首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
Three prostate cancer susceptibility genes have been reported to be linked to different regions on chromosome 1: HPC1 at 1q24-25, PCAP at 1q42-43, and CAPB at 1p36. Replication studies analyzing each of these regions have yielded inconsistent results. To evaluate linkage across this chromosome systematically, we performed multipoint linkage analyses with 50 microsatellite markers spanning chromosome 1 in 159 hereditary prostate cancer families (HPC), including 79 families analyzed in the original report describing HPC1 linkage. The highest lod scores for the complete dataset of 159 families were observed at 1q24-25 at which the parametric lod score assuming heterogeneity (hlod) was 2.54 (P=0.0006) with an allele sharing lod of 2.34 (P=0.001) at marker D1S413, although only weak evidence was observed in the 80 families not previously analyzed for this region (hlod=0.44, P=0.14, and allele sharing lod=0.67, P=0.08). In the complete data set, the evidence for linkage across this region was very broad, with allele sharing lod scores greater than 0.5 extending approximately 100 cM from 1p13 to 1q32, possibly indicating the presence of multiple susceptibility genes. Elsewhere on chromosome 1, some evidence of linkage was observed at 1q42-43, with a peak allele sharing lod of 0.56 (P=0.11) and hlod of 0.24 (P=0.25) at D1S235. For analysis of the CAPB locus at 1p36, we focused on six HPC families in our collection with a history of primary brain cancer; four of these families had positive linkage results at 1p36, with a peak allele sharing lod of 0.61 (P=0.09) and hlod of 0.39 (P=0.16) at D1S407 in all six families. These results are consistent with the heterogeneous nature of hereditary prostate cancer, and the existence of multiple loci on chromosome 1 for this disease.  相似文献   

2.
Multiple lines of evidence have implicated the short arm of chromosome 8 as harboring genes important in prostate carcinogenesis. Although most of this evidence comes from the identification of frequent somatic alterations of 8p loci in prostate cancer cells (e.g., loss of heterozygosity), studies have also suggested a role for 8p genes in mediation of inherited susceptibility to prostate cancer. To further examine this latter possibility, we performed linkage analyses, in 159 pedigrees affected by hereditary prostate cancer (HPC), using 24 markers on the short arm of chromosome 8. In the complete set of families, evidence for prostate cancer linkage was found at 8p22-23, with a peak HLOD of 1.84 (P=.004), and an estimate of the proportion of families linked (alpha) of 0.14, at D8S1130. In the 79 families with average age at diagnosis >65 years, an allele-sharing LOD score of 2.64 (P=.0005) was observed, and six markers spanning a distance of 10 cM had LOD scores >2.0. Interestingly, the small number of Ashkenazi Jewish pedigrees (n=11) analyzed in this study contributed disproportionately to this linkage. Mutation screening in HPC probands and association analyses in case subjects (a group that includes HPC probands and unrelated case subjects) and unaffected control subjects were carried out for the putative prostate cancer-susceptibility gene, PG1, previously localized to the 8p22-23 region. No statistical differences in the allele, genotype, or haplotype frequencies of the SNPs or other sequence variants in the PG1 gene were observed between case and control subjects. However, case subjects demonstrated a trend toward higher homozygous rates of less-frequent alleles in all three PG1 SNPs, and overtransmission of a PG1 variant to case subjects was observed. In summary, these results provide evidence for the existence of a prostate cancer-susceptibility gene at 8p22-23. Evaluation of the PG1 gene and other candidate genes in this area appears warranted.  相似文献   

3.
Recent studies suggest that hereditary prostate cancer (PRCA) is a complex disease, involving multiple susceptibility genes and variable phenotypic expression. Through linkage analysis, potential prostate cancer susceptibility loci have been mapped to 3 regions on chromosome 1. To investigate the reported linkage to these regions, we conducted linkage studies on 144 PRCA families by using microsatellite markers in regions 1q24-25 (HPC1) and 1q42.2-43 (PCAP). We also examined the 1p36 (CAPB) region in 13 PRCA families with at least one case of brain cancer. No significant evidence of linkage to the HPC1 or PCAP region was found when the entire data set was analyzed. However, weak evidence for linkage to HPC1 was observed in the subset of families with male-to-male transmission (n=102; maximum multipoint nonparametric linkage [NPL] 1.99, P=.03). Weak evidence for linkage with heterogeneity within this subset was also observed (HLOD 1.21, P=.02), with approximately 20% of families linked. Although not statistically significant, suggestive evidence for linkage to PCAP was observed for the families (n=21) that met the three criteria of male-to-male transmission, average age of diagnosis <66 years, and >/=5 affected individuals (maximum multipoint NPL 1.45, P=.08). There was no evidence for linkage to CAPB in the brain cancer-prostate cancer subset. These results strengthen the argument that prostate cancer is a heterogeneous disease and that multiple genetic and environmental factors may be important for its etiology.  相似文献   

