首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Development of conidia of barley powdery mildew involves the formation of a primary germ tube (PGT), an appressorial germ tube (AGT), and an appressorium. Previously, it was found that cyclic AMP (cAMP) was involved in these developmental processes. Comparison of development on the host surface with two types of cellulose membrane revealed that frequency of PGT emergence was surface independent. On one type of cellulose, where the frequencies of both AGT and appressorial differentiation were similar to that on the host surface, cAMP levels and protein kinase A (PKA) activities had a biphasic pattern with peaks at 15 min and 4 h after inoculation (prior to PGT and AGT emergence, respectively). The effect of manipulating cAMP levels was tested on another type of cellulose membrane, which stimulated a lower degree of AGT and appressorial formation than the host surface. Cholera toxin and forskolin, activators of adenylyl cyclase, significantly increased PGT emergence, but cAMP did not. Cholera toxin, forskolin, and cAMP increased the frequency of AGT and appressorial formation, but in a time-dependent manner.  相似文献   

2.
3.
Intracellular signaling pathways that are involved in protection of vascular smooth muscle cells (VSMC) from apoptosis remain poorly understood. This study examines the effect of activators of cAMP/cGMP signaling on apoptosis in non-transfected VSMC and in VSMC transfected with c-myc (VSMC-MYC) or with its functional analogue, E1A-adenoviral protein (VSMC-E1A). Serum-deprived VSMC-E1A exhibited the highest apoptosis measured as the content of chromatin and low molecular weight DNA fragments, phosphatidylserine content in the outer surface of plasma membrane and caspase-3 activity (ten-, five-, four- and tenfold increase after 6 h of serum withdrawal, respectively). In VSMC-E1A, the addition of an activator of adenylate cyclase, forskolin, abolished chromatin cleavage, DNA laddering, caspase-3 activation and the appearance of morphologically-defined apoptotic cells triggered by 6 h of serum deprivation. In non-transfected VSMC and in VSMC-MYC, 6 h serum deprivation led to approximately six- and threefold activation of chromatin cleavage, respectively, that was also blocked by forskolin. In VSMC-E1A, inhibition of apoptosis was observed with other activators of cAMP signaling (cholera toxin, isoproterenol, adenosine, 8-Br-cAMP), whereas 6 h incubation with modulators of cGMP signaling (8-Br-cGMP, nitroprusside, atrial natriuretic peptide, L-NAME) did not affect the development of apoptotic machinery. The antiapoptotic effect of forskolin was abolished in 24 h of serum deprivation that was accompanied by normalization of intracellular cAMP content and protein kinase A (PKA) activity. Protection of VSMC-E1A from apoptosis by forskolin was blunted by PKA inhibitors (H-89 and KT5720), whereas transfection of cells with PKA catalytic subunit attenuated apoptosis triggered by serum withdrawal. The protection of VSMC-E1A by forskolin from apoptosis was insensitive to modulators of cytoskeleton assembly (cytochalasin B, colchicine). Neither acute (30 min) nor chronic (24 h) exposure of VSMC to forskolin modified basal and serum-induced phosphorylation of the MAP kinase ERK1/2. Thus, our results show that activation of cAMP signaling delays the development of apoptosis in serum-deprived VSMC at a site upstream of caspase-3 via activation of PKA and independently of cAMP-induced reorganization of the cytoskeleton network and the ERK1/2-terminated MAPK signaling cascade.  相似文献   

4.
Regulation of melanosome movement by MAP kinase   总被引:2,自引:0,他引:2  
Our objectives were to further characterize the signaling pathways in melatonin-induced aggregation in Xenopus melanophores, specifically to investigate a possible role of mitogen-activated protein kinase (MAPK). By Western blotting we found that melatonin activates MAPK, which precedes melanosome aggregation measured in a microplate reader. Activation of MAPK, tyrosine phosphorylation of a previously described 280-kDa protein, and melanosome aggregation are sensitive to PD98059, a selective inhibitor of MAPK kinase. The MAPK activation is also decreased by the adenylate cyclase stimulant forskolin. In summary, we found that MAPK is activated during melatonin-induced melanosome aggregation. Activation was decreased by an inhibitor of MAPK kinase, and by forskolin. In addition to inhibition of cyclic adenosine 3',5'-monophosphate (cAMP), reduction in protein kinase A activity (PKA), and activation of protein phosphatase 2A, we suggest that melatonin receptors activate the MAPK cascade and tyrosine phosphorylation of the 280-kDa protein. Although the cAMP/PKA signaling pathway is the most prominent, our data suggest that simultaneous activation of the MAPK cascade is of importance to obtain a completely aggregated state. This new regulatory mechanism of organelle transport by the MAPK cascade might be important in other eukaryotic cells.  相似文献   

