首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A renal ferredoxin was purified from bovine renal mitochondria to electrophoretic purity. The molecular weight of the renal ferredoxin was estimated by gel filtration and SDS-polyacrylamide gel electrophoresis to be 12,500 and 13,000, respectively. The optical absorption spectrum of renal ferredoxin in the oxidized form showed two peaks at 416 and 457 nm in the visible region, and the EPR absorption spectrum showed peaks at gx = gy =1.94 and gz = 2.02 in the reduced form at 13K. These spectra were typical of the 2S-2Fe type ferredoxins. Dissimilarities were recognized in the amino acid composition and isoelectric point between bovine renal ferredoxin and bovine adrenodoxin, but not in the optical, magnetic, and immunochemical properties. The reconstitution of 25-hydroxyvitamin D3-1 alpha-hydroxylase system was performed with the three components of NADPH-adrenodoxin reductase from bovine adrenal mitochondria, renal ferredoxin, and cytochrome P-450(1) alpha from bovine renal mitochondria. The results showed that the renal ferredoxin was essential for the 1 alpha-hydroxylase activity of 25-hydroxyvitamin D3.  相似文献   

2.
1. Mitochondria isolated from the kidneys of rachitic pigs have been shown to contain an active 25-hydroxyvitamin D3-1 alpha-hydroxylase. From these mitochondria a cytochrome P-450 has been solubilized with a specific content of 0.02-0.04 nmol/mg protein. 2. In the presence of a bovine adrenal NADPH-ferredoxin reductase, bovine adrenal ferredoxin and NADPH, the cytochrome P-450 supported the formation of 1,25-dihydroxyvitamin D3 from 25-hydroxyvitamin D3. 3. The hydroxylation reaction was linear with time up to 40 min, and with the amount of enzyme up to 0.03 nmol cytochrome P-450. The pH optimum for the reaction was 7.4, and the apparent Km was 3 x 10(-10) mol/mg protein. 4. The results show that 25-hydroxyvitamin D3 is metabolized in mammals by the same enzyme system as has been demonstrated in birds.  相似文献   

3.
Cytochrome P-450 catalysing 25-hydroxylation of vitamin D3 was purified from pig kidney microsomes. The enzyme fraction contained 7 nmol of cytochrome P-450/mg of protein and showed only one protein band with an apparent Mr of 50,500 upon SDS/polyacrylamide-gel electrophoresis. The purified cytochrome P-450 catalysed 25-hydroxylation of vitamin D3 up to 1,000 times more efficiently, and 25-hydroxylation of 1 alpha-hydroxyvitamin D3 up to 4000 times more efficiently, than the microsomes. The cytochrome P-450 required microsomal NADPH-cytochrome P-450 reductase for catalytic activity. Mitochondrial ferredoxin and ferredoxin reductase could not replace microsomal NADPH-cytochrome P-450 reductase. The enzyme preparation showed no detectable 25-hydroxylase activity towards vitamin D2 or 1 alpha-hydroxylase activity towards 25-hydroxyvitamin D3. CO inhibited the 25-hydroxylation by more than 85%. Mannitol, hydroquinone, catalase and superoxide dismutase did not affect the 25-hydroxylation. The possible role of the kidney microsomal cytochrome P-450 in the metabolism of vitamin D3 is discussed.  相似文献   