4.
The phenomenon of genomic imprinting describes the differential behavior of genes depending on their parental origin, and has been demonstrated in a few rare genetic disorders. In complex diseases, parent-of-origin effects have not been systematically studied, although there may be heuristic value in such an approach. Data from a genome scan performed using 356 affected sibling pair families with type 1 diabetes were examined looking for evidence of excess sharing of either maternal or paternal alleles. At the insulin gene (IDDM2), evidence for excess sharing of alleles transmitted from mothers was detected, which is consistent with transmission disequilibrium results published elsewhere. We also identified additional loci that demonstrate allele sharing predominantly from one parent: IDDM8 shows a paternal origin effect, IDDM10 shows a maternal effect, and a locus on chromosome 16q demonstrates a paternal effect. We have also evaluated these loci for confounding by differences in sex-specific meiotic recombination by performing linkage analysis using sex-specific genetic maps. The analysis of the parental origin of shared alleles from genome scans of complex disorders may provide additional evidence for linkage for known loci, help identify regions containing additional susceptibility loci, and assist the cloning of the genes involved.  相似文献   

5.
OBJECTIVES: A recent linkage analysis of 360 families at high risk for prostate cancer identified the q27-28 region on chromosome X as the potential location of a gene involved in prostate cancer susceptibility. Here we report on linkage analysis at this putative HPCX locus in an independent set of 186 prostate cancer families participating in the Prostate Cancer Genetic Research Study (PROGRESS). METHODS: DNA samples from these families were genotyped at 8 polymorphic markers spanning 14.3 cM of the HPCX region. RESULTS: Two-point parametric analysis of the total data set resulted in positive lod scores at only two markers, DXS984 and DXS1193, with scores of 0.628 at a recombination fraction (theta) of 0.36 and 0.012 at theta = 0.48, respectively. The stratification of pedigrees according to the assumed mode of transmission increased the evidence of linkage at DXS984 in 81 families with no evidence of male-to-male transmission (lod = 1.062 at theta = 0.28). CONCLUSIONS: Although this analysis did not show statistically significant evidence for the linkage of prostate cancer susceptibility to Xq27-28, the results are consistent with a small percentage of families being linked to this region. The analysis further highlights difficulties in replicating linkage results in an etiologically heterogeneous, complexly inherited disease.  相似文献   

6.
In a recent genome-wide linkage (GWL) analysis of Finnish families at high risk for prostate cancer, we found two novel putative susceptibility loci at 3p25-p26 and 11q14. Here, we report the fine-mapping of these two critical regions at high resolution with 39 microsatellite markers in 16 families, including multiplex families that were not used in the GWL scan. The maximum multipoint HLOD was 3.39 at 3p26 and 1.42 at 11q14. The highest LOD scores were seen around markers D3S1270 and D3S4559 (=0.89), covering approximately two megabases. The two known genes in this region CHL1 (cell adhesion molecule with homology to L1CAM) and CNTN6 (contactin 6) were screened for exonic mutations in the families showing the strongest linkage, but no disease-segregating sequence variants were observed. The recombination map pointed to a region proximal to the area of best linkage, suggesting that more genes may need to be investigated as candidates. These results provide strong evidence for the existence of a prostate cancer susceptibility gene at 3p26 in Finnish prostate cancer families. This locus has not been strongly linked with hereditary prostate cancer in other populations. However, the mildly positive 3p LOD scores in a recent GWL analysis of patients from the United States suggest that the locus may also be important in other populations.  相似文献   

