首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
K Maruyama  T Hiwasa    K I Oda 《Journal of virology》1981,37(3):1028-1043
Eight clones of flat revertants were isolated by negative selection from simian virus 40 (SV40)-transformed mouse and rat cell lines in which two and six viral genome equivalents per cell were integrated, respectively. These revertants showed either a normal cell phenotype or a phenotype intermediate between normal and transformed cells as to cellular morphology and saturation density and were unable to grow in soft agar medium. One revertant derived from SV40-transformed mouse cells was T antigen positive, whereas the other seven revertants were T antigen negative. SV40 could be rescued only from the T-antigen-positive revertant by fusion with permissive monkey cells. The susceptibility of the revertants to retransformation by wild-type SV40 was variable among these revertants. T-antigen-negative revertants from SV40-transformed mouse cells were retransformed at a frequency of 3 to 10 times higher than their grandparental untransformed cells. In contrast, T-antigen-negative revertants from SV40-transformed rat cells could not be retransformed. The arrangement of viral genomes was analyzed by digestion of cellular DNA with restriction enzymes of different specificity, followed by detection of DNA fragments containing a viral sequence and rat cells were serially arranged within the length of about 30 kilobases, with at least two intervening cellular sequences. A head-to-tail tandem array of unit length viral genomes was present in at least one insertion site in the transformed rat cells. All of the revertants had undergone a deletion(s), and only a part of the viral genome was retained in T-antigen-negative revertants. A relatively high frequency of reversion in the transformed rat cells suggests that reversion occurs by homologous recombination between the integrated viral genomes.  相似文献   

2.
A chromosome that controls malignancy in Chinese hamster cells has been identified by analysis of the Giemsa banding pattern of a malignant cell line transformed by simian virus 40 (SV40), non-malignant revertants from this line, segregants from the revertants that were again malignant and a cell line transformed by methylcholanthrene. The malignant cell line transformed by SV40 was near diploid and had gained additional material of chromosome 3. Revertants with a suppression of malignancy and malignant revertants from which they were derived. Malignancy of these cells was associated with the ability to form colonies in agar. Cells of a line transformed by methylcholanthrene were malignant, formed almost no colonies in agar and the only chromosome change from the normal diploid chromosome banding complement was the addition of a long arm of chromosome 3. The results indicate that chromosome 3 carriers gene(s) that control malignancy in Chinese hamster cells in cell lines transformed by a viral or a chemical carcinogen and that malignancy was induced in both cell types by an increase of these genes.  相似文献   

3.
SV40 T基因转化的山羊乳腺上皮细胞系及其生物学特性   总被引:4,自引:0,他引:4  
目的建立能用于乳腺特异表达基因构件质量检验的山羊乳腺上皮细胞系.方法根据已发表的SV40病毒T基因序列设计引物,以整合有SV40 DNA早期基因区的COS-1细胞基因组DNA为模板,用高保真PCR扩增SV40 T基因.将获得的SV40 T基因克隆入真核表达载体,并用获得的重组表达质粒转染山羊原代乳腺上皮细胞.经有限稀释和反复传代后获得转化细胞克隆,对其生物学特性进行研究.结果扩增出序列正确的SV40T基因,重组质粒转染获得的转化细胞的对数生长期为接种后第4天,细胞群体倍增时间为23.5*!h,克隆形成率为26.7%.DNA斑点杂交试验证明转化细胞的基因组中整合有SV40 T基因,染色体核型分析试验表明转化细胞的核型无明显异常,裸鼠接种试验证明转化细胞不能形成肿瘤,软琼脂集落形成试验表明转化细胞在软琼脂中不能生长.部分细胞克隆已在体外传30代以上,保持正常乳腺上皮细胞的形态特征,在胶原基质上能形成腺泡样结构.结论本研究获得的SV40 T基因转化的山羊乳腺上皮细胞具有转化细胞系的生物学特性.  相似文献   