4.
A cytochrome P-450 catalysing 25-hydroxylation of vitamin D3 was purified from liver mitochondria of untreated rabbits. The enzyme fraction contained 9 nmol of cytochrome P-450/mg of protein and showed only one protein band with an apparent Mr of 52,000 upon SDS/polyacrylamide-gel electrophoresis. The preparation showed a single protein spot with an apparent isoelectric point of 7.8 and an Mr of approx. 52,000 upon two-dimensional isoelectric-focusing-polyacrylamide-gel electrophoresis. The purified cytochrome P-450 catalysed 25-hydroxylation of vitamin D3 up to 5000 times more efficiently than did the mitochondria. The cytochrome P-450 required both ferredoxin and ferredoxin reductase for catalytic activity. Microsomal NADPH-cytochrome P-450 reductase could not replace ferredoxin and ferredoxin reductase. The cytochrome P-450 catalysed, in addition to 25-hydroxylation of vitamin D3, the 25-hydroxylation of 1 alpha-hydroxyvitamin D3 and the 26-hydroxylation of 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha-triol. The enzyme did not catalyse side-chain cleavage of cholesterol, 11 beta-hydroxylation of deoxycorticosterone, 1 alpha-hydroxylation of 25-hydroxyvitamin D3, hydroxylations of lauric acid and testosterone or demethylation of benzphetamine. The results raise the possibility that the 25-hydroxylation of vitamin D3 and the 26-hydroxylation of C27 steroids are catalysed by the same species of cytochrome P-450 in liver mitochondria. The possible role of the liver mitochondrial cytochrome P-450 in the metabolism of vitamin D3 is discussed.  相似文献   

5.
Chick kidney mitochondrial 25-hydroxyvitamin D3 24-hydroxylase has been solubilized with sodium cholate and reconstituted with NADPH, beef adrenal ferredoxin, and beef adrenal ferredoxin reductase, each component being essential for maximal 24-hydroxylase activity. The product 24(R),25-dihydroxyvitamin D3 was identified by cochromatography with synthetic compound on straight-phase and reversed-phase high-performance liquid chromatography and by periodate oxidation. The enzyme has an apparent Km for 25-hydroxyvitamin D3 of 0.67 microM. At 1 microM 25-hydroxyvitamin D3, 24,25-dihydroxyvitamin D3 production is linear with time for up to 15 min and with protein concentrations of up to 2 mg/mL. The antioxidant diphenyl-p-phenylenediamine (1.3 X 10(-4) M) has no effect on this reaction. Reconstituted 24-hydroxylase activity is enhanced by the addition of NaCl and KCl up to 100 mM, with higher concentrations having an inhibitory effect. 1 alpha-Hydroxylase is not present in this preparation from vitamin D replete chicks. The similarities of this reconstituted system to the 25-hydroxyvitamin D3 1 alpha-hydroxylase and the adrenal systems suggest that the 25-hydroxyvitamin D3 24-hydroxylase is also a cytochrome P-450 type mixed-function oxidase.  相似文献   

6.
The cytochromes P-450 in pig kidney mitochondria catalyzing 1 alpha-, 24- and 26-hydroxylations of 25-hydroxyvitamin D3 have been separated. The cytochrome P-450 fractions required NADPH, mitochondrial ferredoxin and ferredoxin reductase for catalytic activity. The present report demonstrates that different forms of cytochrome P-450 are involved in 1 alpha-, 24- and 26-hydroxylations of 25-hydroxyvitamin D3 and provides a basis for further purification and characterization of these enzymes.  相似文献   

7.
A cytochrome P-450 that catalyzes the 24-hydroxylation of 25-hydroxyvitamin D3 (P-450cc24: P-450cholecalciferol24) was purified to electrophoretic homogeneity from the kidney mitochondria of female rats treated with vitamin D3 (Ohyama, Y., Hayashi, S., and Okuda, K. (1989) FEBS Lett. 255, 405-408). The molecular weight was 53,000, and its absorption spectrum showed peaks characteristic of cytochrome P-450. The turnover number was 22 min-1 and the specific content was 2.8 nmol/mg protein. The N-terminal amino acid sequence, Arg-Ala-Pro-Lys-Glu-Val-Pro-Leu-, is different from the N-terminal sequence of any other cytochrome P-450s so far reported. Upon reconstitution with the electron-transferring system of the adrenal mitochondria, the enzyme showed a high activity in hydroxylating 25-hydroxyvitamin D3 as well as 1 alpha,25-dihydroxyvitamin D3 at position 24. However, the purified enzyme hydroxylated neither vitamin D3 nor 1 alpha-hydroxyvitamin D3. The enzyme was also inactive toward xenobiotics. The enzyme hydroxylated 25-hydroxyvitamin D3 at position 24 but not at 1 alpha, indicating that the enzyme is distinct from that catalyzing 1 alpha-hydroxylation. The reaction followed Michaelis-Menten kinetics, and the Km value for 25-hydroxyvitamin D3 was 2.8 microM. Both vitamin D3 and 1 alpha-hydroxyvitamin D3 inhibited the 24-hydroxylation of 25-hydroxyvitamin D3 in a competitive, concentration-dependent manner. 25-Hydroxyvitamin D3 24-hydroxylase activity was significantly inhibited by 7,8-benzoflavone, ketoconazole, and CO, whereas it was only slightly inhibited by aminoglutethimide, metyrapone, and SKF-525A. Mouse antibodies raised against the cytochrome P-450 inhibited the reaction about 70% and reacted with the P-450cc24 in immunoblotting but did not react with other kinds of cytochrome P-450 in rat liver microsomes and mitochondria.  相似文献   