7.
Regions on chromosomes 7 and 19 were recently reported to contain susceptibility loci that regulate tumor aggressiveness of prostate cancer. To confirm these findings, we analyzed genome scan data from 161 pedigrees affected with prostate cancer. Using the Gleason score as a quantitative measure of tumor aggressiveness, we regressed the squared trait difference, as well as the mean-corrected cross product, on the estimated proportion of alleles shared identical-by-descent at each marker position. Our results confirm the previous linkage results for chromosome 19q (D19S902, P<.00001). In addition, we report suggestive evidence for linkage on chromosome 4 (D4S403, P=.00012). The results of previous findings, together with our results, provide strong evidence that chromosome 19 harbors a gene for tumor aggressiveness.  相似文献   

8.
Asthma is a complex genetic disorder with a heterogeneous phenotype, largely attributed to the interactions among many genes and between these genes and the environment. Numerous loci and candidate genes have been reported to show linkage and association to asthma and atopy. Although some studies reporting these observations are compelling, no gene has been mapped that confers a sufficiently high risk of asthma to meet the stringent criteria for genomewide significance. Using 175 extended Icelandic families that included 596 patients with asthma, we performed a genomewide scan with 976 microsatellite markers. The families were identified by cross-matching a list of patients with asthma from the Department of Allergy/Pulmonary Medicine of the National University Hospital of Iceland with a genealogy database of the entire Icelandic nation. We detected linkage of asthma to chromosome 14q24, with an allele-sharing LOD score of 2.66. After we increased the marker density within the locus to an average of one microsatellite every 0.2 cM, the LOD score rose to 4.00. We designate this locus "asthma locus one" (AS1). Taken together, these results provide evidence of a novel susceptibility gene for asthma on chromosome 14q24.  相似文献   

9.
A genomewide screen for asthma- and atopy-susceptibility loci was conducted, using 563 markers, in 693 Hutterites who are members of a single 15-generation pedigree, nearly doubling the sample size from the authors' earlier studies. The resulting increase in power led to the identification of 23 loci in 18 chromosomal regions showing evidence for linkage that is, in general, 10-fold more significant (P<.001 vs. P<.01) than the linkages reported previously in this population. Moreover, linkages to loci in 11 chromosomal regions were identified for the first time in the Hutterites in this report, including five regions (5p, 5q, 8p, 14q, and 16q) showing evidence both of linkage, by the likelihood ratio (LR) chi(2), and of disequilibrium, by the transmission/disequilibrium test. A region on chromosome 19 continues to show evidence for linkage, by both tests, in this study. Studies of 17 candidate genes provide evidence for association with variation in the IL4RA gene (16p12), the HLA class II genes (6p21), and the interferon-alpha gene cluster (9p22), but the lack of evidence for linkage in these regions by the LR chi(2) test suggests that these are minor susceptibility loci. A polymorphism in the CD14 gene is in linkage disequilibrium with an as yet unidentified susceptibility allele in the 5q cytokine cluster, a region showing evidence for linkage among the Hutterites. Finally, 10 of the regions showing evidence for linkage in the Hutterites have shown evidence of linkage to related phenotypes in other genome screens, suggesting that these regions may contain common alleles that have relatively large effects on asthma and atopy phenotypes in diverse populations.  相似文献   

10.
Putative prostate cancer susceptibility loci have recently been identified by genetic linkage analysis on chromosomes 1q24-25 (HPC1). 1q44.243 (PCaP), and Xq27-28 (HPCX). In order to estimate the genetic linkage in Icelandic prostate cancer families, we genotyped 241 samples from 87 families with eleven markers in the HPC1 region, six markers at PCaP, and eight at HPCX. Concurrently, we assessed allelic imbalance at the HPC1 and PCaP loci in selected tumors from the patients. For each of the candidate regions, the combined parametric and non-parametric LOD scores were strongly negative. Evidence for linkage allowing for genetic heterogeneity was also insignificant for all the regions. The results were negative irrespective of whether calculations were performed for the whole material or for a selected set of early age at onset families. The prevalence of allelic imbalance was relatively low in both the HPC1 (0%-9%) and PCaP (5%-20%) regions and was not elevated in tumors from positively linked families. Our studies indicate that the putative cancer susceptibility genes at chromosomes 1q24-25, 1q44.2-43, and Xq27-28 are unlikely to contribute significantly to hereditary prostate cancer in Iceland and that selective loss of the HPC1 and PCaP loci is a relatively rare somatic event in prostate cancers.  相似文献   