4.
B Steinberg  R Pollack  W Topp  M Botchan 《Cell》1978,13(1):19-32
Negative selection with FUdR produced revertants from the transformed rat line 14B, which contains one insertion of the SV40 viral genome (Botchan, Topp and Sambrook, 1976). 14B contains nuclear T antigen, grows to a high density, grows in low serum and is anchorage-independent. The revertants fall into three classes with regard to viral DNA sequences: the SV40 DNA is retained; the SV40 DNA is retained but has undergone a deletion; and the SV40 DNA is lost, generating a cured cell. This heterogeneity is not a result of long-term passage. The revertants arise with a frequency of one in 8.4 X 10(5) cells after as few as 12 passages. All three classes of revertants are T antigen-negative, density-sensitive, more serum sensitive than 14B and anchorage-dependent. These data argue for a direct role of the functioning viral genome in the maintenance of the transformed state, and that with 14B, the phenotypes of transformation are not virus gene dosage-dependent.  相似文献   

5.
"Spontaneously" or SV40 virus transformed AL/N mouse cell lines were passed repeatedly through syngeneic mice. Cell lines were re-established in culture from minced pieces of tumors in the presence of concentrated fetal calf serum or from tumor cells dispersed by trypsin. The aim of this study was to compare the two cell lines in regard to the selection processes which operate during such procedures by characterization of the resulting cell lines. Measurements of growth in tissue culture on substratum showed no significant difference between any of the transformed cell lines. The SV40 transformed cells and its derivative cells had a low anchorage requirement for growth. The greatest anchorage requirement for growth was in the normal untransformed cells and in the derivative cells from the "spontaneously" transformed cells which were established from minced tumors. The spontaneously transformed cells and all derivative cells had high tumorigenicity (TD50 is less than 10-2). The SV40 transformed cells had no observable tumorigenicity (TD50 is greater than 10-8), except when injected into irradiated mice (TD50 = 1-5 X 10-5 in the immunocompetent mice, 5 X 10-4 in the irradiated mice). The SV40 transformed derivative cells maintained their SV40 specific T antigen and their susceptibility to lysis by specific antiserum.  相似文献   

6.
T-antigen-positive transformation revertant cell lines were isolated from fully simian virus 40 (SV40)-transformed Fisher rat embryo fibroblast cells (REF 52 cells) by methionine starvation. Reversion of the transformed cells (SV-52 cells) was caused by a mutation within the cellular genome. To demonstrate this, we isolated SV40 DNA from the host genome, inserted it into plasmid pSPT18 DNA, cloned it in Escherichia coli, and microinjected it into the nuclei of the REF 52 cells. Fully transformed cells were obtained with the same efficiency (20 to 25%) as after microinjection of wild-type SV40 DNA I. Furthermore, the revertant cells were resistant to retransformation by SV40. Following microinjection of wild-type SV40 DNA I, 42 independent cell lines were isolated. Cells of all analyzed lines acquired additional SV40 DNA copies, but changes in the cell morphology or growth characteristic were not demonstrable. However, the revertants were retransformable with a high efficiency after polyomavirus and adenovirus type 2 infections or microinjection. Also, fusion of the revertant cells with the grandparental REF 52 cells led to restoration of the transformed state.  相似文献   

7.
Treatment of the SV40 transformed 3T3 cell line SV101 with colchicine permits the isolation of polyploid revertant sublines Which have lower saturation densities than SV101. These low saturation density lines have also reverted to a high serum requirement for growth, and are unable to form colonies in methocel. Normal SV40 has been recovered from these revertants. 3T3 cells are more resistant to colchicine than SV3T3 cells at all cell densities. Colchicine revertants do not display a 3T3-like resistance to colchicine at low density, but do survive colchicine at confluent cell densities, presumably due to their increased contact inhibition.  相似文献   

8.
J M Coll  S W Luborsky  P T Mora 《Biochemistry》1977,16(14):3169-3177
A family of mouse fibroblast cell lines in exponential phase of growth were compared in protein constitution of their cell membranes. In preparations from these cells enriched in cell-surface membrane we observed one protein component (apparent molecular weight about 250 000) consistently to be reduced or absent in an SV40 virus transformed cell line, when compared with the normal cell line. No such compositional difference was observed in a spontaneously transformed tumorigenic clonal derivative cell line, or in subclones of such a derivative cell line, with or without SV40 virus infection. However, in metabolic labeling experiments with 14C-labeled mixed amino acids, a consistent decrease also was demonstrated in the biosynthesis of the same protein in the SV40 virus infected subclone, as compared to an uninfected sister subclone, during exponential growth. This specific difference in biosynthesis is apparently related to the presence and functioning of the SV40 gene, and correlates with the ability of these cells to grow in viscous medium, but not with cellular tumorigenicity.  相似文献   

