首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prospects for understanding avirulence gene function   总被引:16,自引:0,他引:16  
Avirulence genes are originally defined by their negative impact on the ability of a pathogen to infect their host plant. Many avirulence genes are now known to represent a subset of virulence factors involved in the mediation of the host-pathogen interaction. Characterization of avirulence genes has revealed that they encode an amazing assortment of proteins and belong to several gene families. Although the biochemical functions of the avirulence gene products are unknown, studies are beginning to reveal the features and interesting relationships between the avirulence and virulence activities of the proteins. Identification of critical virulence factors and elucidation of their functions promises to provide insight into plant defense mechanisms, and new and improved strategies for the control of plant disease.  相似文献   

2.
Plant innate immunity is mediated by Resistance (R) proteins, which bear a striking resemblance to animal molecules of similar function. Tobacco N is a TIR-NB-LRR R gene that confers resistance to Tobacco mosaic virus, specifically the p50 helicase domain. An intriguing question is how plant R proteins recognize the presence of pathogen-derived Avirulence (Avr) elicitor proteins. We have used biochemical cell fraction and immunoprecipitation in addition to confocal fluorescence microscopy of living tissue to examine the association between N and p50. Surprisingly, both N and p50 are cytoplasmic and nuclear proteins, and N's nuclear localization is required for its function. We also demonstrate an in planta association between N and p50. Further, we show that N's TIR domain is critical for this association, and indeed, it alone can associate with p50. Our results differ from current models for plant innate immunity that propose detection is mediated solely through the LRR domains of these molecules. The data we present support an intricate process of pathogen elicitor recognition by R proteins involving multiple subcellular compartments and the formation of multiple protein complexes.  相似文献   

3.
In addition to their role in pre-mRNA splicing, the human spliceosomal proteins U1A and U2B" are important models of how RNP motif-containing proteins execute sequence-specific RNA binding. Genes encoding U1A and U2B" have been isolated from potato and thereby provide the only evolutionary comparison available for both proteins and represent the only full-length genes encoding plant spliceosomal proteins to have been cloned and characterized. In vitro RNA binding experiments revealed the ability of potato U2B" to interact with human U2A' to enhance sequence-specific binding and to distinguish cognate RNAs of either plant or animal origin. A comparison of the sequence of U1A and U2B" proteins indicated that multiple residues which could affect RNP motif conformation probably govern the specific distinction in RNA binding by these proteins. Since human U1A modulates polyadenylation in vertebrates, the possibility that plant U1A might be exploited in the characterization of this process in plants was examined. However, unlike vertebrate U1A, neither U1A from potato nor Arabidopsis bound their own mRNA and no evidence for binding to upstream efficiency elements in polyadenylation signals was obtained, suggesting that plant U1A is not involved in polyadenylation.  相似文献   

4.
The study of plant mitochondria started in earnest around 1950 with the first isolations of mitochondria from animal and plant tissues. The first 35 years were spent establishing the basic properties of plant mitochondria and plant respiration using biochemical and physiological approaches. A number of unique properties (compared to mammalian mitochondria) were observed: (i) the ability to oxidize malate, glycine and cytosolic NAD(P)H at high rates; (ii) the partial insensitivity to rotenone, which turned out to be due to the presence of a second NADH dehydrogenase on the inner surface of the inner mitochondrial membrane in addition to the classical Complex I NADH dehydrogenase; and (iii) the partial insensitivity to cyanide, which turned out to be due to an alternative oxidase, which is also located on the inner surface of the inner mitochondrial membrane, in addition to the classical Complex IV, cytochrome oxidase. With the appearance of molecular biology methods around 1985, followed by genomics, further unique properties were discovered: (iv) plant mitochondrial DNA (mtDNA) is 10–600 times larger than the mammalian mtDNA, yet it only contains approximately 50% more genes; (v) plant mtDNA has kept the standard genetic code, and it has a low divergence rate with respect to point mutations, but a high recombinatorial activity; (vi) mitochondrial mRNA maturation includes a uniquely complex set of activities for processing, splicing and editing (at hundreds of sites); (vii) recombination in mtDNA creates novel reading frames that can produce male sterility; and (viii) plant mitochondria have a large proteome with 2000–3000 different proteins containing many unique proteins such as 200–300 pentatricopeptide repeat proteins. We describe the present and fairly detailed picture of the structure and function of plant mitochondria and how the unique properties make their metabolism more flexible allowing them to be involved in many diverse processes in the plant cell, such as photosynthesis, photorespiration, CAM and C4 metabolism, heat production, temperature control, stress resistance mechanisms, programmed cell death and genomic evolution. However, it is still a challenge to understand how the regulation of metabolism and mtDNA expression works at the cellular level and how retrograde signaling from the mitochondria coordinates all those processes.  相似文献   

5.
The synthesis of cellulose in vitro has occupied the attention of numerous biochemists for several decades without success. Since chitin has been synthesized in vitro there does not appear to be any basic reason why the same should not be possible for cellulose. However consideration of the problems involved in the in vitro systems used hitherto from plant cells indicate that the problems involved are not as easily overcome as one might think. Possible alternatives to the previously used systems are discussed which might, after suitable experimentation, provide a better indication of how to solve this major problem of biosynthesis.  相似文献   

