首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
? Premise of the study: Many reports have cited Baker's list of weediness traits, or those that exemplify the "ideal" weed, yet few have considered the evolutionary potential of such traits as a group. Thus, it is unknown whether constraints on the evolution of increased weediness, such as a lack of genetic variation or genetic correlations between the traits, are present. Ipomoea purpurea, the common morning glory, is a problematic weed that exhibits many of Baker's ideal weed traits. ? Methods: We used progeny from a half/full-sib breeding design in a series of three greenhouse experiments to assess the presence of genetic variation, narrow sense heritabilities, and genetic correlations in Baker's growth, competition, and fitness "weediness" traits in two populations of I. purpurea. ? Key results: We uncovered genetic variation underlying reproductive fitness traits and competitive ability in at least one population, but no evidence of genetic variation underlying growth rate in either population. Genetic correlations between many of the weediness characters differed significantly from zero; however, their direction and/or magnitude differed between populations. ? Conclusions: We found that increased weediness in the common morning glory is more likely to occur through selection on reproductive output and competitive ability rather than through selection on growth rate. Assessing Baker's traits in a quantitative genetics framework can provide a solid perspective on their evolutionary potential and a unique framework within which to determine how weeds will respond to different environmental stresses and/or scenarios of global climate change.  相似文献   

2.
In self-compatible, hermaphroditic plants, display size-the number of flowers open on a plant at one time-is believed to be influenced by trade-offs between increasing geitonogamous selfing and decreasing per-flower pollen export as display size increases. Experimental results presented here indicate that selection through male function favors smaller display sizes in Ipomoea purpurea. In small arrays, plant display size was manipulated experimentally, and female selfing rate, male outcross success, and total male fitness were estimated using genetic markers and likelihood and regression analyses. As would be expected if larger displays experience greater geitonogamy, selfing rate increased with display size. However, the per-flower amount of pollen exported to other plants decreased with display size. The magnitude of this effect is more than sufficient to offset the increase in selfing rate, resulting in reduced per-flower total male fitness with increasing display size. The low values of inbreeding depression previously reported for this species would enhance this effect.  相似文献   

3.
Leaf shape is one of the most variable plant traits. Previous work has provided much indirect evidence that leaf-shape variation is adaptive and that leaf shape influences thermoregulation, water balance, and resistance to natural enemies. Nevertheless, there is little direct evidence that leaf shape actually affects plant fitness. In this study, we first demonstrate that populations of the ivyleaf morning glory, Ipomoea hederacea, in North and South Carolina are frequently polymorphic at a locus that influences leaf shape. We then employ several field experiments to show that this polymorphism is subject to selection. In two of the experiments, at different sites, heterozygotes enjoyed a fitness advantage over both homozygotes. At a third site, in one year directional selection favored lobed leaves, whereas in a second year the pattern of fitnesses was consistent with similar directional selection or heterozygote superiority. Computer simulations of heterozygote advantage under the high selfing rates of I. hederacea indicate that balancing selection of the magnitude observed can by itself stabilize the polymorphism, although spatially and temporally variable selection may also contribute to its long-term maintenance.  相似文献   

4.
5.
Fitness costs are frequently invoked to explain the presence of genetic variation underlying plant defense across many types of damaging agents. Despite the expectation that costs of resistance are prevalent, however, they have been difficult to detect in nature. To examine the potential that resistance confers a fitness cost, we examined the survival and fitness of genetic lines of the common morning glory, Ipomoea purpurea, that diverged in the level of resistance to the herbicide glyphosate. We planted a large field experiment and assessed survival following herbicide application as well as fitness of the divergent selection lines in the absence of the herbicide. We found that genetic lines selected for increased resistance exhibited lower death compared to control and susceptible lines in the presence of the herbicide, but no evidence that resistant lines produced fewer seeds in the absence of herbicide. However, susceptible lines produced more viable seeds than resistant or control lines, providing some evidence of a fitness cost in terms of seed germination, and thus potential empirical support for the expectation of trait trade‐offs as a consequence of adaptation to novel environments.  相似文献   

