首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Niche construction is a process through which organisms modify their environment and, as a result, alter the selection pressures on themselves and other species. In cultural niche construction, one or more cultural traits can influence the evolution of other cultural or biological traits by affecting the social environment in which the latter traits may evolve. Cultural niche construction may include either gene-culture or culture-culture interactions. Here we develop a model of this process and suggest some applications of this model. We examine the interactions between cultural transmission, selection, and assorting, paying particular attention to the complexities that arise when selection and assorting are both present, in which case stable polymorphisms of all cultural phenotypes are possible. We compare our model to a recent model for the joint evolution of religion and fertility and discuss other potential applications of cultural niche construction theory, including the evolution and maintenance of large-scale human conflict and the relationship between sex ratio bias and marriage customs. The evolutionary framework we introduce begins to address complexities that arise in the quantitative analysis of multiple interacting cultural traits.  相似文献   

2.
Domestication is an evolutionary process of species divergence in which morphological and physiological changes result from the cultivation/tending of plant or animal species by a mutualistic partner, most prominently humans. Darwin used domestication as an analogy to evolution by natural selection although there is strong debate on whether this process of species evolution by human association is an appropriate model for evolutionary study. There is a presumption that selection under domestication is strong and most models assume rapid evolution of cultivated species. Using archaeological data for 11 species from 60 archaeological sites, we measure rates of evolution in two plant domestication traits—nonshattering and grain/seed size increase. Contrary to previous assumptions, we find the rates of phenotypic evolution during domestication are slow, and significantly lower or comparable to those observed among wild species subjected to natural selection. Our study indicates that the magnitudes of the rates of evolution during the domestication process, including the strength of selection, may be similar to those measured for wild species. This suggests that domestication may be driven by unconscious selection pressures similar to that observed for natural selection, and the study of the domestication process may indeed prove to be a valid model for the study of evolutionary change.  相似文献   

3.
Zoonotic pathogens often infect several animal species, and gene flow among populations infecting different host species may affect the biological traits of the pathogen including host specificity, transmissibility and virulence. The bacterium Campylobacter jejuni is a widespread zoonotic multihost pathogen, which frequently causes gastroenteritis in humans. Poultry products are important transmission vehicles to humans, but the bacterium is common in other domestic and wild animals, particularly birds, which are a potential infection source. Population genetic studies of C. jejuni have mainly investigated isolates from humans and domestic animals, so to assess C. jejuni population structure more broadly and investigate host adaptation, 928 wild bird isolates from Europe and Australia were genotyped by multilocus sequencing and compared to the genotypes recovered from 1366 domestic animal and human isolates. Campylobacter jejuni populations from different wild bird species were distinct from each other and from those from domestic animals and humans, and the host species of wild bird was the major determinant of C. jejuni genotype, while geographic origin was of little importance. By comparison, C. jejuni differentiation was restricted between more phylogenetically diverse farm animals, indicating that domesticated animals may represent a novel niche for C. jejuni and thereby driving the evolution of those bacteria as they exploit this niche. Human disease is dominated by isolates from this novel domesticated animal niche.  相似文献   

4.
In the course of their evolution domestic animals were selected by man not only for physical characteristics and physiological properties, but also for certain behaviour patterns. This permits us to trace the development of new behaviours during historically documented time. In three pigeon breeds — Swing Pouter, Birmingham Roller, Rhine Ringbeater — the development and evolution of breed-specific flight manoevers with courtship function under the influence of human selection was examined, and their course reconstructed. Behaviour patterns which in wild animals would have been eliminated through natural selection were able to develop under human protection and selection.  相似文献   

5.
Domestic pigeons are spectacularly diverse and exhibit variation in more traits than any other bird species [1]. In The Origin of Species, Charles Darwin repeatedly calls attention to the striking variation among domestic pigeon breeds-generated by thousands of years of artificial selection on a single species by human breeders-as a model for the process of natural divergence among wild populations and species [2]. Darwin proposed a morphology-based classification of domestic pigeon breeds [3], but the relationships among major groups of breeds and their geographic origins remain poorly understood [4, 5]. We used a large, geographically diverse sample of 361 individuals from 70 domestic pigeon breeds and two free-living populations to determine genetic relationships within this species. We found unexpected relationships among phenotypically divergent breeds as well as convergent evolution of derived traits among several breed groups. Our findings also illuminate the geographic origins of breed groups in India and the Middle East and suggest that racing breeds have made substantial contributions to feral pigeon populations.  相似文献   

