首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract: Tryptophan uptake by membrane vesicles derived from rat brain was investigated. The uptake is dependent on the Na+ gradient [Na+] outside > [Na+] inside and is maximal when both Na+ and Cl are present. The uptake represents transport into an os-motically active space and not a binding artifact, as indicated by the effect of increasing the medium osmo-larity. The uptake of tryptophan is stimulated by a membrane potential (interior negative) as demonstrated by the effects of the ionophores valinomycin and carbonyl cyanide m-chlorophenylhydrazone and anions with different permeabilities. Kinetic data show that tryptophan is accumulated by two systems with different affinities. Ouabain, an inhibitor of Na+, K+-activated ATPase, does not affect tryptophan transport. The uptake of tryptophan is inhibited by high concentrations of phenylalanine, tyrosine, leucine and 3, 4-dihydroxyphenylalanine.  相似文献   

2.
Abstract: Transport of GABA by a high-affinity transport system ( K m≃ 10−5 M) is thought to terminate the action of this postulated neurotransmitter. 2,4-Diaminobutyric acid (DABA), a structural analogue, is taken up by neuronal elements and inhibits GABA uptake. Localization of [3H]DABA by auto-radiography has been used to identify neurons with the GABA high-affinity transport system. After reconstitution of lysed synaptosomal fractions in potassium salts, transfer of these membrane vesicles to sodium salts produces sodium and potassium ion gradients which drive [3H]GABA and [3H]DABA transport. For each, transport requires external sodium, is abolished by ionophores that dissipate the Na+ gradient, and is enhanced by conditions which make the intravesicular electromotive force more negative. Some characteristics of the transport of these substances, however, differ. For example, external chloride is required for GABA, but not DABA, transport. Internal potassium is required for DABA, but not GABA, transport. DABA is a competitive inhibitor ( K i≃ 0.6 MM) of GABA transport into membrane vesicle and synaptosomes. GABA, however, is a feeble inhibitor of DABA uptake into the membrane vesicles. These differences suggest that the two substances are transported by different mechanisms and possibly by different carriers. In addition to these experiments, using enzymatic-fluorometric techniques, it was shown that the artificially imposed ion gradients drive net chemical transport of GABA into the vesicles.  相似文献   

3.
用蔗糖密度梯度离心法制备出密闭程度较高的大麦根细胞质膜微囊。喹吖咽荧光猝灭和~(45)Ca~(2 )同位素示踪测定表明所制备的微囊具H~ ,Ca~(2 )转运活性。对制备出的质膜制剂纯度和膜朝向进行了分析,并探讨了质膜纯化中影响膜微囊密闭性的因素。匀浆液和悬浮液巾的单价离子盐有利于密闭膜微囊的形成。蔗糖密度梯度和葡聚糖密度睇度离心法均可得到密闭性较高的膜微囊,但后者的纯化效果较差。  相似文献   

4.

Background

The transport of endoplasmic reticulum (ER)-derived COPII vesicles toward the ER-Golgi intermediate compartment (ERGIC) requires cytoplasmic dynein and is dependent on microtubules. p150Glued, a subunit of dynactin, has been implicated in the transport of COPII vesicles via its interaction with COPII coat components Sec23 and Sec24. However, whether and how COPII vesicle tether, TRAPP (Transport protein particle), plays a role in the interaction between COPII vesicles and microtubules is currently unknown.

Principle Findings

We address the functional relationship between COPII tether TRAPP and dynactin. Overexpressed TRAPP subunits interfered with microtubule architecture by competing p150Glued away from the MTOC. TRAPP subunit TRAPPC9 bound directly to p150Glued via the same carboxyl terminal domain of p150Glued that binds Sec23 and Sec24. TRAPPC9 also inhibited the interaction between p150Glued and Sec23/Sec24 both in vitro and in vivo, suggesting that TRAPPC9 serves to uncouple p150Glued from the COPII coat, and to relay the vesicle-dynactin interaction at the target membrane.