6.
Although fitness costs associated with plant defensive traits are widely expected, they are not universally detected, calling into question their generality. Here, we examine the potential for life‐history trade‐offs associated with herbicide resistance by examining seed germination, root growth, and above‐ground growth across 43 naturally occurring populations of Ipomoea purpurea that vary in their resistance to RoundUp ® , the most commonly used herbicide worldwide. We find evidence for life‐history trade‐offs associated with all three traits; highly resistant populations had lower germination, shorter roots, and smaller above‐ground size. A visual exploration of the data indicated that the type of trade‐off may differ among populations. Our results demonstrate that costs of adaptation may be present at stages other than simply the production of progeny in this agricultural weed. Additionally, the cumulative effect of costs at multiple life cycle stages can result in severe consequences to fitness when adapting to novel environments.  相似文献   

7.
Pollen discounting, a reduction in outcross success associated with increased selfing, was evaluated in the common morning glory Ipomoea purpurea. A field experiment was conducted to estimate selfing rates and outcross success using small arrays of plants with large or small anther-stigma distance (ASD). To evaluate the effect of genotypic composition on the mating-system parameters, arrays were composed of five different frequencies of small- and large-ASD genotypes. While the selfing rates of genotypes with small ASD were consistently higher than genotypes with large ASD regardless of the genotypic frequency, outcross success was negatively frequency dependent. The genotype that was at lower frequency in the array had higher outcrossing success in three out of the four array types with unequal frequencies. This advantage-when-rare phenomenon can contribute to preventing the fixation of either extreme ASD-morph and maintaining a mixed mating system in I. purpurea.  相似文献   

8.
9.
Chalcone synthase (CHS) is a small multigene family with at least four members (CHS-A, B, C and PS) in common morning glory Ipomoea purpurea ROTH. The chalcone synthase enzyme performs the initial condensation reaction that results in the 15-carbon three-ring structure that is the backbone of flavonoid biosynthesis. The biochemical pathway that commences with CHS is important in plant disease defence, pigment biosynthesis and UV protection. Accordingly, it is of substantial interest to characterize levels and patterns of molecular diversity for genes that encode this important enzyme. We report the sequence of 19 CHS-A alleles from Mexican and American populations of common morning glory. American populations of this annual self-compatible vine are believed to have been introduced from Mexico, where the species is native. Individual plants were sampled from populations of common morning glory throughout Mexico and the south-eastern USA. Four American alleles were sequenced and these, together with one allele from Mexico City, were identical in primary nucleotide sequence. These data suggest a restricted origin for the American population, probably as a consequence of selection for domestication by pre-Columbian peoples. Additionally the Mitontic (Chiapas, Mexico) population is significantly more homogeneous than expected by chance indicating that this population may also have experienced a recent population bottleneck. Estimates of nucleotide diversity from the Mexican CHS-A alleles were high. We present evidence that these estimates may, in part, result from low to moderate levels of interlocus recombination/gene conversion. We also present evidence that the ancient duplication of the CHS gene family, preceding the origin of the genus Ipomoea, was associated with heterogeneity in the rate of substitution between the resulting gene family members. The group of gene family members whose sequences possess a signature amino acid of the closely related Stilbene synthase exhibit a significantly faster proportional rate of nonsynonymous substitution.  相似文献   

10.
Resource availability may limit plant tolerance of herbivory. To predict the effect of differential resource availability on plant tolerance, the limiting resource model (LRM) considers which resource limits plant fitness and which resource is mostly affected by herbivore damage. We tested the effect of experimental drought on tolerance of leaf damage in Ipomoea purpurea, which is naturally exposed to both leaf damage and summer drought. To seek mechanistic explanations, we also measured several morphological, allocation and gas exchange traits. In this case, LRM predicts that tolerance would be the same in both water treatments. Plants were assigned to a combination of two water treatments (control and low water) and two damage treatments (50% defoliation and undamaged). Plants showed tolerance of leaf damage, i.e., a similar number of fruits were produced by damaged and undamaged plants, only in control water. Whereas experimental drought affected all plant traits, leaf damage caused plants to show a greater leaf trichome density and reduced shoot biomass, but only in low water. It is suggested that the reduced fitness (number of fruits) of damaged plants in low water was mediated by the differential reduction of shoot biomass, because the number of fruits per shoot biomass was similar in damaged and undamaged plants. Alternative but less likely explanations include the opposing direction of functional responses to drought and defoliation, and resource costs of the damage-induced leaf trichome density. Our results somewhat challenge the LRM predictions, but further research including field experiments is needed to validate some of the preliminary conclusions drawn.  相似文献   