6.
Cultural evolution has predominated over biological evolution in modern man (Homo sapiens sapiens). Cultural evolution differs from biological evolution not only by inheritance of acquired characteristics but also, as is proposed in the present essay, by another kind of selection mechanism. Whereas selection in biological evolution is executed according to a criterion of reproductive success (the natural selection), selection in cultural evolution appears to be carried out according to human and humanistic criteria (success or fitness in meeting human needs, interests and humanistic values--"humanistic selection"). Many humanistic needs or values do not seem to be prerequisite for reproductive success, yet some of them (e.g. a need for freedom) seem to be inborn. Innateness, humanistic selection (decisive at a community level) and hierarchy of some human needs, interests and values appear to give cultural evolution a generally upward trend although long periods of stagnation or even regression may occur. Modern humans appear to be still at the early stage of their cultural evolution. A further cultural evolution of man appears to be, in contrast to biological evolution, predictable (with an optimistic outlook) and testable. The problem is that the hopeful result of this test will probably be known only in the fairly remote future provided that this species will not become extinct before that.  相似文献   

7.
Domestication is an intriguing evolutionary process. Many domestic populations are subjected to strong human-mediated selection, and when some individuals return to the wild, they are again subjected to selective forces associated with new environments. Generally, these feral populations evolve into something different from their wild predecessors and their members typically possess a combination of both wild and human selected traits. Feralisation can manifest in different forms on a spectrum from a wild to a domestic phenotype. This depends on how the rewilded domesticated populations can readapt to natural environments based on how much potential and flexibility the ancestral genome retains after its domestication signature. Whether feralisation leads to the evolution of new traits that do not exist in the wild or to convergence with wild forms, however, remains unclear. To address this question, we performed population genomic, olfactory, dietary, and gut microbiota analyses on different populations of Sus scrofa (wild boar, hybrid, feral and several domestic pig breeds). Porcine single nucleotide polymorphisms (SNPs) analysis shows that the feral population represents a cluster distinctly separate from all others. Its members display signatures of past artificial selection, as demonstrated by values of FST in specific regions of the genome and bottleneck signature, such as the number and length of runs of homozygosity. Generalised FST values, reacquired olfactory abilities, diet, and gut microbiota variation show current responses to natural selection. Our results suggest that feral pigs are an independent evolutionary unit which can persist so long as levels of human intervention remain unchanged.  相似文献   

8.
家养动物在人类生活中占有重要地位,它们都经历驯化而来,在自然和人工选择下,适应了当地环境和人类需要,形成了各类品种。驯化、自然和人工选择都会在基因组上留下选择信号。对这些选择信号研究,可以直接挖掘到功能基因,是目前最重要的功能基因筛选策略之一。当前已经对猪、鸡、牛、羊、狗等家养动物开展了选择信号研究,并挖掘了大量功能基因。本文主要概述了选择信号的种类和检测方法,简述其在家养动物中的研究,并讨论了选择信号分析的关键问题及其研究前景。  相似文献   

9.

Background

Human populations and breeds of domestic animals are composed of individuals with a multiplicity of eye (= iris) colorations. Some wild birds and mammals may have intraspecific eye color variability, but this variation seems to be due to the developmental stage of the individual, its breeding status, and/or sexual dimorphism. In other words, eye colour tends to be a species-specific trait in wild animals, and the exceptions are species in which individuals of the same age group or gender all develop the same eye colour. Domestic animals, by definition, include bird and mammal species artificially selected by humans in the last few thousand years. Humans themselves may have acquired a diverse palette of eye colors, likewise in recent evolutionary time, in the Mesolithic or in the Upper Paleolithic.

Presentation of the hypothesis

We posit two previously unrecognized hypotheses regarding eye color variation: 1) eye coloration in wild animals of every species tends to be a fixed trait. 2) Humans and domestic animal populations, on the contrary, have eyes of multiple colors. Sexual selection has been invoked for eye color variation in humans, but this selection mode does not easily apply in domestic animals, where matings are controlled by the human breeder.

Testing the hypothesis

Eye coloration is polygenic in humans. We wish to investigate the genetics of eye color in other animals, as well as the ecological correlates.