5.
6.
Proliferation of endothelial cells is regulated by angiogenic and antiangiogenic factors whose actions are mediated by complex interactions of multiple signaling pathways. Both vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) stimulate cell proliferation and activate the mitogen-activated protein kinase (MAPK) cascade in bovine brain capillary endothelial (BBE) cells. We have extended these findings to show that both mitogens activate MAPK via stimulation of Raf-1. Activation of Raf/MAPK is inhibited by increasing intracellular cAMP levels pharmacologically or via stimulation of endogenously expressed β-adrenergic receptors. Both VEGF- and bFGF-induced Raf-1 activity are blocked in the presence of forskolin or 8-bromo-cAMP by 80%. The actions of increased cAMP appear to be mediated by cAMP-dependent protein kinase (PKA), since treatment with H-89, a the specific inhibitor of PKA, reversed the inhibitory effect of elevated cAMP levels on mitogen-induced cell proliferation and Raf/MAPK activation. Moreover, elevations in cAMP/PKA activity inhibit mitogen-induced cell proliferation. These findings demonstrate, in cultured endothelial cells, that the cAMP/PKA signaling pathway is potentially an important physiological inhibitor of mitogen activation of the MAPK cascade and cell proliferation. J. Cell. Biochem. 67:353–366, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

7.
The mRNA level of the type-1 angiotensin II receptor (AT1) was down-regulated by angiotensin II in cultured rat glomerular mesangial cells. The effect was maximum with 1 microM AII at 6 h, sensitive to cycloheximide, and specific to AT1 since this phenomenon was blocked by DuP753, an AT1 antagonist, but not by type-2 antagonist PD123319. Dibutyryl cAMP, forskolin, and cholera toxin also caused AT1 down-regulation. These effects were not altered by either the protein kinase A inhibitor H-8 or cycloheximide. Calcium ionophore A23187, pertussis toxin, protein kinase C inhibitor staurosporine, or prolonged incubation with phorbol ester were without effect. These results suggest that there are at least two pathways to down-regulate AT1 mRNA; one way is an angiotensin II-induced, protein kinase C-independent, and cycloheximide-sensitive pathway and the other is an angiotensin II-independent, cAMP-induced, and cycloheximide-insensitive pathway.  相似文献   

8.
Sclerotinia sclerotiorum is a filamentous ascomycete phytopathogen able to infect an extremely wide range of cultivated plants. Our previous studies have shown that increases in cAMP levels result in the impairment of the development of the sclerotium, a highly differentiated structure important in the disease cycle of this fungus. cAMP also inhibits the activation of a S. sclerotiorum mitogen-activated protein kinase (MAPK), which we have previously shown to be required for sclerotial maturation; thus cAMP-mediated sclerotial inhibition is modulated through MAPK. However, the mechanism(s) by which cAMP inhibits MAPK remains unclear. Here we demonstrate that a protein kinase A (PKA)-independent signalling pathway probably mediates MAPK inhibition by cAMP. Expression of a dominant negative form of Ras, an upstream activator of the MAPK pathway, also inhibited sclerotial development and MAPK activation, suggesting that a conserved Ras/MAPK pathway is required for sclerotial development. Evidence from bacterial toxins that specifically inhibit the activity of small GTPases, suggested that Rap-1 or Ras is involved in cAMP action. The Rap-1 inhibitor, GGTI-298, restored MAPK activation in the presence of cAMP, further suggesting that Rap-1 is responsible for cAMP-dependent MAPK inhibition. Importantly, inhibition of Rap-1 is able to restore sclerotial development blocked by cAMP. Our results suggest a novel mechanism involving the requirement of Ras/MAPK pathway for sclerotial development that is negatively regulated by a PKA-independent cAMP signalling pathway. Cross-talk between these two pathways is mediated by Rap-1.  相似文献   

9.
10.
11.
Cellular growth control requires the coordination and integration of multiple signaling pathways which are likely to be activated concomitantly. Mitogenic signaling initiated by thyrotropin (TSH) in thyroid cells seems to require two distinct signaling pathways, a cyclic AMP (cAMP)-dependent signaling pathway and a Ras-dependent pathway. This is a paradox, since activated cAMP-dependent protein kinase disrupts Ras-dependent signaling induced by growth factors such as epidermal growth factor and platelet-derived growth factor. This inhibition may occur by preventing Raf-1 protein kinase from binding to Ras, an event thought to be necessary for the activation of Raf-1 and the subsequent activation of the mitogen-activated protein (MAP)/extracellular signal-regulated kinase (ERK) kinases (MEKs) and MAP kinase (MAPK)/ERKs. Here we report that serum-stimulated hyperphosphorylation of Raf-1 was inhibited by TSH treatment of Wistar rat thyroid cells, indicating that in this cell line, as in other cell types, increases in intracellular cAMP levels inhibit activation of downstream kinases targeted by Ras. Ras-stimulated expression of genes containing AP-1 promoter elements was similarly inhibited by TSH. On the other hand, stimulation of thyroid cells with TSH resulted in stimulation of DNA synthesis which was Ras dependent but both Raf-1 and MEK independent. We also show that Ras-stimulated DNA synthesis required the use of this kinase cascade in untreated quiescent cells but not in TSH-treated cells. These data suggest that in TSH-treated thyroid cells, Ras might be able to signal through effectors other than the well-studied cytoplasmic kinase cascade.  相似文献   