8.
We have used a cell-free rabbit reticulocyte translational system programmed with polyadenylated [poly(A)+] RNA prepared from chick kidney tissue to study the synthesis of nascent ferredoxin, a class of iron-sulphur-containing proteins functional in the renal mitochondrial 1 alpha- and 24-hydroxylases of 25-hydroxyvitamin D3. The synthesis of ferredoxin was monitored by determining [35S]methionine incorporation into ferredoxin and quantified by SDS/PAGE and autoradiography after immunoprecipitation from the total translation products. Compared with normal controls, vitamin D deprivation caused a significant increase in the net synthesis of nascent ferredoxin with an Mr of 12,000-13,000. [3H]Orotate incorporation as uridine into kidney poly(A)+ RNA was stimulated by aminophylline, a potent inducer of 25-hydroxyvitamin D3 24-hydroxylase; however, the amount of nascent ferredoxin synthesis was the same as in normal controls. Also, partially purified chick kidney mitochondrial cyclic AMP-stimulated protein kinase catalysed the phosphorylation of ferredoxin in vitro. The catalytic activity of the ferredoxin in 1 alpha- and 24-hydroxylations of 25-hydroxyvitamin D3 in reconstituted systems consisting of cytochrome P-450 and ferredoxin reductase was altered with ferredoxin phosphorylation. The phosphorylation caused inhibition of the 1 alpha-hydroxylase activity while at the same time it stimulated the 24-hydroxylase. Authentic 1 alpha,25- and 24,25-dihydroxyvitamin D3 and 25-hydroxyvitamin D3 were used as standards to monitor the separation of the enzymic products by h.p.l.c. using methanol/water (4:1, v/v) as solvent. These results indicate that, in the absence of vitamin D or its metabolites in the deficient state, the synthesis of ferredoxin necessary for the 1 alpha-hydroxylase is accentuated, whereas the stimulation of the 24-hydroxylase requires the phosphorylation of existing ferredoxin without a net gain in its synthesis. This would suggest a post-translational regulation of the 1 alpha- and 24-hydroxylases. A model delineating the various aspects of this study is presented.  相似文献   

9.
The chick renal mitochondrial 25-hydroxyvitamin-D3-1 alpha-hydroxylase is composed of three proteins, namely, cytochrome P-450, iron-sulfur protein (ferredoxin) and flavoprotein. Antibodies were raised in rabbits against homogeneous preparations of the ferredoxin. The antibodies were used in indirect immunofluorescence studies to localize the ferrdoxin along the nephron of renal tissues obtained either from vitamin D3-deficient or vitamin D3-sufficient chicks. The ferredoxin is predominantly localized in the glomerulus and proximal convoluted tubules. These results suggest that, in addition to the mitochondrial localization of the 1-hydroxylase, the enzyme may also be present in renal nuclei. The amount of the ferredoxin in kidney, as evidenced by the intensity of fluorescence, appeared to be independent of the vitamin D status of the chick. This finding indicated that changes in the concentration of the renal ferredoxin is not a major factor in the regulation of the 1-hydroxylase activity.  相似文献   