Implications of the hypothesis

Investigating the origin and function of eye colors will shed light on the reason why some species may have either light-colored irises (e.g., white, yellow or light blue) or dark ones (dark red, brown or black). The causes behind the vast array of eye colors across taxa have never been thoroughly investigated, but it may well be that all Darwinian selection processes are at work: sexual selection in humans, artificial selection for domestic animals, and natural selection (mainly) for wild animals.
  相似文献   

10.
Cultural niche construction is a uniquely potent source of selection on human populations, and a major cause of recent human evolution. Previous theoretical analyses have not, however, explored the local effects of cultural niche construction. Here, we use spatially explicit coevolutionary models to investigate how cultural processes could drive selection on human genes by modifying local resources. We show that cultural learning, expressed in local niche construction, can trigger a process with dynamics that resemble runaway sexual selection. Under a broad range of conditions, cultural niche-constructing practices generate selection for gene-based traits and hitchhike to fixation through the build up of statistical associations between practice and trait. This process can occur even when the cultural practice is costly, or is subject to counteracting transmission biases, or the genetic trait is selected against. Under some conditions a secondary hitchhiking occurs, through which genetic variants that enhance the capability for cultural learning are also favoured by similar dynamics. We suggest that runaway cultural niche construction could have played an important role in human evolution, helping to explain why humans are simultaneously the species with the largest relative brain size, the most potent capacity for niche construction and the greatest reliance on culture.  相似文献   

11.
Marine fish wild stocks are known to be heavily depleted by overfishing and flatfish species are no exception. Wild catches being soon insufficient for responding to consumer demand, the cultivation of marine species appeared as a logical response to the need of seafood. Nevertheless, fish aquaculture also entails major impacts on wild populations from which genetic ones are now better known. The hybridization between domestic and native strains potentially have a genetic impact on recipient populations as long as 1) domestic populations are distinct from native wild ones (through domestication process, genetic improvement of captive stocks) and/or 2) the native wild populations are structured (metapopulation structure, local adaptation). Some of the flatfish species exhibit population differentiation and even local adaptation and the release of domestic genetically modified fishes (selected, transgenic) could threaten their survival in case of introgression. The impact of aquaculture on flatfishes is probably still low as land-based farms and low production levels guaranty low rates of escapes and therefore limited contacts between wild and farmed strains. However, flatfish aquaculture is regarded by experts as a rapidly growing domain that will greatly develop soon. In our opinion, this perspective, added to the quite good performances of farmed flatfishes when released into the wild, fully justifies a stronger interest from the scientific community to the conservation of their wild stocks.  相似文献   

12.
Whereas hundreds of breeds of domestic dogs are known, only several dozen domestic cat breeds are currently recognized, and the ferret is not classified into specific breeds. We studied pre- and postnatal patterns of development and growth in the domesticated forms of these three carnivoran species. We present the most comprehensive staging system for domestic dog embryos to date and define qualitative characters for phylogenetic comparisons. For postnatal development, we present analyses of new and literature measurements of cranial and limb proportions. We analyze changes in the progress of growth among different domestic dog and domestic cat breeds. All three domesticated forms drastically differ in the relative timing of prenatal development. This is correlated with ontogenetic plasticity at birth, which enables artificial selection to act. For postnatal development, we detected a greater shape variance in domestic dog ontogeny when compared to that of the domestic cat. We conclude that ontogenetic preconditions as well as body size constrain the species’ capability for artificial selection in domestic dogs and cats. However, we speculate that the human requirements for functional performance of their domesticates might render some developmental biases substantially. Although ferrets would be preferable for artificial selection given their plastic embryonic development, they have been of less interest for domestication due to their small body size - by which they were already well adapted for hunting in burrows - and due to the fact that other relevant tasks were already assumed by domestic cats and dogs since earlier phases of human cultural evolution.  相似文献   

13.
Niche construction is an endogenous causal process in evolution, reciprocal to the causal process of natural selection. It works by adding ecological inheritance, comprising the inheritance of natural selection pressures previously modified by niche construction, to genetic inheritance in evolution. Human niche construction modifies selection pressures in environments in ways that affect both human evolution, and the evolution of other species. Human ecological inheritance is exceptionally potent because it includes the social transmission and inheritance of cultural knowledge, and material culture. Human genetic inheritance in combination with human cultural inheritance thus provides a basis for gene-culture coevolution, and multivariate dynamics in cultural evolution. Niche construction theory potentially integrates the biological and social aspects of the human sciences. We elaborate on these processes, and provide brief introductions to each of the papers published in this theme issue.  相似文献   