11.
Asthma affects nearly 14 million people worldwide and has been steadily increasing in frequency for the past 50 years. Although environmental factors clearly influence the onset, progression, and severity of this disease, family and twin studies indicate that genetic variation also influences susceptibility. Linkage of asthma and related phenotypes to chromosome 6p21 has been reported in seven genome screens, making it the most replicated region of the genome. However, because many genes with individually small effects are likely to contribute to risk, identification of asthma susceptibility loci has been challenging. In this study, we present evidence from four independent samples in support of HLA-G as a novel asthma and bronchial hyperresponsiveness susceptibility gene in the human leukocyte antigen region on chromosome 6p21, and we speculate that this gene might contribute to risk for other inflammatory diseases that show linkage to this region.  相似文献   

12.
There are considerable racial disparities in prostate cancer risk, with a 60% higher incidence rate among African-American (AA) men compared with European-American (EA) men, and a 2.4-fold higher mortality rate in AA men than in EA men. Recently, studies have implicated several African-ancestry associated prostate cancer susceptibility loci on chromosome 8q24. In the current study, we performed admixture mapping in AA men from two independent case–control studies of prostate cancer to confirm the 8q24 ancestry association and also identify other genomic regions that may harbor prostate cancer susceptibility genes. A total of 482 cases and 261 controls were genotyped for 1,509 ancestry informative markers across the genome. The mean estimated individual admixture proportions were 20% European and 80% African. The most significant observed increase in European ancestry occurred at rs2141360 on chromosome 7q31 in both the case-only (P = 0.0000035) and case–control analyses. The most significant observed increase in African ancestry across the genome occurred at a locus on chromosome 5q35 identified by SNPs rs7729084 (case-only analysis P = 0.002), and rs12474977 (case–control analysis P = 0.004), which are separated by 646 kb and were adjacent to one another on the panel. On chromosome 8, rs4367565 was associated with the greatest excess African ancestry in both the case-only and case–control analyses (case-only and case–control P = 0.02), confirming previously reported African-ancestry associations with chromosome 8q24. In conclusion, we confirmed ancestry associations on 8q24, and identified additional ancestry-associated regions potentially harboring prostate cancer susceptibility loci.  相似文献   

13.
Several genetic predisposition loci for prostate cancer have been identified through linkage analysis, and it is now generally recognized that no single gene is responsible for more than a small proportion of prostate cancers. However, published confirmations of these loci have been few, and failures to confirm have been frequent. The genetic etiology of prostate cancer is clearly complex and includes significant genetic heterogeneity, phenocopies, and reduced penetrance. Powerful analyses that involve robust statistics and methods to reduce genetic heterogeneity are therefore necessary. We have performed linkage analysis on 143 Utah pedigrees for the previously published Xq27-28 (HPCX) prostate cancer susceptibility locus. We employed a robust multipoint statistic (TLOD) and a novel splitting algorithm to reduce intra-familial heterogeneity by iteratively removing the top generation from the large Utah pedigrees. In a dataset containing pedigrees having no more than five generations, we observed a multipoint TLOD of 2.74 (P=0.0002), which is statistically significant after correction for multiple testing. For both the full-structure pedigrees (up to seven generations) and the smaller sub-pedigrees, the linkage evidence was much reduced. This study thus represents the first significant confirmation of HPCX (Xq27-28) and argues for the continued utility of large pedigrees in linkage analyses for complex diseases.  相似文献   

14.
Recent studies suggest that hereditary prostate cancer is a complex disease involving multiple susceptibility genes and variable phenotypic expression. While conducting a genomewide search on 162 North American families with > or =3 members affected with prostate cancer (PRCA), we found evidence for linkage to chromosome 20q13 with two-point parametric LOD scores >1 at multiple sites, with the highest two-point LOD score of 2.69 for marker D20S196. The maximum multipoint NPL score for the entire data set was 3.02 (P=.002) at D20S887. On the basis of findings from previous reports, families were stratified by the presence (n=116) or absence (n=46) of male-to-male transmission, average age of diagnosis (<66 years, n=73; > or =66 years, n=89), and number of affected individuals (<5, n=101; > or =5, n=61) for further analysis. The strongest evidence of linkage was evident with the pedigrees having <5 family members affected with prostate cancer (multipoint NPL 3.22, P=.00079), a later average age of diagnosis (multipoint NPL 3.40, P=.0006), and no male-to-male transmission (multipoint NPL 3.94, P=.00007). The group of patients having all three of these characteristics (n=19) had a multipoint NPL score of 3.69 (P=.0001). These results demonstrate evidence for a PRCA susceptibility locus in a subset of families that is distinct from the groups more likely to be linked to previously identified loci.  相似文献   