Conclusions

These findings provide a new perspective on the function of TRAPP as an adaptor between the ERGIC membrane and dynactin. By preserving the connection between dynactin and the tethered and/or fused vesicles, TRAPP allows nascent ERGIC to continue the movement along the microtubules as they mature into the cis-Golgi.  相似文献   

5.
We have shown previously that the ADP- ribosylation factor (ARF)-6 GTPase localizes to the plasma membrane and intracellular endosomal compartments. Expression of ARF6 mutants perturbs endosomal trafficking and the morphology of the peripheral membrane system. However, another study on the distribution of ARF6 in subcellular fractions of Chinese hamster ovary (CHO) cells suggested that ARF6 did not localize to endosomes labeled after 10 min of horseradish peroxidase (HRP) uptake, but instead was uniquely localized to the plasma membrane, and that its reported endosomal localization may have been a result of overexpression. Here we demonstrate that at the lowest detectable levels of protein expression by cryoimmunogold electron microscopy, ARF6 localized predominantly to an intracellular compartment at the pericentriolar region of the cell. The ARF6-labeled vesicles were partially accessible to HRP only on prolonged exposure to the endocytic tracer but did not localize to early endocytic structures that labeled with HRP shortly after uptake. Furthermore, we have shown that the ARF6-containing intracellular compartment partially colocalized with transferrin receptors and cellubrevin and morphologically resembled the recycling endocytic compartment previously described in CHO cells. HRP labeling in cells expressing ARF6(Q67L), a GTP-bound mutant of ARF6, was restricted to small peripheral vesicles, whereas the mutant protein was enriched on plasma membrane invaginations. On the other hand, expression of ARF6(T27N), a mutant of ARF6 defective in GDP binding, resulted in an accumulation of perinuclear ARF6-positive vesicles that partially colocalized with HRP on prolonged exposure to the tracer. Taken together, our findings suggest that ARF activation is required for the targeted delivery of ARF6-positive, recycling endosomal vesicles to the plasma membrane.  相似文献   

6.
The role of Al interactions with root-cell plasma membrane (PM) Ca2+ channels in Al toxicity and resistance was studied. The experimental approach involved the imposition of a transmembrane electrical potential (via K+ diffusion) in right-side-out PM vesicles derived from roots of two wheat (Triticum aestivum L.) cultivars (Al-sensitive Scout 66 and Al-resistant Atlas 66). We previously used this technique to characterize a voltage-dependent Ca2+ channel in the wheat root PM (J.W. Huang, D.L. Grunes, L.V. Kochian [1994] Proc Natl Acad Sci USA 91: 3473-3477). We found that Al3+ effectively blocked this PM Ca2+ channel; however, Al3+ blocked this Ca2+ channel equally well in both the Al-sensitive and -resistant cultivars. It was found that the differential genotypic sensitivity of this Ca2+ transport system to Al in intact roots versus isolated PM vesicles was due to Al-induced malate exudation localized to the root apex in Al-resistant Atlas but not in Al-sensitive Scout. Because malate can effectively chelate Al3+ in the rhizosphere and exclude it from the root apex, the differential sensitivity of Ca2+ influx to Al in intact roots of Al-resistant versus Al-sensitive wheat cultivars is probably due to the maintenance of lower Al3+ activities in the root apical rhizosphere of the resistant cultivar.  相似文献   

7.
《Molecular membrane biology》2013,30(1-2):155-168
Plasma membrane vesicles isolated from Ehrlich ascites tumor cells have been used to investigate the role of the transmembrane potential in the energetics of Systems A and L. As expected, Na+-dependent System A was responsive to changes in membrane potential. System L activity, as measured by transport of 2-aminonorbornane-2-carboxylic acid (BCH), was shown to be Na+-independent and was not altered by changes in the membrane potential. The combination of valinomycin and nigericin decreased accumulation of MeAIB but not that of BCH. The presence of nigericin alone caused a significant decrease in uptake by System A and a decrease in uptake by System L to a lesser degree. The inhibitory action of nigericin might reflect its ability to dissipate the Na+ gradient rather than an effect on K+ or H+ flows. The results indicate that modes of energization not produced through the transmembrane potential must account for any uphill operation of System L.  相似文献   