12.
13.
Murine embryonic palate mesenchyme (MEPM) cells are responsive to a number of endogenous factors found in the local embryonic tissue environment. Recently, it was shown that activation of the cyclic AMP (cAMP) or the transforming growth factor β (TGFβ) signal transduction pathways modulates the proliferative response of MEPM cells to epidermal growth factor (EGF). Since the mitogen-activated protein kinase (MAPK) cascade is a signal transduction pathway that mediates cellular responsiveness to EGF, we examined the possibility that several signaling pathways which abrogate EGF-stimulated proliferation do so via the p42/p44 MAPK signaling pathway. We demonstrate that EGF stimulates MAPK phosphorylation and activity in MEPM cells maximally at 5 minutes. Tyrosine phosphorylation and activation of MAPK was unaffected by treatment of MEPM cells with TGFβ or cholera toxin. Similarly, TGFβ altered neither EGF-induced MAPK tyrosine phosphorylation nor activity. However, the calcium ionophore, A23187, significantly increased MAPK phosphorylation which was further increased in the presence of EGF, although calcium mobilization reduced EGF-induced proliferation. Despite the increase in phosphorylation, we could not demonstrate induction of MAPK activity by A23187. Like EGF, phorbol ester, under conditions which activate PKC isozymes in MEPM cells, increased MAPK phosphorylation and activity but was also growth inhibitory to MEPM cells. The MEK inhibitor, PD098059, only partially abrogated EGF-induced phosphorylation. Likewise, depletion of PKC isozymes partially abrogated EGF-induced MAPK phosphorylation. Inhibition of both MEK and PKC isozymes resulted in a marked decrease in MAPK activity, confirming that EGF uses multiple pathways to stimulate MAPK activity. These data indicate that the MAPK cascade does not mediate signal transduction of several agents that inhibit growth in MEPM cells, and that there is a dissociation of the proliferative response and MAP kinase activation. Furthermore, other signaling pathways known to play significant roles in differentiation of palatal tissue converge with the MAPK cascade and may use this pathway in the regulation of alternative cellular processes. J. Cell. Physiol. 176:266–280, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

14.
Powdery mildew of barley is caused by the obligate fungal pathogen Blumeria graminis f. sp. hordei. Haploid conidia of B. graminis, landing on the barley leaf, germinate to form first a primary germ tube and then an appressorial germ tube. The appressorial germ tube differentiates into a mature appressorium from which direct penetration of host epidermis occurs. Here we present data on 4908 expressed sequence tags obtained from B. graminis conidia. The combined sequences represent 2676 clones describing 1669 individual genes. Comparison with sequences from other pathogenic and nonpathogenic fungi defines hypotheses on the genes required for pathogenicity and growth on the host. The putative roles of some of the identified genes are discussed.  相似文献   

15.
Interleukin 6 (IL-6; also referred to as interferon-beta 2, 26-kDa protein, and B cell stimulatory factor 2) is a cytokine whose actions include a stimulation of immunoglobulin synthesis, enhancement of B cell growth, and modulation of acute phase protein synthesis by hepatocytes. Synthesis of IL-6 is stimulated by interleukin 1 (IL-1), tumor necrosis factor (TNF), or platelet-derived growth factor. We examined the role of the cyclic AMP (cAMP)-dependent signal transduction pathway in IL-6 gene expression. Several activators of adenylate cyclase, including prostaglandin E1, forskolin, and cholera toxin, as well as the phosphodiesterase inhibitor isobutylmethylxanthine and the cAMP analog dibutyryl cAMP, shared the ability to cause a dramatic and sustained increase in IL-6 mRNA levels in human FS-4 fibroblasts. Actinomycin D treatment abolished this enhancement. Treatments that increased intracellular cAMP also stimulated the secretion of the IL-6 protein in a biologically active form. Increased intracellular cAMP appears to enhance IL-6 gene expression by a protein kinase C-independent mechanism because down-regulation of protein kinase C by a chronic exposure of cells to a high dose of 12-O-tetradecanoylphorbol 13-acetate did not abolish the enhancement of IL-6 expression by treatments that increase cAMP. IL-1 and TNF too increased IL-6 mRNA levels by a protein kinase C-independent mechanism. Our results suggest a role for the cAMP-dependent pathway(s) in IL-6 gene activation by TNF and IL-1.  相似文献   