9.
Phenotypic revertants were isolated from simian virus 40-transformed cells in order to examine the relationship between simian virus 40 T-antigen expression and G1 arrest of growth. Revertant clones with increased adherence were selected from cultures of SVT2, a simian virus 40-transformed BALB/c mouse cell line, and screened to find arrestable revertant clones which inhibited DNA synthesis when crowded. The clones selected from untreated SVT2 were unstable and showed little or no inhibition of DNA synthesis when crowded. Stable revertants were found after treatment of SVT2 with Colcemid to increase ploidy. The stable revertants all lost most transformed growth properties tested, including tumorigenicity, but only a few showed the same degree of inhibition of DNA synthesis at high cell density as BALB/3T3. All revertant clones expressed T antigen at low cell density. Three revertants showed coordinate inhibition of DNA synthesis and apparent loss of T antigen at high cell density. We suggest that changes in gene dosage rather than mutations caused the altered properties of the new revertants and that continued DNA synthesis in confluent cultures may be the transformed phenotype that requires the least simian virus 40 T antigen.  相似文献   

10.
Primate neoplastic and finite cell lines were tested in one in vivo and two in vitro test systems: adult nude mice, muscle organ culture (MOC) and soft agarose (SA). Comparison of the sensitivity of the systems indicated that nude mice were inferior to either in vitro system: WI-38 VA13 (an SV40 transformed cell line) did not cause tumours in these animals yet it behaved as if it were neoplastic in MOC and formed colonies in SA. There was complete correlation between results obtained in MOC and SA. All cell lines which produced tumors in vivo were positive in both in vitro test systems. None of the lines which showed normal patterns in MOC and in SA was tumorigenic in nude mice. Since testing in vitro is simpler, faster, and is thought to be reliable, we recommend SA followed by MOC as the initial assays for determining tumorigenicity of cells.  相似文献   

11.
The possibility of induction by the oncogenic DNA-containing virus SV40 of reversions to normal phenotype as regards contact inhibition ("flat" revertants), was studied in spontaneously transformed chinese hamster fibroblasts. Negative selection was used for detection of revertants. The method adopted allowed to study the mutagenic activity of the virus, while excluding its transforming effect. In all experiments the frequency of revertants after infection exceeded that in control series. The value of induction varied from 1.2 to 28.4 X 10(-6). The tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate (TPA) known to increase the frequency of mutations induced by carcinogens in vitro, displayed no enhancing effect on the frequency of revertants induced by SV40. The lack of enhancement of virus-induced reversions after TPA treatment might be explained by the lack of the transforming effect of SV40 in the system studied. Some of the normal "flat" colonies were T-antigen positive, i. e. the viral oncogene was expressed. The role of mutations induced by SV40 in cellular genes controlling malignancy is discussed.  相似文献   

12.
Properties of transformed cell lines derived from secondary cultures of newborn NMRI nu/nu (nude) mouse skin fibroblasts by the sequential exposure of 3-methylcholanthrene and a DNA virus, SV40, were studied. Such transformants were compared to cells transformed by 3-methylcholanthrene or SV40 alone for the tumourigenicity, T-antigen expression, different in vitro growth characteristics and natural killer (NK) cell sensitivity. Despite a considerable variation within a group, the cell lines transformed by the combination treatment as a group were more tumourigenic than cell lines of other groups. In addition, the cell lines transformed by the combination treatment showed increased amounts of T-antigen as compared to cell lines transformed by SV40 alone. They also had, on an average, shorter population doubling time, higher cell saturation density, and a higher amount of DNA per cell than cell lines transformed by SV40 alone. Combination treatment cell lines (5 out of 8) grew in soft agar, whereas cell lines transformed by SV40 or 3-methylcholanthrene alone did not. In conclusion, the cell lines transformed by the combination treatment of 3-methylcholanthrene and SV40 had properties related to malignancy more often than cell lines transformed by SV40 or 3-methyl cholanthrene alone.  相似文献   