11.
Although disease-resistance polymorphisms are common in natural plant populations, the mechanisms responsible for this variation are not well understood. Theoretical models predict that balancing selection can maintain polymorphism within a population if the fitness effects of a resistance allele vary from a net cost to a net benefit, depending upon the extent of pathogen damage. However, there have been a few attempts to determine how commonly this mechanism operates in natural plant-pathogen interactions. Ipomoea purpurea populations are often polymorphic for resistance and susceptibility alleles at a locus that influences resistance to the fungal pathogen, Coleosporium ipomoeae. We measured the fitness effects of resistance over three consecutive years at natural and manipulated levels of damage to characterize the type of selection acting on this locus. Costs of resistance varied in magnitude from undetectable to 15.5%, whereas benefits of resistance sometimes equaled, but never exceeded, these costs. In the absence of net benefits of resistance at natural or elevated levels of disease, we conclude that selection within individual populations of I. purpurea probably does not account completely for maintenance of this polymorphism. Rather, the persistence of this polymorphism is probably best explained by a combination of variable selection and meta-population processes.  相似文献   

12.
Recent work defines coevolution between plants and herbivores as pairwise when the pattern of selection on resistance traits and the response to selection are both independent of the presence or absence of other herbivores. In addition, for a pairwise response to selection, resistance to a focal herbivore must have the same genetic basis in the presence and absence of other herbivores. None of these conditions were satisfied for the ivyleaf morning glory, Ipomoea hederacea, and its insect, fungal, and mammalian natural enemies with a quantitative genetics field experiment. A significant negative genetic correlation exists between resistance to deer and generalist insect herbivory that would preclude an independent response to selection. In addition, resistance loci under selection differ depending on the composition of the natural enemy community as indicated by genetic correlations between deer resistances in the presence and absence of other natural enemies that differ substantially from 1. Finally, selection on deer resistance depends on the presence or absence of insects; in the presence of insects, greater deer resistance is favored, but in the absence of insects, deer resistance is effectively neutral. These results indicate that the composition of the natural enemy community can alter both the pattern of selection and the likely response to selection of resistance traits.  相似文献   

13.
14.
15.
Vines depend on external support to prevent shading by neighbouringplants. Hence, it is important to determine whether shading enhances thephenotypic responses of vines to support availability. I evaluated theconsequences of support availability (a vertical stake) on shoot and leaftraitsof the morning glory Ipomoea purpurea (Convolvulaceae)under full sunlight and extreme shade. It was hypothesised that phenotypicresponses of vines to support availability should be greater in the shade. Inaddition, to investigate possible constraints to such phenotypic responses, thecorrelations among phenotypic traits and the plasticity of such correlationswere evaluated. The phenotypic variation of the main stem length and of thenumber of branches was consistent with the hypothesis, i.e. greater responsestosupport availability in the shade. In contrast, both internode length and leafarea (two traits that showed a significant and positive correlation) decreasedin the sun and increased in the shade with support availability. Petiole lengthdecreased with support in the sun but had no response in the shade. On theotherhand, the number of significant trait correlations found in plants in the sunand supported plants was higher than those of shade and non-supported plants,respectively. Several of the correlations were significantly sensitive to theenvironment. Flowering only occurred in the sun treatment. Whereas no shoot orleaf trait was significantly correlated with flower number in supported plants,both petiole length and shoot biomass showed a significant correlation withsuchestimate of plant fitness in non-supported plants.  相似文献   