8.
9.
Calcium uptake was examined in sealed plasma membrane vesicles isolated from red beet (Beta vulgaris L.) storage tissue using (45)Ca(2+). Uptake of (45)Ca(2+) by the vesicles was ATP-dependent and radiotracer accumulated by the vesicles could be released by the addition of the calcium ionophore A23187. The uptake was stimulated by gramicidin D but slightly inhibited by carbonylcyanide m-chlorophenylhydrazone. Although the latter result might suggest some degree of indirect coupling of (45)Ca(2+) uptake to ATP utilization via deltamuH(+), no evidence for a secondary H(+)/Ca(2+) antiport in this vesicle system could be found. Following the imposition of an acid-interior pH gradient, proton efflux from the vesicle was not enhanced by the addition of Ca(2+) and an imposed pH gradient could not drive (45)Ca(2+) uptake. Optimal uptake of (45)Ca(2+) occurred broadly between pH 7.0 and 7.5 and the transport was inhibited by orthovanadate, N,N'-dicyclohexylcarbodiimide, and diethylstilbestrol but insensitive to nitrate and azide. The dependence of (45)Ca(2+) uptake on both calcium and Mg:ATP concentration demonstrated saturation kinetics with K(m) values of 6 micromolar and 0.37 millimolar, respectively. While ATP was the preferred substrate for driving (45)Ca(2+) uptake, GTP could drive transport at about 50% of the level observed for ATP. The results of this study demonstrate the presence of a unique primary calcium transport system associated with the plasma membrane which could drive calcium efflux from the plant cell.  相似文献   

10.
The juxtamembrane domain of vesicle-associated membrane protein (VAMP) 2 (also known as synaptobrevin2) contains a conserved cluster of basic/hydrophobic residues that may play an important role in membrane fusion. Our measurements on peptides corresponding to this domain determine the electrostatic and hydrophobic energies by which this domain of VAMP2 could bind to the adjacent lipid bilayer in an insulin granule or other transport vesicle. Mutation of residues within the juxtamembrane domain that reduce the VAMP2 net positive charge, and thus its interaction with membranes, inhibits secretion of insulin granules in β cells. Increasing salt concentration in permeabilized cells, which reduces electrostatic interactions, also results in an inhibition of insulin secretion. Similarly, amphipathic weak bases (e.g., sphingosine) that reverse the negative electrostatic surface potential of a bilayer reverse membrane binding of the positively charged juxtamembrane domain of a reconstituted VAMP2 protein and inhibit membrane fusion. We propose a model in which the positively charged VAMP and syntaxin juxtamembrane regions facilitate fusion by bridging the negatively charged vesicle and plasma membrane leaflets.  相似文献   

11.
We have analyzed brain coated vesicles and synaptic plasma membrane for the presence of the plasma membrane proteolipid protein. Coated vesicles were isolated from calf brain gray matter with a final purification on Sephacryl S-1000 and reisolated twice by chromatography to ensure homogeneity. Fractions were analyzed by gel electrophoresis, immunoblotting for clathrin heavy chain, and by electron microscopy. Using an immunoblotting assay we were able to demonstrate the presence of the plasma membrane proteolipid protein in these coated vesicles at a significant level (i.e., approximately 1% of the bilayer protein of these vesicles). Reisolation of coated vesicles did not diminish the concentration of the protein in this fraction. Removal of the clathrin coat proteins or exposure of the coated vesicles to 0.1 M Na2CO3 showed that the plasma membrane proteolipid protein is not removed during uncoating and lysis but is intrinsic to the membrane bilayer of these vesicles. These studies demonstrate that plasma membrane proteolipid protein represents a significant amount of the bilayer protein of coated vesicles, suggesting that these vesicles may be a transport vehicle for the intracellular movement of the plasma membrane proteolipid protein. Isolation of synaptic plasma membranes proteolipid adult rat brain and estimation of the plasma membrane proteolipid protein content using the immunoblotting method confirmed earlier studies that show this protein is present in this membrane fraction at high levels as well (approximately 1-2%). The level of this protein in the synaptic plasma membrane suggests that the synaptic plasma membrane is one major site to which these vesicles may be targeted or from which the protein is being retrieved.  相似文献   