13.
The composition of gangliosides was examined in a normal rat embryo fibroblast cell line (REF52) and in two viral transformants: a polyoma transformant (REF52-PyMLV) and a simian viral 40 transformant (REF52-SV40). The distribution of gangliosides in the cell lines was determined using gas-liquid chromatography and high-performance thin-layer chromatography. N-acetylneuraminic acid was the predominant sialic acid species detected in the three cell lines. The total ganglioside concentration (microgram/100 mg dry weight of cells) in the normal, PyMLV, and SV40 lines was 144.7 +/- 10.4, 153.8 +/- 9.2, and 86.1 +/- 6.8, respectively. Gangliosides GM3, GM2, GM1, and GD1a were the major species in the normal and transformed lines. The distribution of these gangliosides, however, differed markedly between the normal and the transformed lines and also between the transformed lines themselves. The transformed cells also differed from the normal cells in growth rate, morphology, and social behavior. The cell line with highest GM3 content (PyMLV) formed islands, whereas the normal and SV40 cell lines, which had lower GM3 levels, grew as monolayers. The findings suggest that PyMLV and SV40 transformation can have multiple and different effects on cellular ganglioside distribution and growth behavior.  相似文献   

14.
Although many lines of malignant and transformed cells are unable to grow in folate- and cobalamin-supplemented medium in which methionine is replaced by homocysteine its immediate metabolic precursor, rare cells from these lines regained the normal ability to grow under these conditions. Six revertant lines, one from Walker-256 rat breast carcinoma cells and five from SV40-transformed human fibroblasts, have been characterized with regard to growth and three measures of methionine biosynthetic capacity: methionine synthetase and methylenetetrahydrofolate reductase activities in cell extracts, and uptake of label from [5-14C]methyltetrahydrofolate by intact cells. When all three measures of methionine biosynthetic capacity were considered, two revertants isolated from SV40-transformed cells had regained the ability to grow like normal cells in homocysteine medium without substantial changes in these measures. Increased methionine biosynthesis thus is not a prerequisite to reversion of the methionine auxotrophy present in the transformed parental lines.  相似文献   

15.
16.
The growth properties of hamster cells transformed by wild-type Simian virus 40 (SV40), by early SV40 temperature-sensitive mutants of the A complementation group, and by spontaneous revertants of these mutants were studied. All of the tsA mutant-transformed cells were temperature sensitive in their ability to form clones in soft agar and on monolayers of normal cells except for CHLA-30L1, which was not temperature sensitive in the latter property. All cells transformed by stable revertants of well-characterized tsA mutants possessed certain growth properties in common with wild-type-transformed cells at both temperatures. Virus rescued from tsA transformants including CHLA30L1 was temperature sensitive for viral DNA replication, whereas that rescued from revertant and wild-type transformants was not thermolabile in this regard. T antigen present in crude extracts of tsA-transformed cells including CHLA30L1, grown at 33 degreeC, was temperature sensitive by in vitro immunoassay, whereas that from wild-type-transformed cells was relatively stable. T antigen from revertant transformants was more stable than the tsA protein. Partially purified T antigen from revertant-transformed cells was nearly as stable as wild-type antigen in its ability to bind DNA after heating at 44 degrees C, whereas T antigen from tsA30 mutant-transformed cells was relatively thermolabile. These results further indicate that T antigen is a product of the SV40 A gene. Significantly more T antigen was found in extracts of CHLA30L1 grown to high density at the nonpermissive temperature than in any other tsA-transformed cell similarly grown. This is consistent with the suggestion that the amount of T antigen synthesized in CHLA30L1 is large enoughto allow partial expression of the transformed phenotype at the restrictive temperature. Alternatively, the increase in T antigen concentration may be secondary to one or more genetic alterations that independently affect the transformed phenotype of these cells.  相似文献   

17.
The susceptibility of targets to destruction by tumoricidal rat and mouse macrophages was studied with virus-transformed cell lines in which various elements of the transformed phenotype are only expressed at specific temperatures. BHK cells transformed by the ts3 mutant of polyoma virus, rat embryo 3Y1 cells transformed by a temperature-sensitive A cistron mutant of simian virus 40 (SV40) and the ts-H6-15 temperature-sensitive line of SV40-transformed mouse 3T3 cells were killed in vitro by macrophages at both the permissive (33 °C) or nonpermissive (39 °C) temperatures for expression of the transformed phenotype. 3T3, 3Y1 and BHK cells transformed by wild-type SV40 or polyoma virus were also destroyed by tumoricidal macrophages at both 33 and 39 °C, but untransformed 3T3, 3Y1, and BHK cells were not. Thus, transformed cells are killed by macrophages regardless of whether or not they express cell surface LETS protein or Forssman antigen, display surface changes which permit agglutination by low doses of plant lectins, express SV40 T antigen, have a low saturation density, or exhibit density-dependent inhibition of DNA synthesis.  相似文献   

