependent VSM cell hyperpolarizing influence.  相似文献   

19.
Although accurate and continuous assessment of cerebral vasculature status is highly desirable for managing cerebral vascular diseases, no such method exists for current clinical practice. The present work introduces a novel method for real-time detection of cerebral vasodilatation and vasoconstriction using pulse morphological template matching. Templates consisting of morphological metrics of cerebral blood flow velocity (CBFV) pulse, measured at middle cerebral artery using Transcranial Doppler, are obtained by applying a morphological clustering and analysis of intracranial pulse algorithm to the data collected during induced vasodilatation and vasoconstriction in a controlled setting. These templates were then employed to define a vasodilatation index (VDI) and a vasoconstriction index (VCI) for any inquiry data segment as the percentage of the metrics demonstrating a trend consistent with those obtained from the training dataset. The validation of the proposed method on a dataset of CBFV signals of 27 healthy subjects, collected with a similar protocol as that of training dataset, during hyperventilation (and CO2 rebreathing tests) shows a sensitivity of 92% (and 82%) for detection of vasodilatation (and vasoconstriction) and the specificity of 90% (and 92%), respectively. Moreover, the proposed method of detection of vasodilatation (vasoconstriction) is capable of rejecting all the cases associated with vasoconstriction (vasodilatation) and outperforms other two conventional techniques by at least 7% for vasodilatation and 19% for vasoconstriction.  相似文献   

20.
Inhibition of the synthesis of endothelium derived relaxing factor by NG-monomethyl-L-arginine, a competitive inhibitor of the synthesis of nitric oxide from L-arginine, enhances hypoxic pulmonary vasoconstriction in pulmonary artery rings and isolated, Krebs albumin perfused rat lungs. L-arginine rapidly reduces hypoxic vasoconstriction, particularly in lungs treated with NG-monomethyl-L-arginine. Following administration of NG-monomethyl-L-arginine, bradykinin-induced vasodilatation is inhibited (p less than 0.01) and a bradykinin-induced vasoconstriction develops (p less than 0.001). NG-monomethyl-L-arginine does not significantly diminish acetylcholine-induced vasodilatation in the isolated lung. NG-monomethyl-L-arginine causes an endothelium-dependent vasoconstriction in pulmonary artery rings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号