12.
Regulation of lactose uptake by the phosphoenolpyruvate-sugar phosphotransferase system (PTS) has been demonstrated in membrane vesicles of Escherichia coli strain ML308-225. Substrates of the phosphotransferase system inhibited D-lactate energized uptake of lactose but did not inhibit uptake of either L-alanine or L-proline. This inhibition was reversed by intravesicular (but not extravesicular) phosphoenolpyruvate. Lactose uptake was also inhibited by enzyme IIIglc preparations that were shocked into the vesicles, and this inhibition was reversed by phosphoenolpyruvate. Intravesicular HPr and enzyme I stimulated methyl α-glucoside uptake but did not inhibit or stimulate lactose accumulation. Vesicles maintained at 0°C for several days partially lost 1) the ability to take up lactose, 2) the ability to accumulate PTS substrates, and 3) PTS-mediated regulation. Phosphoenolpyruvate addition restored all of these activities. These results support a mechanism in which the relative proportions of phosphorylated and nonphosphorylated forms of a phosphotransferase constituent regulate the activity of the lactose permcase.  相似文献   

13.
Highly purified plasma membrane vesicles were prepared from yeast protoplasts by a combination of osmotic lysis, differential centrifugation, and separation in an aqueous dextran/polyethylene glycol two-phase system. The vesicles were predominantly (85-90%) of cytoplasmic side-out orientation and displayed large ATP-dependent proton pumping activity which was inhibited by vanadate (100 μM) but not by bafilomycin or nitrate. The preparation presented a distinct polypeptide profile with respect to the total membrane fraction and was enriched in the 110-kDa polypeptide corresponding to the plasma membrane H+-ATPase. This preparation of native plasma membranes vesicles is especially suitable for functional studies in vitro.  相似文献   

14.
The ADP-ribosylations of proteins in nuclei, plasma membrane vesicles, mitochondria, microsome vesicles and the soluble fraction of sea urchin embryos isolated at various stages of development were examined by measuring the radioactivities of proteins after exposure of these subcellular fractions to [adenosine-14C]NAD or [adenylate-32P]NAD. ADP-ribosylation of proteins was detected only in the nuclear and plasma membrane fractions. In the nuclear fraction, the rate of ADP-ribosylation of the histone fraction did not change appreciably during early development. In the TCA-insoluble protein fraction of the nuclei, the rate of ADP-ribosylation increased from fertilization to the morula stage, then decreased and again increased from the mesenchyme blastula to the late gastrula stage. After exposure of the nuclear fraction to [adenylate-32P]NAD, a protein band with a molecular weight of 90 kDa was detected by SDS-polyacrylamide gel electrophoresis and radioautography at all stages examined. Its labeling intensity indicated that its ADP-ribosylation is higher at the morula and late gastrula stages than at other stages. In the plasma membrane fraction, proteins with molecular weights of 22 and 68 kDa were ADP-ribosylated and their rates of ADP-ribosylation hardly changed during early development.  相似文献   

15.
水稻幼苗根细胞质膜和液泡膜微囊Ca^2+-ATP酶的特性   总被引:3,自引:0,他引:3  
水稻幼苗根质膜和液泡膜Ca2+-ATP酶对ATP的Km值分别为7.1和4.5 μ mol·L-1;反应的最适pH分别为8.0和7.0.两者活性均受Na3VO4和曙红B(EB)抑制;CPZ抑制质膜Ca2+-ATP酶活性,但促进液泡膜Ca2+-ATP酶活性.30mmol·L-1CaCl2浸种和CaCl2浸种结合低温锻炼预处理,均可提高此酶的活性和冷稳定性.  相似文献   

16.
Several polyclonal sera were raised in rabbits and in mice against putative sucrose carrier proteins, i.e. a 42 kilodalton (O Gallet, R Lemoine, C Larsson, S Delrot [1989] Biochim Biophys Acta 978: 56-64) and a 62 kD (KG Ripp, PV Viitanen, WD Hitz, VR Fransceschi [1988] Plant Physiol 88: 1435-1445) polypeptide of the plasma membrane. The effects of these sera on the active uptake of sucrose and of valine into purified plasma membrane vesicles from sugar beet (Beta vulgaris L.) leaves and roots were studied. At a dilution of 1/50, the anti-42 kilodalton sera consistently inhibited sucrose uptake in plasma membranes from leaves or from roots. They had no effect on valine uptake. Under the same experimental conditions, the anti-62 kilodalton sera had no effect on active uptake of sucrose. The data further support the view that a 42 kilodalton polypeptide is a component of the transport system mediating sucrose uptake across the plasma membrane of plant cells.  相似文献   