18.
Transformation of isolated rat hepatocytes with simian virus 40   总被引:3,自引:1,他引:2       下载免费PDF全文
Rat hepatocytes were transformed by simian virus 40 (SV40). Hepatocytes from two different strains of rats and a temperature-sensitive mutant (SV40tsA 1609), as well as wild-type virus were used. In all cases, transformed cells arose from approximately 50% of the cultures containing hepatocytes on collagen gels or a collagen gel-nylon mesh substratum. Cells did not proliferate in mock-infected cultures. SV40-transformed hepatocytes were epithelial in morphology, retained large numbers of mitochondria, acquired an increased nucleus to cytoplasm ratio, and contained cytoplasmic vacuoles. Evidence that these cells were transformed by SV40 came from the findings that transformants were 100% positive for SV40 tumor antigen expression, and that SV40 was rescued when transformed hepatocytes were fused with monkey cells. All SV40-transformed cell lines tested formed clones in soft agarose. Several cell lines transformed by SV40tsA 1609 were temperature dependent for colony formation on plastic dishes. Transformants were diverse in the expression of characteristic liver gene functions. Of eight cell lines tested, one secreted 24% of total protein as albumin, which was comparable to albumin production by freshly plated hepatocytes; two other cell lines produced 4.2 and 5.7%, respectively. Tyrosine aminotransferase activity was present in five cell lines tested but was inducible by dexamethasone treatment in only two. We conclude from these studies that adult, nonproliferating rat hepatocytes are competent for virus transformation.  相似文献   

19.
Human cells transformed in vitro by SV40 rarely form tumors in nude mice. We examined whether these cells as a group are inherently nontumorigenic or whether they are potentially tumorigenic but rejected by the athymic host, possibly by nonspecific immune mechanisms. SV80 and NG8 are SV40-transformed human cell lines that express all of the transformed properties, including anchorage-independent growth, but do not form tumors in adult nude mice after injection of as many as 10(8) cells. Both the SV80 and NG8 cell lines have SV40-specific transplantation antigens which crossreact with those present on SV40-transformed (but tumorigenic) rodent cells. We found that SV80 cells, though not NG8 cells, induced progressively growing lethal tumors if the cells are injected repeatedly into neonatal nude mice. Somatic cell hybrids between SV80 or NG8 cells and a highly tumorigenic cell line derived from a human tumor continue to express the virus-induced antigens and fail to form tumors in adult nude mice. These results strongly suggest that at least for some SV40-transformed human cells, the failure to form tumors in nude mice may be due to their expression of virus-induced transplantation antigens rather than the absence of tumorigenic potential.  相似文献   

20.
Simian virus 40 (SV40) strains have been rescued from various clonal lines of mouse kidney cells that had been transformed by ultraviolet (UV)-irradiated SV40. To learn whether some of the rescued SV40 strains were mutants, monkey kidney (CV-1) cells were infected with the rescued virus strains at 37 C and at 41 C. The SV40 strains studied included strains rescued from transformed cell lines classified as "good," "average," "poor," and "rare" yielders on the basis of total virus yield, frequency of induction, and incidence of successful rescue trials. Four small plaque mutants isolated from "poor" yielder lines and fuzzy and small plaque strains isolated from an "average" and a "good" yielder line, respectively, were among the SV40 strains tested. Virus strains rescued from all classes of transformed cells were capable of inducing the transplantation antigen, and they induced the intranuclear SV40-T-antigen, thymidine kinase, deoxyribonucleic acid (DNA) polymerase, and cellular DNA synthesis at 37 C and at 41 C. With the exception of four small plaque strains rescued from "poor" yielders, the rescued SV40 strains replicated their DNA and formed infectious virus with kinetics similar to parental SV40 at either 37 or 41 C. The four exceptional strains did replicate at 37 C, but replication was very poor at 41 C. Thus, only a few of the rescued virus strains exhibited defective SV40 functions in CV-1 cells. All of the virus strains rescued from the "rare" yielder lines were similar to parental SV40. Several hypotheses consistent with the properties of the rescued virus strains are discussed, which may account for the significant variations in virus yield and frequency of induction of the transformed cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号