15.
The tumor suppressor functions of PTEN and CDKN1B have been extensively characterized. Recent data from mouse models suggest that, for some organs, the combined action of both PTEN and CDKN1B has a stronger tumor suppressor function than each alone; for the prostate, heterozygous knockout of both genes leads to 100% penetrance for prostate cancer. To assess whether such an interaction contributes to an increased risk of prostate cancer in humans, we performed a series of epistatic PTEN and CDKN1B interaction analyses in a collection of 188 high-risk hereditary prostate cancer families. Two different analytical approaches were performed; a nonparametric linkage (NPL) regression analysis that simultaneously models allele sharing at these two regions in all families, and an ordered subset analysis (OSA) that assesses linkage evidence at a target region in a subset of families based on the magnitude of allele sharing at the reference region. The strongest evidence of interaction effect was observed at 10q23-24 and 12p11-13 from both the NPL regression analysis (P=0.0002) in all families and the OSA analyses in subsets of families. A LOD-delta of 3.15 (P=0.01) was observed at 10q23-24 among 54 families with the highest NPL scores at 12p11-13, and a LOD-delta of 2.63 (P=0.02) was observed at 12p11-13 among 34 families with the highest NPL scores at 10q23-24. The evidence for the interaction was stronger when using additional fine-mapping markers in the PTEN (10q23) and CDKN1B (12p13) regions. Our data are consistent with epistatic interactions between the PTEN and CDKN1B genes affecting risk for prostate cancer and demonstrate the utility of modeling epistatic effects in linkage analysis to detect susceptibility genes of complex diseases.Jianfeng Xu and Carl D. Langefeld contributed equally to this work  相似文献   

16.
Frequent loss of heterogeneity in prostate cancer cells and linkage studies of families affected by hereditary prostate cancer (HPC) have implied that the short arm of chromosome 8, specifically 8p22-23, may harbor a prostate-cancer-susceptibility gene. In a recent study, seven potentially important mutations in the macrophage scavenger receptor 1 gene (MSR1), located at 8p22, were observed in families affected with HPC, and an indication of co-segregation between these mutations and prostate cancer was reported. In an attempt to confirm linkage at 8p22-23, we performed linkage analyses in 57 families affected with HPC (ascertained throughout Sweden) by using 13 markers on the short arm of chromosome 8. In the complete set of families, evidence for prostate cancer linkage was observed at 8p22-23, with a peak hold of 1.08 (P=0.03), observed at D8S1731, approximately 1 cM centromeric to the MSR1 gene. At marker D8S1135, the closest marker to MSR1, a hlod of 1.07 (P=0.03) was observed. Evidence of linkage was seen in families with early-onset HPC and in families with a small number of affected individuals. The peak multipoint non-parametric linkage score was 2.01 (P=0.03) at D8S552 in the 14 pedigrees with mean age at onset <65 years, and 2.25 (P=0.01) at D8S1731 in the 36 pedigrees with fewer than five affected family members. Thus, we have confirmed evidence for prostate cancer linkage at 8p22-23. Follow-up studies to evaluate the possible association between prostate cancer and genes in this region, especially the MSR1 gene, are warranted.  相似文献   

17.
Ali S  Ali S 《Gene》2008,410(1):1-8
Prostate cancer is one of the most prevalent malignancies worldwide affecting the human male population. Different case-control, cohort or twin studies and segregation analyses point towards the presence of prostate cancer-susceptibility genes in the population. The studies have shown linkage of prostate susceptibility genes to multiple loci on chromosome 1 and single locus each on chromosomes 4, 8, 16, 17, 19, 20 and X chromosome. However, differences right from the mode of inheritance (autosomal dominant or X-linked recessive) to the target genes exist. There have been reports supporting no or weak linkage to these loci as well. Also, region (environmental factors), age and dietary habits have implications in different aspects of the disease. The important targets for treating prostate cancer are androgens and estrogen (synthesized from androgens by the action of enzyme aromatase) owing to their involvement in development and progression of prostate cancer. Further, prostate gland needs androgens (male hormones) for its normal maintenance and functioning. Besides, radiation therapy and surgical methods have also been used. The emerging areas include identifying and preparing successful vaccines from candidate peptides and gene therapy in several forms. This review deals with the paradox of linkage analyses and the various approaches in practice for treatment and management of prostate cancer.  相似文献   