14.
Despite having only begun ~10,000 years ago, the process of domestication has resulted in a degree of phenotypic variation within individual species normally associated with much deeper evolutionary time scales. Though many variable traits found in domestic animals are the result of relatively recent human-mediated selection, uncertainty remains as to whether the modern ubiquity of long-standing variable traits such as coat color results from selection or drift, and whether the underlying alleles were present in the wild ancestor or appeared after domestication began. Here, through an investigation of sequence diversity at the porcine melanocortin receptor 1 (MC1R) locus, we provide evidence that wild and domestic pig (Sus scrofa) haplotypes from China and Europe are the result of strikingly different selection pressures, and that coat color variation is the result of intentional selection for alleles that appeared after the advent of domestication. Asian and European wild boar (evolutionarily distinct subspecies) differed only by synonymous substitutions, demonstrating that camouflage coat color is maintained by purifying selection. In domestic pigs, however, each of nine unique mutations altered the amino acid sequence thus generating coat color diversity. Most domestic MC1R alleles differed by more than one mutation from the wild-type, implying a long history of strong positive selection for coat color variants, during which time humans have cherry-picked rare mutations that would be quickly eliminated in wild contexts. This pattern demonstrates that coat color phenotypes result from direct human selection and not via a simple relaxation of natural selective pressures.  相似文献   

15.
动物可分为野生动物和家养动物,越来越多的野生动物被人们当作宠物来饲养。野生动物作为宠物的危害是巨大的。野生动物对人类的危害主要包括直接攻击人类,携带病原威胁人类以及对环境设施造成的破坏。人类对野生动物的危害包括野生动物驯养繁殖、疾病传播等方面。野生动物对家养动物的危害包括直接危害和疾病危害。因此,野生动物不适合作为宠物饲养,不仅仅是因为它们原本的生活习性,对野生动物资源的破坏,更重要的是病原体可能跨越种间障碍而威胁人类的安全。  相似文献   

16.
Over thousands of years humans changed the genetic and phenotypic composition of several organisms and in the process transformed wild species into domesticated forms. From this close association, domestic animals emerged as important models in biomedical and fundamental research, in addition to their intrinsic economical and cultural value. The domestic rabbit is no exception but few studies have investigated the impact of domestication on its genetic variability. In order to study patterns of genetic structure in domestic rabbits and to quantify the genetic diversity lost with the domestication process, we genotyped 45 microsatellites for 471 individuals belonging to 16 breeds and 13 wild localities. We found that both the initial domestication and the subsequent process of breed formation, when averaged across breeds, culminated in losses of ~20% of genetic diversity present in the ancestral wild population and domestic rabbits as a whole, respectively. Despite the short time elapsed since breed diversification we uncovered a well-defined structure in domestic rabbits where the FST between breeds was 22%. However, we failed to detect deeper levels of structure, probably consequence of a recent and single geographic origin of domestication together with a non-bifurcating process of breed formation, which were often derived from crosses between two or more breeds. Finally, we found evidence for intrabreed stratification that is associated with demographic and selective causes such as formation of strains, colour morphs within the same breed, or country/breeder of origin. These additional layers of population structure within breeds should be taken into account in future mapping studies.  相似文献   

17.
Domestication is an evolutionary process during which the biobehavioural profile (comprising e.g. social and emotional behaviour, cognitive abilities, as well as hormonal stress responses) is substantially reshaped. Using a comparative approach, and focusing mainly on the domestic and wild guinea pig, an established model system for the study of domestication, we review (a) how wild and domestic animals of the same species differ in behaviour, emotion, cognition, and hormonal stress responses, (b) during which phases of life differences in biobehavioural profiles emerge and (c) whether or not animal personalities exist in both the wild and domestic form. Concerning (a), typical changes with domestication include increased courtship, sociopositive and maternal behaviours as well as decreased aggression and attentive behaviour. In addition, domestic animals display more anxiety-like and less risk-taking and exploratory behaviour than the wild form and they show distinctly lower endocrine stress responsiveness. There are no indications, however, that domestic animals have diminished cognitive abilities relative to the wild form. The different biobehavioural profiles of the wild and domestic animals can be regarded as adaptations to the different environmental conditions under which they live, i.e., the natural habitat and artificial man-made housing conditions, respectively. Concerning (b), the comparison of infantile, adolescent and adult wild and domestic guinea pigs shows that the typical biobehavioural profile of the domestic form is already present during early phases of life, that is, during early adolescence and weaning. Thus, differences between the domestic and the wild form can be attributed to genetic alterations resulting from artificial selection, and likely to environmental influences during the pre- and perinatal phase. Interestingly, the frequency of play behaviour does not differ between the domestic and wild form early in life, but is significantly higher in domesticated guinea pigs at later ages. Concerning (c), there is some evidence that personalities occur in both wild and domestic animals. However, there may be differences in which behavioural domains – social and sexual behaviour, emotionality, stress-responsiveness – are consistent over time. These differences are probably due to changing selection pressures during domestication.  相似文献   