16.
17.
Zhang H  Xue C  Kong L  Li G  Xu JR 《Eukaryotic cell》2011,10(8):1062-1070
In the rice blast fungus Magnaporthe oryzae, the PMK1 mitogen-activated protein (MAP) kinase gene regulates appressorium formation and infectious growth. Its homologs in many other fungi also play critical roles in fungal development and pathogenicity. However, the targets of this important MAP kinase and its interacting genes are not well characterized. In this study, we constructed two yeast two-hybrid libraries of M. oryzae and screened for Pmk1-interacting proteins. Among the nine Pmk1-interacting clones (PICs) identified, two of them, PIC1 and PIC5, were selected for further characterization. Pic1 has one putative nuclear localization signal and one putative MAP kinase phosphorylation site. Pic5 contains one transmembrane domain and two functionally unknown CTNS (cystinosin/ERS1p repeat) motifs. The interaction of Pmk1 with Pic1 or Pic5 was confirmed by coimmunoprecipitation assays. Targeted gene deletion of PIC1 had no apparent effects on vegetative growth and pathogenicity but resulted in a significant reduction in conidiation and abnormal germ tube differentiation on onion epidermal cells. Deletion of PIC5 led to a reduction in conidiation and hyphal growth. Autolysis of aerial hyphae became visible in cultures older than 4 days. The pic5 mutant was defective in germ tube growth and appressorium differentiation. It was reduced in appressorial penetration and virulence on the plant. Both PIC1 and PIC5 are conserved in filamentous ascomycetes, but none of their orthologs have been functionally characterized. Our data indicate that PIC5 is a novel virulence factor involved in appressorium differentiation and pathogenesis in M. oryzae.  相似文献   

18.
19.
Addition of bombesin in the presence of either forskolin or cholera toxin caused a marked (4-6 fold) enhancement of cAMP accumulation in Swiss 3T3 cells. This effect was time and concentration dependent, induced by various bombesin-like peptides and blocked by a bombesin antagonist. Enhancement of cAMP accumulation by bombesin was diminished by chronic pretreatment with phorbol dibutyrate implicating the involvement of protein kinase C in the activation. Pretreatment with pertussis toxin, which uncouples protein kinase C activation from cAMP accumulation (Proc. Natl. Acad. Sci. U.S.A., 84:2282, 1987) also inhibited bombesin enhancement of cAMP. Bombesin was also shown to release E type prostaglandins into the medium, an effect which was abolished by the cyclooxygenase inhibitor indomethacin. Low concentrations (100 nM) of indomethacin partially inhibited the accumulation of cAMP by bombesin in the presence of forskolin indicating that the release of E type prostaglandins into the medium is also involved in the accumulation of cAMP by bombesin. The additive nature of PBt2-mediated down-regulation and treatment with indomethacin suggests that activation of protein kinase C and the release of E type prostaglandins provide two distinct pathways involved in the enhancement of cAMP accumulation by bombesin. Finally, bombesin in the presence of forskolin stimulated the phosphorylation of the intermediate filament component vimentin, identified in the accompanying paper as a substrate for a cAMP dependent protein kinase in intact Swiss 3T3 cells.  相似文献   

20.
We previously reported that thrombin stimulates the induction of heat shock protein (HSP) 27 via p38 mitogen-activated protein (MAP) kinase activation in aortic smooth muscle A10 cells. In the present study, we investigated the effect of the adenylyl cyclase-cAMP system on the thrombin-stimulated induction of HSP27 in A10 cells. Forskolin, a direct activator of adenylyl cyclase, reduced the thrombin-induced p38 MAP kinase phosphorylation, and significantly suppressed the thrombin-stimulated accumulation of HSP27. However, dideoxyforskolin, a forskolin derivative that does not activate cAMP, failed to suppress the HSP27 accumulation. Furthermore, dibutyryl-cAMP (DBcAMP), a permeable analog of cAMP, significantly suppressed the accumulation of HSP27. On the other hand, calphostin C, an inhibitor of protein kinase C (PKC), reduced the thrombin-induced p38 MAP kinase phosphorylation, and significantly suppressed the thrombin-stimulated accumulation of HSP27. Moreover, forskolin reduced the p38 MAP kinase phosphorylation induced by the 12-O-tetradecanoylphorbol-13-acetate (TPA), a PKC-activating phorbol ester, and significantly suppressed the TPA-stimulated accumulation of HSP27. These results indicate that adenylyl cyclase-cAMP system has an inhibitory role in thrombin-stimulated HSP27 induction in aortic smooth muscle cells, and the effect seems to be exerted on the thrombin-induced PKC- p38 MAP kinase signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号