16.
Gene flow is thought to impede genetic divergence and speciation by homogenizing genomes. Recent theory and research suggest that sufficiently strong divergent selection can overpower gene flow, leading to loci that are highly differentiated compared to others. However, there are also alternative explanations for this pattern. Independent evidence that loci in highly differentiated regions are under divergent selection would allow these explanations to be distinguished, but such evidence is scarce. Here, we present multiple lines of evidence that many of the highly divergent SNPs in a pair of sister morning glory species, Ipomoea cordatotriloba and I. lacunosa, are the result of divergent selection in the face of gene flow. We analysed a SNP data set across the genome to assess the amount of gene flow, resistance to introgression and patterns of selection on loci resistant to introgression. We show that differentiation between the two species is much lower in sympatry than in allopatry, consistent with interspecific gene flow in sympatry. Gene flow appears to be substantially greater from I. lacunosa to I. cordatotriloba than in the reverse direction, resulting in sympatric and allopatric I. cordatotriloba being substantially more different than sympatric and allopatric I. lacunosa. Many SNPs highly differentiated in allopatry have experienced divergent selection, and, despite gene flow in sympatry, resist homogenization in sympatry. Finally, five out of eight floral and inflorescence characteristics measured exhibit asymmetric convergence in sympatry. Consistent with the pattern of gene flow, I. cordatotriloba traits become much more like those of I. lacunosa than the reverse. Our investigation reveals the complex interplay between selection and gene flow that can occur during the early stages of speciation.  相似文献   

17.
18.
Chappell TM  Rausher MD 《PloS one》2011,6(12):e28875
We examined the genetic basis of resistance to the rust pathogen Coleosporium ipomoea in three host species: Ipomoea purpurea, I. hederacea, and I. coccinea (Convolvulaceae). In crosses between resistant and susceptible individuals, second-generation selfed offspring segregated in ratios that did not differ statistically from the 3:1 ratio indicative of single-gene resistance with the resistant allele dominant. One out of three crosses between resistant individuals from two different populations revealed that resistance loci differed in the two populations, as evidenced by the production of susceptible individuals among the S(2) generation. These results suggest that gene-for-gene interactions contribute substantially to the dynamics of coevolution in this natural pathosystem. They also suggest that evolution of resistance to the same pathogen strain may involve different loci in different Ipomoea populations.  相似文献   

19.
Yamada T  Takatsu Y  Kasumi M  Ichimura K  van Doorn WG 《Planta》2006,224(6):1279-1290
We studied DNA degradation and nuclear fragmentation during programmed cell death (PCD) in petals of Ipomoea nil (L.) Roth flowers. The DNA degradation, as observed on agarose gels, showed a large increase. Using DAPI, which stains DNA, and flow cytometry for DAPI fluorescence, we found that the number of DNA masses per petal at least doubled. This indicated chromatin fragmentation, either inside or outside the nucleus. Staining with the cationic lipophilic fluoroprobe DiOC6 indicated that each DNA mass had an external membrane. Fluorescence microscopy of the nuclei and DNA masses revealed an initial decrease in diameter together with chromatin condensation. The diameters of these condensed nuclei were about 70% of original. Two populations of nuclear diameter, one with an average diameter about half of the other, were observed at initial stages of nuclear fragmentation. The diameter of the DNA masses then gradually decreased further. The smallest observed DNA masses had a diameter less than 10% of that of the original nucleus. Cycloheximide treatment arrested the cytometrically determined changes in DNA fluorescence, indicating protein synthesis requirement. Ethylene inhibitors (AVG and 1-MCP) had no effect on the cytometrically determined DNA changes, suggesting that these processes are not controlled by endogenous ethylene.  相似文献   

20.
R. A. Ennos 《Genetica》1981,57(2):93-98
The rates of outcrossing in sympatric populations of Ipomoea purpurea and I, hederacea were estimated (using electrophoretic markers) to be 70% and 7% respectively. The difference in outcrossing rate is not apparently due to differences in pollinator service received by the species, but is associated with differences in anther-stigma distance. In I. purpurea stigmas are generally exserted and there is much genetic variation for anther-stigma distance. Variation in this character has a significant effect on the ease with which selfpollination occurs. In contrast there is no variation for the character in the I. hederacea population, the anthers being invariably held at the same level as the stigma, an arrangement promoting self-pollination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号