10.
Pig kidney mitochondria were found to catalyze the formation of 26-hydroxycholesterol, an inhibitor of cholesterol biosynthesis. The cholesterol 26-hydroxylase was purified 600-fold. It was present in a mitochondrial enzyme fraction enriched in cytochrome P-450. The cytochrome P-450 fraction required NADPH, mitochondrial ferredoxin and ferredoxin reductase for 26-hydroxylase activity. The mitochondria and the purified 26-hydroxylase preparation also catalyzed 26-hydroxylation of 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha-triol, and intermediate in cholic acid biosynthesis, and of 25-hydroxyvitamin D3. The role of extra-hepatic formation of 26-hydroxycholesterol is discussed.  相似文献   

11.
Chick 25-hydroxyvitamin D3-1 alpha-hydroxylase, a cytochrome P-450 monooxygenase with a molecular weight of 57 kDa, can be isolated as described by Mandel et al. (1990 b). Under normal physiological circumstances, it occurs exclusively in kidney mitochondria. An isozyme of the 1 alpha-hydroxylase, known as the 24-hydroxylase, which uses the same substrate to yield an isomeric product, is also a cytochrome P-450 monooxygenase, has a molecular weight of 55 kDa, and like-wise occurs in kidney mitochondria. The amino-terminal sequences of the first 10 residues of the two isozymes are 100% homologous. Monoclonal antibodies of the IgM class raised against the 1 alpha-hydroxylase, which quantitatively discriminate against other P-450 cytochromes of mitochondrial or microsomal origin, recognize and interact with the 24-hydroxylase as an antigen. In the present study we show that the intestine, which is the only non-renal tissue with demonstrable 24-hydroxylase activity, gives a positive peroxidase-antiperoxidase immunohistochemical reaction using the monoclonal antibodies against the 1 alpha-hydroxylase. The reactions revealed that the antigen in the kidney is restricted to the cortical proximal tubular cells while in the intestine, the antigen is localized in the enterocytes of the villi. In kidney medullary or intestinal crypt cells, or in liver, heart and lung tissues where 1 alpha-hydroxylase or 24-hydroxylase activity could not be detected using cell or tissue homogenates, the immunohistochemical reactions were also negative.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Rat cytochrome P-450(M-1) cDNA was expressed in Saccharomyces cerevisiae TD1 cells by using a yeast-Escherichia coli shuttle vector consisting of P-450(M-1) cDNA, yeast alcohol dehydrogenase promoter and yeast cytochrome c terminator. The yeast cells synthesized up to 2 X 10(5) molecules of P-450(M-1) per cell. The microsomal fraction prepared from the transformed cells contained 0.1 nmol of cytochrome P-450 per mg of protein. The expressed cytochrome P-450 catalyzed 16 alpha- and 2 alpha-hydroxylations of testosterone in accordance with the catalytic activity of P-450(M-1), but did not hydroxylate vitamin D3 or 1 alpha-hydroxycholecalciferol at the 25 position. The expressed cytochrome P-450 also catalyzed the oxidation of several drugs and did not show 25-hydroxylation activity toward 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha-triol. However, it cross-reacted with the polyclonal and monoclonal antibodies elicited against purified P-450cc25 which catalyzed the 25-hydroxylation of vitamin D3. These results indicated that P-450(M-1) cDNA coded the 2 alpha- and 16 alpha-hydroxylase of testosterone, and that these two positions of testosterone are hydroxylated by a single form of cytochrome P-450. Vitamin D3 25-hydroxylase and testosterone 16 alpha- and 2 alpha-hydroxylase are different gene products, although these two hydroxylase activities are immunochemically indistinguishable.  相似文献   

13.
Serum 1,25-dihydroxyvitamin D3 concentration and renal 25-hydroxyvitamin D 1 alpha-hydroxylase activity were measured in rats fed various levels of calcium, phosphorus and vitamin D3. Both calcium deprivation and phosphorus deprivation greatly increased circulating levels of 1,25-dihydroxyvitamin D3. The circulating level of 1,25-dihydroxyvitamin D3 in rats on a low-calcium diet increased with increasing doses of vitamin D3, whereas it did not change in rats on a low-phosphorus diet given increasing doses of vitamin D3. In concert with these results, the 25-hydroxyvitamin D 1 alpha-hydroxylase activity was markedly increased by vitamin D3 administration to rats on a low-calcium diet, whereas the same treatment of rats on a low-phosphorus diet had no effect and actually suppressed the 1 alpha-hydroxylase in rats fed an adequate-calcium/adequate-phosphorus diet. The administration of 1,25-dihydroxyvitamin D3 to vitamin D-deficient rats on a low-calcium diet also increased the renal 25-hydroxy-vitamin D 1 alpha-hydroxylase activity. These results demonstrate that the regulatory action of 1,25-dihydroxyvitamin D3 on the renal 25-hydroxyvitamin D3 1 alpha-hydroxylase is complex and not simply a suppressant of this system.  相似文献   