18.
Family history is a major risk factor for colorectal cancer and many families segregate the disease as a seemingly monogenic trait. A minority of familial colorectal cancer could be explained by known monogenic genes and genetic loci. Familial polyposis and Lynch syndrome are two syndromes where the predisposing genes are known but numerous families have been tested without finding the predisposing gene. We performed a genome wide linkage analysis in 121 colorectal families with an increased risk of colorectal cancer. The families were ascertained from the department of clinical genetics at the Karolinska University Hospital in Stockholm, Sweden and were considered negative for Familial Polyposis and Lynch syndrome. In total 600 subjects were genotyped using single nucleotide polymorphism array chips. Parametric- and non-parametric linkage analyses were computed using MERLIN in all and subsets of families. No statistically significant result was seen, however, there were suggestive positive HLODs above two in parametric linkage analysis. This was observed in a recessive model for high-risk families, at locus 9q31.1 (HLOD=2.2, rs1338121) and for moderate-risk families, at locus Xp22.33 (LOD=2.2 and HLOD=2.5, rs2306737). Using families with early-onset, recessive analysis suggested one locus on 4p16.3 (LOD=2.2, rs920683) and one on 17p13.2 (LOD/HLOD=2.0, rs884250). No NPL score above two was seen for any of the families. Our linkage study provided additional support for the previously suggested region on chromosome 9 and suggested additional loci to be involved in colorectal cancer risk. Sequencing of genes in the regions will be done in future studies.  相似文献   

19.
We performed a genomewide scan for genes that predispose to low serum HDL cholesterol (HDL-C) in 25 well-defined Finnish families that were ascertained for familial low HDL-C and premature coronary heart disease. The potential loci for low HDL-C that were identified initially were tested in an independent sample group of 29 Finnish families that were ascertained for familial combined hyperlipidemia (FCHL), expressing low HDL-C as one component trait. The data from the previous genome scan were also reanalyzed for this trait. We found evidence for linkage between the low-HDL-C trait and three loci, in a pooled data analysis of families with low HDL-C and FCHL. The strongest statistical evidence was obtained at a locus on chromosome 8q23, with a two-point LOD score of 4.7 under a recessive mode of inheritance and a multipoint LOD score of 3.3. Evidence for linkage also emerged for loci on chromosomes 16q24.1-24.2 and 20q13.11, the latter representing a recently characterized region for type 2 diabetes. Besides these three loci, loci on chromosomes 2p and 3p showed linkage in the families with low HDL-C and a locus on 2ptel in the families with FCHL.  相似文献   

20.
Preterm birth is the major cause of neonatal death and serious morbidity. Most preterm births are due to spontaneous onset of labor without a known cause or effective prevention. Both maternal and fetal genomes influence the predisposition to spontaneous preterm birth (SPTB), but the susceptibility loci remain to be defined. We utilized a combination of unique population structures, family-based linkage analysis, and subsequent case-control association to identify a susceptibility haplotype for SPTB. Clinically well-characterized SPTB families from northern Finland, a subisolate founded by a relatively small founder population that has subsequently experienced a number of bottlenecks, were selected for the initial discovery sample. Genome-wide linkage analysis using a high-density single-nucleotide polymorphism (SNP) array in seven large northern Finnish non-consanginous families identified a locus on 15q26.3 (HLOD 4.68). This region contains the IGF1R gene, which encodes the type 1 insulin-like growth factor receptor IGF-1R. Haplotype segregation analysis revealed that a 55 kb 12-SNP core segment within the IGF1R gene was shared identical-by-state (IBS) in five families. A follow-up case-control study in an independent sample representing the more general Finnish population showed an association of a 6-SNP IGF1R haplotype with SPTB in the fetuses, providing further evidence for IGF1R as a SPTB predisposition gene (frequency in cases versus controls 0.11 versus 0.05, P = 0.001, odds ratio 2.3). This study demonstrates the identification of a predisposing, low-frequency haplotype in a multifactorial trait using a well-characterized population and a combination of family and case-control designs. Our findings support the identification of the novel susceptibility gene IGF1R for predisposition by the fetal genome to being born preterm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号