6.
7.
Strangers in the matrix: plant cell walls and pathogen susceptibility   总被引:2,自引:0,他引:2  
Early in infection, pathogens encounter the outer wall of plant cells. Because pathogen hydrolases targeting the plant cell wall are well-known components of virulence, it has been assumed that wall disassembly by the plant itself also contributes to susceptibility, and now this has been established experimentally. Understanding how plant morphological and developmental remodeling and pathogen cell wall targeted virulence influence infections provides new perspectives about plant-pathogen interactions. The plant cell wall can be an effective physical barrier to pathogens, but also it is a matrix where many proteins involved in pathogen perception are delivered. By breaching the wall, a pathogen potentially reveals itself to the plant and activates responses, setting off events that might halt or limit its advance.  相似文献   

8.
An effective vaccine for serogroup B meningococci has yet to be developed and attention has turned to subcapsular antigens of the meningococcus as possible vaccine candidates. Iron binding proteins are being studied, with most interest focused on the transferrin binding proteins (TbpA and TbpB) and the ferric binding protein (FbpA). This study describes the purification of lactoferrin binding protein A (LbpA) from two meningococcal strains and assesses the human isotype-specific serum antibody response to these proteins in patients with proven meningococcal disease due to a range of phenotypes. Overall, fewer than 50% of sera contained IgG that recognised LbpA isolated from either strain and this antibody response was not uniform between the two proteins. There was some evidence that the antibody response varied between meningococcal phenotypes. This study demonstrates that LbpA does not induce a highly cross-reactive antibody response, indicating that it is unlikely to be an effective vaccine antigen.  相似文献   

9.
JAZ repressors set the rhythm in jasmonate signaling   总被引:3,自引:0,他引:3  
  相似文献   

10.
A major insight that has emerged in the study of haustoria-forming plant pathogens over the last few years is that these eukaryotic biotrophs deliver suites of secreted proteins into host cells during infection. This insight has largely derived from successful efforts to identify avirulence (Avr) genes and their products from these pathogens. These Avr genes, identified from a rust and a powdery mildew fungus and three oomycete species, encode small proteins that are recognized by resistance proteins in the host plant cytoplasm, suggesting that they are transported inside plant cells during infection. These Avr proteins probably represent examples of fungal and oomycete effector proteins with important roles in subverting host cell biology during infection. In this respect, they represent a new opportunity to understand the basis of disease caused by these biotrophic pathogens. Elucidating how these pathogen proteins gain entry into plant cells and their biological function will be key questions for future research.  相似文献   

11.
Members of the kinesin superfamily of proteins participate in a wide variety of cellular processes. Although much attention has been devoted to the structural and biophysical properties of the force-generating motor domain of kinesins, the factors controlling the functional specificity of each kinesin have only recently been examined. Genetic and biochemical approaches have identified two classes of proteins that associate physically with the diverse non-motor domains of kinesins. These proteins can be divided into two general classes: first, those that form tight complexes with the kinesin and are instrumental in directing the distinct function of the motor (i.e. drivers) and, second, those proteins that might transiently interact with the motor or be an integral part of the motor's cargo (i.e. passengers). Here, we discuss known kinesin-binding proteins, and how they might participate in the activity of their motor partners.  相似文献   

12.
How does a plant cell sense and respond to the status of its cell wall? Intercourse between cell wall and cytoplasm has long been supposed to involve arabinogalactan proteins, in part because many of them are anchored to the plasma membrane. Disrupting arabinogalactan proteins has recently been shown to disrupt the array of cortical microtubules present just inside the plasma membrane, implying that microtubules and arabinogalactan proteins interact. In this article, we assess possibilities for how this interaction might be mediated. First, we consider microdomains in the plasma membrane (lipid rafts), which have been alleged to link internal and external regions of the plasma membrane; however, the characteristics and even the existence of these domains remains controversial. Next, we point out that disrupting the synthesis of cellulose also can disrupt microtubules and consider whether arabinogalactan proteins are part of a network linking microtubules and nascent microfibrils. Finally, we outline several signaling cascades that could transmit information from arabinogalactan proteins to microtubules through channels of cellular communication. These diverse possibilities highlight the work that remains to be done before we can understand how plant cells communicate across their membranes.  相似文献   

13.
ARABIDILLO proteins are F-box-Armadillo (ARM) proteins that regulate root branching in Arabidopsis. Many F-box proteins in plants, yeast and mammals are unstable. In plants, the mechanism for this instability has not been fully investigated. Here, we show that a conserved family of plant ARABIDILLO-related proteins has a unique domain structure consisting of an F-box and leucine-rich repeats (LRRs) followed by ARM-repeats. The LRRs are similar to those found in other plant and animal F-box proteins, including cell cycle proteins and hormone receptors. We demonstrate that the LRRs are required for ARABIDILLO1 function in vivo. ARABIDILLO1 protein is unstable: we show that ARABIDILLO1 protein is associated with ubiquitin and is turned over by the proteasome. Both the F-box and LRR regions of ARABIDILLO1 appear to enable this turnover to occur. Application of known lateral root-regulating signals has no effect on ARABIDILLO1 stability. In addition, plants that lack or overexpress ARABIDILLO proteins respond normally to known lateral root-regulating signals. Thus, we suggest that the signal(s) regulating ARABIDILLO stability in vivo may be either highly specific or novel. The structural conservation between ARABIDILLOs and other plant and animal F-box proteins suggests that the stability of other F-box proteins may be controlled by similar mechanisms.  相似文献   