14.
To characterize 25-hydroxyvitamin D3 24-hydroxylase and 25-hydroxyvitamin D3 1-hydroxylase, the activities of the two enzymes were measured in the presence of two types of inhibitors. The effect of protein synthesis inhibitors on 25-hydroxyvitamin D3-stimulated 24-hydroxylase activity in 1-hydroxylating rat kidneys perfused in vitro was tested. Actinomycin D (4 microM) and cycloheximide (10 microM) each abolished 25-hydroxyvitamin D3 24-hydroxylase synthesis when added at the start of perfusion but not when added 4 h later; they did not affect 25-hydroxyvitamin D3 1-hydroxylase activity. The effects of cytochrome P-450 inhibitors on the two enzyme activities were then studied in vivo. Metyrapone and SKF-525A (50 mg/kg body weight) each inhibited 25-hydroxyvitamin D3 24-hydroxylase at 6 and 24 h; in contrast 1-hydroxylase increased and was 5 times the control value at 24 h. Finally, the in vitro effects of six cytochrome P-450 inhibitors at concentrations ranging from 10(-7) to 10(-3) M on enzyme activities in renal mitochondrial preparations were compared. Both enzymes were inhibited by all of the inhibitors, but inhibition of 25-hydroxyvitamin D3 24-hydroxylase was consistently greater than that of 25-hydroxyvitamin D3 1-hydroxylase. These studies demonstrate that 24-hydroxylation and 1-hydroxylation respond differently to protein synthesis inhibitors and to cytochrome P-450 inhibitors. The findings are consistent with the hypothesis that the two enzyme activities are associated with different cytochrome P-450 moieties.  相似文献   

15.
The kidney is the principal physiologic site of production of biologically active 1,25-dihydroxyvitamin D. The 25-hydroxyvitamin D-1 alpha-hydroxylase (1-OHase) activity found in renal mitochondria is under tight hormonal control. Parathyroid hormone stimulates the renal conversion of 25-hydroxyvitamin D to 1,25-dihydroxyvitamin D in young animals, which is accompanied by dephosphorylation of ferredoxin (Fx), a component of the mitochondrial 1-OHase enzyme complex (Siegel, N., Wongsurawat, N., and Armbrecht, H. J. (1986) J. Biol. Chem. 261, 16998-17003). The present study investigates the capacity of Fx to be phosphorylated in vitro and to modulate the 1-OHase activity of a reconstituted system. Fx was phosphorylated by renal mitochondrial type II protein kinase. Phosphorylation did not alter Fx mobility on sodium dodecyl sulfate gels but did decrease the pI as measured by isoelectric focusing. Amino acid analysis demonstrated that 1 mol of serine and 1 mol of threonine were phosphorylated per mol of Fx. Peptide mapping of phosphorylated Fx was consistent with phosphorylation of serine 88 and threonine 85 or 97. Fx was selectively dephosphorylated by rabbit skeletal muscle protein phosphatase C2 but not C1. Phosphorylation of Fx significantly inhibited the 1-OHase activity of a reconstituted system consisting of Fx reductase, Fx, and renal mitochondrial cytochrome P-450. These findings suggest that phosphorylation/dephosphorylation of Fx may play a role in modulating renal 1,25-dihydroxyvitamin D production.  相似文献   