18.
The study of innovation in non‐human animals (henceforth: animals) has recently gained momentum across fields including primatology, animal behaviour and cultural evolution. Examining the rate of innovations, and the cognitive mechanisms driving these innovations across species, can provide insights into the evolution of human culture. Especially relevant to the study of human culture is one of our closest living relatives, the chimpanzee (Pan troglodytes). Both wild and captive chimpanzees demonstrate an impressive ability to innovate solutions to novel problems, but also a striking level of conservatism in some contexts, creating a unique and at times puzzling, picture of animal innovation. Whilst the animal innovation field is rife with potential for expanding our knowledge of human and non‐human cognition and problem‐solving, it is undermined by a lack of consistency across studies. The field is yet to settle on a definition of the term ‘innovation’, leading to studies being incomparable across and even within the same species. Here, we fill two gaps in the literature. First, we discuss some of the most prevalent definitions of ‘innovation’ from different fields, highlighting similarities and differences between them. Secondly, we provide an up‐to‐date review of accounts of innovations in both wild and captive chimpanzees. We hope this review will provide a resource for researchers interested in the study of innovation in chimpanzees and other animals, as well as emphasising the need for consistency in the way in which innovations are reported.  相似文献   

19.
Reproductive seasonality is a trait that often differs between domestic animals and their wild ancestors, with domestic animals showing prolonged or even continuous breeding seasons. However, the genetic basis underlying this trait is still poorly understood for most species, and because environmental factors and resource availability are known to play an important role in determining breeding seasons, it is also not clear in most cases to what extent this phenotypic shift is determined by the more lenient captive conditions or by genetic factors. Here, using animals resulting from an initial cross between wild and domestic rabbits followed by two consecutive backcrosses (BC1 and BC2) to wild rabbits, we evaluated the yearly distribution of births for the different generations. Similar to domestic rabbits, F1 animals could be bred all year round but BC1 and BC2 animals showed a progressive and significant reduction in the span of the breeding season, providing experimental evidence that reduced seasonal breeding in domestic rabbits has a clear genetic component and is not a simple by‐product of rearing conditions. We then took advantage of a recently published genome‐wide scan of selection in the domesticated lineage and searched for candidate genes potentially associated with this phenotypic shift. Candidate genes located within regions targeted by selection include well‐known examples of genes controlling clock functions (CRY1 and NR3C1) and reproduction (PRLR).  相似文献   

20.
Predators play integral roles in shaping ecosystems through cascading effects to prey and vegetation. Such effects occur when prey species alter their behavior to avoid predators, a phenomenon called the risk effects of predators. Risk effects of wild predators such as wolves are well documented for wild prey, but not for free ranging domestic animals such as cattle despite their importance for ecosystem function and conservation. We compared risk effects of satellite‐collared wolves (n = 16) on habitat selection by global‐positioning‐system‐collared elk (n = 10) and cattle (n = 31). We calculated resource selection functions (RSFs) in periods before, during and after wolf visits in elk home ranges or cattle pastures. The habitat variables tested included: distance to roads and trails, terrain ruggedness, food‐quality and distance to forest. When wolves were present, elk stayed closer to forest cover and selected less for high‐quality‐food habitat. Thus, the risk effects of wolf presence on elk produced a change in the tradeoff between food and cover selection. Cattle responded by avoiding high‐quality‐food habitat and selecting areas closer to roads and trails (where people likely provided security), but these effects manifested only after wolves had left. Artificial selection in cattle may have attenuated natural anti‐predator behaviors. The effects of predators on ecosystems are likely different when mediated through risk effects on domestic compared to wild animals. Furthermore, predator control in response to livestock predation, an important conservation issue, may produce broad ecosystem effects triggered by decrease of an important predator species. Conservation planners should consider these effects where domestic herbivores are dominant species in the ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号