14.
Plant GTPases: the Rhos in bloom   总被引:17,自引:0,他引:17  
  相似文献   

15.
The honey from chestnut, acacia, sunflower, eucalyptus and orange was analysed for its proteome content, in order to see if any plant proteins present would allow the proteo-typing of these different varieties. Since the total protein content turned out to be minute, 200g of each honey type were diluted to 1L and then added with ProteoMiner to enhance the visibility of the proteinaceous material. All bands visible in the SDS-PAGE profile of each type of honey were eluted, digested and identified by mass spectrometry in a LTQ-XL instrument. It turned out that all proteins identified (except one, the enzyme glyceraldehyde-3-phosphate dehydrogenase from Mesembryanthemum crystallinum) were not of plant origin but belonged to the Apis mellifera proteome. Among the total proteins identified (eight, but only seven as basic constituents of all types of honey) five belonged to the family of major royal jelly proteins 1-5, and were also the most abundant ones in any type of honey, together with α-glucosidase and defensin-1. It thus appears that honey has a proteome resembling the royal jelly proteome (but with considerably fewer species), except that its protein concentration is lower by three to four orders of magnitude as compared to royal jelly. Attempts at identifying additional plant (pollen, nectar) proteins via peptidome analysis were unsuccessful.  相似文献   

16.
In mammals, p53 is crucial for inducing the genes that lead to G1 arrest following DNA damage, enabling DNA repair. However, the possibility that such a system exists in plants has attracted little attention. Even though some plant cDNA sequences with partial homology to p53 have been reported recently, there has been little analysis of how these molecules might relate to DNA damage. The lack of investigation into whether a DNA-damage-induced, p53-mediated G1-arrest pathway might exist in plants is remarkable given that plant DNA, like that of all organisms, is continually under the threat of attack.  相似文献   

17.
Autophagy has attracted a lot of attention in recent years. More and more proteins and signaling pathways have been discovered that somehow feed into the autophagy regulatory pathways. Regulation of autophagy is complex and condition-specific, and in several diseases, autophagic fluxes are changed. Here, we review the most well-established concepts in this field as well as the reported signaling pathways or components which steer the autophagy machinery. Furthermore, we will highlight how autophagic fluxes are changed in various diseases either as cause for or as response to deal with an altered cellular homeostasis and how modulation of autophagy might be used as potential therapy for such diseases.  相似文献   

18.
19.
Nitric oxide evolution and perception   总被引:8,自引:0,他引:8  
Various experimental data indicate signalling roles for nitric oxide (NO) in processes such as xylogenesis, programmed cell death, pathogen defence, flowering, stomatal closure, and gravitropism. However, it still remains unclear how NO is synthesized. Nitric oxide synthase-like activity has been measured in various plant extracts, NO can be generated from nitrite via nitrate reductase and other mechanisms of NO generation are also likely to exist. NO removal mechanisms, for example, by reaction with haemoglobins, have also been identified. NO is a gas emitted by plants, with the rate of evolution increasing under conditions such as pathogen challenge or hypoxia. However, exactly how NO evolution relates to its bioactivity in planta remains to be established. NO has both aqueous and lipid solubility, but is relatively reactive and easily oxidized to other nitrogen oxides. It reacts with superoxide to form peroxynitrite, with other cellular components such as transition metals and haem-containing proteins and with thiol groups to form S-nitrosothiols. Thus, diffusion of NO within the plant may be relatively restricted and there might exist 'NO hot-spots' depending on the sites of NO generation and the local biochemical micro-environment. Alternatively, it is possible that NO is transported as chemical precursors such as nitrite or as nitrosothiols that might function as NO reservoirs. Cellular perception of NO may occur through its reaction with biologically active molecules that could function as 'NO-sensors'. These might include either haem-containing proteins such as guanylyl cyclase which generates the second messenger cGMP or other proteins containing exposed reactive thiol groups. Protein S-nitrosylation alters protein conformation, is reversible and thus, is likely to be of biological significance.  相似文献   

20.
Production of heterologous proteins in plants has become increasingly efficient due to recent advances in plant biotechnology. Heterologous proteins that have specifically attracted a great deal of attention are plant-produced monoclonal antibodies. A variety of applications for these so-called plantibodies have been explored since they were first expressed in tobacco seven years ago. Both full length antibodies and antibody fragments produced in transgenic plants offer many intriguing possibilities to plant molecular biologists and plant breeders. However, questions such as how cellular targeting influences the expression and accumulation of these proteins in plants still need to be answered before the technology can be used commercially, on a large-scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号