16.
Incubation of 25-hydroxyvitamin D3 with kidney cortex mitochondria from 1,25-dihydroxyvitamin D3-treated guinea pigs resulted in the formation of 23,25-dihydroxyvitamin D3 as the major product. The identity of the product was verified by g.c.-m.s. and quantification was performed by h.p.l.c. The rates of the reaction were in the range 1.0-1.8 pmol/min per mg of mitochondrial protein (at 37 degrees C), which were 5-10 times the rates of formation of 24,25-dihydroxyvitamin D3. In mitochondrial preparations from untreated guinea pigs, the rate of 23-hydroxylation was below detection limit (0.02 pmol/min per mg of mitochondrial protein). Fasting the animals for 24 h induced the 23-hydroxylase almost as efficiently as treatment with 1,25-dihydroxyvitamin D3, with a concomitant depression of the 1 alpha-hydroxylase. The 23-hydroxylase reaction required oxidizable substrate, was decreased by low O2 partial pressures and inhibited by CO or the uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone. It was stimulated by the respiratory-chain inhibitors rotenone, antimycin A and KCN. These results indicate that the guinea-pig renal mitochondrial 23-hydroxylase is a cytochrome P-450 and that the reducing equivalents are primarily supplied by NADPH via the energy-dependent transhydrogenase.  相似文献   

17.
We have purified two distinct isoforms of mitochondrial cytochrome P-450 from beta-naphthoflavone (beta-NF)-induced rat liver to greater than 85% homogeneity and characterized their molecular and catalytic properties. One of these isoforms showing an apparent molecular mass of 52 kDa is termed P-450mt1 and the second isoform with 54-kDa molecular mass is termed P-450mt2. Cytochrome P-450mt2 comigrates with similarly induced microsomal P-450c (the major beta-NF-inducible form) on sodium dodecyl sulfate-polyacrylamide gels and cross-reacts with polyclonal antibody monospecific for cytochrome P-450c. Cytochrome P-450mt2, however, represents a distinct molecular species since it failed to react with a monoclonal antibody to P-450c and produced V8 protease fingerprints different from P-450c. Cytochrome P-450mt1, on the other hand, did not show any immunochemical homology with P-450c or P-450mt2 as well as partially purified P-450 from control mitochondria. Electrophoretic comparisons and Western blot analysis show that both P-450mt1 and P-450mt2 are induced forms not present in detectable levels in control liver mitochondria. A distinctive property of mitochondrial P-450mt1 and P-450mt2 was that their catalytic activities could be reconstituted with both NADPH-cytochrome P-450 reductase as well as mitochondrial specific ferredoxin and ferredoxin reductase electron transfer systems, while P-450c showed exclusive requirement for NADPH-cytochrome P-450 reductase. Cytochromes P-450mt1 and P-450mt2 were able to metabolize xenobiotics like benzo(a)pyrene and dimethyl benzanthracene at rates only one-tenth with cytochrome P-450c. Furthermore, P-450mt1, P-450mt2, as well as partially purified P-450 from control liver, but not P-450c, showed varying activities for 25- and 26-hydroxylation of cholesterol and 25-hydroxylation of vitamin D3. These results provide evidence for the presence of at least two distinct forms of beta-NF-inducible cytochrome P-450 in rat hepatic mitochondria.  相似文献   

18.
J Sasaki  A Mikami  K Mizoue    S Omura 《Applied microbiology》1991,57(10):2841-2846
To enzymatically synthesize vitamin D derivatives, we screened about 300 Streptomyces sp. strains. Streptomyces sclerotialus FERM BP-1370 and Streptomyces roseoporus FERM BP-1574 were found to have the ability to convert 25-hydroxyvitamin D3 and 1 alpha-hydroxyvitamin D3, respectively, to 1 alpha, 25-dihydroxyvitamin D3. The average rates of 1 alpha hydroxylation of 25-hydroxyvitamin D3 were 6.9 micrograms liter-1 min-1 with FERM BP-1370 and 7.0 micrograms liter-1 min-1 with FERM BP-1574. The specific cytochrome P-450 inhibitors carbon monoxide, SKF-525-A, and metyrapone inhibited the hydroxylation of 1 alpha- and 25-hydroxyvitamin D3 to 1 alpha, 25-dihydroxyvitamin D3 by FERM BP-1370 and FERM BP-1574. The cytochromes P-450 of these strains were detected by reduced CO difference spectra in the whole-cell suspensions. The appearance of cytochrome P-450 suggests that the cytochromes P-450 of FERM BP-1370 and FERM BP-1574 carry out the hydroxylation of 25- and 1 alpha-hydroxyvitamin D3 to 1 alpha, 25-dihydroxyvitamin D3.  相似文献   