17.
The effects of fluoride on the tonoplast type ATPase and transport activities associated with sealed membrane vesicles isolated from sugarbeet (Beta vulgaris L.) storage tissue were examined. This anion had two distinct effects upon the proton-pumping vesicles. When ATP hydrolysis was measured in the presence of gramicidin D, significant inhibition (approximately 50%) only occurred when the fluoride concentration approached 50 millimolar. In contrast, the same degree of inhibition of proton transport occurred when the fluoride concentration was about 24 millimolar. Effects on proton pumping at this concentration of fluoride could be attributed to an inhibition of chloride movement which serves to dissipate the vesicle membrane potential. Valinomycin could partially restore ATPase activity in sealed vesicles which were inhibited by fluoride and this restoration occurred with a reduction in the membrane potential. Fluoride demonstrated a competitive interaction with chloride-stimulation of proton transport and inhibited the uptake of radioactive chloride into sealed vesicles. When the vesicles were allowed to develop a pH gradient in the absence of KCl, and KCl was subsequently added, fluoride reduced enhancement of the existing pH gradient by KCl. The results are consistent with a chloride carrier that is inhibited by fluoride.  相似文献   

18.
19.
Li ZS  Zhao Y  Rea PA 《Plant physiology》1995,107(4):1257-1268
By characterization of the uptake of glutathione-S-conjugates, principally dinitrophenyl-S-glutathione (DNP-GS), by vacuolar membrane vesicles, we demonstrate that a subset of energy-dependent transport processes in plants are not H+-coupled but instead are directly energized by MgATP. The most salient features of this transport pathway are: (a) its specific, obligate requirement for MgATP as energy source; (b) the necessity for hydrolysis of the [gamma]-phosphate of MgATP for uptake; (c) the insensitivity of uptake to uncouplers of the transtonoplast H+ gradient (carbonylcyanide 4-trifluoromethoxyphenylhydrazone, gramicidin-D, and NH4Cl); (d) its pronounced sensitivity to vanadate and partial inhibition by vinblastine and verapamil; (e) the lack of chemical modification of DNP-GS either during or after transport; (f) the capacity of S-conjugates of chloroacetanilide herbicides, such as metolachlor-GS, but not free herbicide, to inhibit uptake; and (g) the ability of vacuolar membrane vesicles purified from a broad range of plant species, including Arabidopsis, Beta, Vigna, and Zea, to mediate MgATP-dependent, H+-electrochemical potential difference-independent DNP-GS uptake. On the basis of these findings it is proposed that the transport of DNP-GS across the vacuolar membrane of plant cells is catalyzed by a glutathione-conjugate transporter that directly employs MgATP rather than the energy contained in the transtonoplast H+-electrochemical potential difference to drive uptake. The broad distribution of the vacuolar DNP-GS transporter and its inhibition by metolachlor-GS are consistent with the notion that it plays a general role in the vacuolar sequestration of glutathione-conjugable cytotoxic agents.  相似文献   

20.
One of the most conserved features of the invasion process in Apicomplexa parasites is the formation of a moving junction (MJ) between the apex of the parasite and the host cell membrane that moves along the parasite and serves as support to propel it inside the host cell. The MJ was, up to a recent period, completely unknown at the molecular level. Recently, proteins originated from two distinct post-Golgi specialised secretory organelles, the micronemes (for AMA1) and the neck of the rhoptries (for RON2/RON4/RON5 proteins), have been shown to form a complex. AMA1 and RON4 in particular, have been localised to the MJ during invasion. Using biochemical approaches, we have identified RON8 as an additional member of the complex. We also demonstrated that all RON proteins are present at the MJ during invasion. Using metabolic labelling and immunoprecipitation, we showed that RON2 and AMA1 were able to interact in the absence of the other members. We also discovered that all MJ proteins are subjected to proteolytic maturation during trafficking to their respective organelles and that they could associate as non-mature forms in vitro. Finally, whereas AMA1 has previously been shown to be inserted into the parasite membrane upon secretion, we demonstrated, using differential permeabilization and loading of RON-specific antibodies into the host cell, that the RON complex is targeted to the host cell membrane, where RON4/5/8 remain associated with the cytoplasmic face. Globally, these results point toward a model of MJ organization where the parasite would be secreting and inserting interacting components on either side of the MJ, both at the host and at its own plasma membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号