19.
To enzymatically synthesize vitamin D derivatives, we screened about 300 Streptomyces sp. strains. Streptomyces sclerotialus FERM BP-1370 and Streptomyces roseoporus FERM BP-1574 were found to have the ability to convert 25-hydroxyvitamin D3 and 1 alpha-hydroxyvitamin D3, respectively, to 1 alpha, 25-dihydroxyvitamin D3. The average rates of 1 alpha hydroxylation of 25-hydroxyvitamin D3 were 6.9 micrograms liter-1 min-1 with FERM BP-1370 and 7.0 micrograms liter-1 min-1 with FERM BP-1574. The specific cytochrome P-450 inhibitors carbon monoxide, SKF-525-A, and metyrapone inhibited the hydroxylation of 1 alpha- and 25-hydroxyvitamin D3 to 1 alpha, 25-dihydroxyvitamin D3 by FERM BP-1370 and FERM BP-1574. The cytochromes P-450 of these strains were detected by reduced CO difference spectra in the whole-cell suspensions. The appearance of cytochrome P-450 suggests that the cytochromes P-450 of FERM BP-1370 and FERM BP-1574 carry out the hydroxylation of 25- and 1 alpha-hydroxyvitamin D3 to 1 alpha, 25-dihydroxyvitamin D3.  相似文献   

20.
When bovine proximal tubule cells are placed in primary culture, they are subject to elevated oxidative stress which acts to limit the expression of mitochondrial vitamin D3 1 alpha- and 24-hydroxylase activities. This increased oxidative stress was demonstrated by increased production of cell and mitochondrial membrane lipid hyperperoxides (LOOH). This increased production was prevented by the addition of the antioxidants butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT). Cell and mitochondrial membrane LOOH increased from 1 to 2 pmol/mg protein on the day of plating to 70-90 pmol/mg protein after 6 days in culture. Pretreatment of cultures with BHA and BHT resulted in membrane LOOH of 15-20 pmol/mg protein after 6 days. Mitochondrial LOOH production was greater than total cell LOOH after 6 days. The increase in cellular oxidative stress was paralleled by decreases in both 1 alpha- and 24-hydroxylase activities toward 25-OH D3. Mitochondrial hydroxylase activities were inversely proportional to the increase in mitochondrial membrane LOOH production. Mitochondrial cytochrome P-450 content, determined spectrophotometrically, was decreased over time in culture. Mitochondrial cytochrome P-450 content determined by a specific polyclonal antibody in an enzyme-linked immunosorbant assay also decreased over time in culture. Specificity of polyclonal antibodies, raised against rat liver microsomal cytochrome P-450 RLM5, was demonstrated by the immunosequestration of both 1 alpha- and 24-hydroxylase activities from a partially purified preparation of renal mitochondrial cytochrome P-450. BHA showed the loss of 1 alpha- and 24-hydroxylase activities and mitochondrial P-450 content measured by all criteria. These experiments indicate that oxidative stress-mediated changes in hydroxylase activities are mediated directly by changes in hydroxylase content and not at distal sites. A partially purified preparation of bovine proximal tubule mitochondrial cytochrome P-450, with purified renal ferredoxin, ferredoxin reductase, and NADPH, expressed both 1 alpha- and 24-hydroxylase activities toward 25-OH D3. LOOH, derived from mitochondrial membranes of 5-day-old cultures, when added to this mixture, caused a dose-dependent decrease in both activities. These experiments suggested that an increase in mitochondrial LOOH production resulted in a loss of 1 alpha- and 24-hydroxylase activities. 1 alpha-Hydroxylase was more sensitive to the effects of LOOH treatment than 24-hydroxylase. At a ratio of LOOH:P-450 of 5:1 (molar), all 1 alpha-hydroxylase activity was lost but 50% of the 24-hydroxylase activity remained.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号