首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Maintenance of the mitochondrial genome (mtDNA) is essential for proper cellular function. The accumulation of damage and mutations in the mtDNA leads to diseases, cancer, and aging. Mammalian mitochondria have proficient base excision repair, but the existence of other DNA repair pathways is still unclear. Deficiencies in DNA mismatch repair (MMR), which corrects base mismatches and small loops, are associated with DNA microsatellite instability, accumulation of mutations, and cancer. MMR proteins have been identified in yeast and coral mitochondria; however, MMR proteins and function have not yet been detected in human mitochondria. Here we show that human mitochondria have a robust mismatch-repair activity, which is distinct from nuclear MMR. Key nuclear MMR factors were not detected in mitochondria, and similar mismatch-binding activity was observed in mitochondrial extracts from cells lacking MSH2, suggesting distinctive pathways for nuclear and mitochondrial MMR. We identified the repair factor YB-1 as a key candidate for a mitochondrial mismatch-binding protein. This protein localizes to mitochondria in human cells, and contributes significantly to the mismatch-binding and mismatch-repair activity detected in HeLa mitochondrial extracts, which are significantly decreased when the intracellular levels of YB-1 are diminished. Moreover, YB-1 depletion in cells increases mitochondrial DNA mutagenesis. Our results show that human mitochondria contain a functional MMR repair pathway in which YB-1 participates, likely in the mismatch-binding and recognition steps.  相似文献   

2.
Previous studies have demonstrated recognition of DNA-containing UV light photoproducts by bacterial (Feng, W.-Y., Lee, E., and Hays, J. B. (1991) Genetics 129, 1007-1020) and human (Mu, D., Tursun, M., Duckett, D. R., Drummond, J. T., Modrich, P., and Sancar, A. (1997) Mol. Cell. Biol. 17, 760-769) long-patch mismatch-repair systems. Mismatch repair directed specifically against incorrect bases inserted during semi-conservative DNA replication might efficiently antagonize UV mutagenesis. To test this hypothesis, DNA 51-mers containing site-specific T-T cis-syn-cyclobutane pyrimidine-dimers or T-T pyrimidine-(6-4')pyrimidinone photoproducts, with all four possible bases opposite the respective 3'-thymines in the photoproducts, were analyzed for the ability to compete with radiolabeled (T/G)-mismatched DNA for binding by highly purified human MSH2.MSH6 heterodimer protein (hMutSalpha). Both (cyclobutane-dimer)/AG and ((6-4)photoproduct)/AG mismatches competed about as well as non-photoproduct T/T mismatches. The two respective pairs of photoproduct/(A(T or C)) mismatches also showed higher hMutSalpha affinity than photoproduct/AA "matches"; the apparent affinity of hMutSalpha for the ((6-4)photoproduct)/AA-"matched" substrate was actually less than that for TT/AA homoduplexes. Surprisingly, although hMutSalpha affinities for both non-photoproduct UU/GG double mismatches and for (uracil-cyclobutane-dimer)/AG single mismatches were high, affinity for the (uracil-cyclobutane-dimer)/GG mismatch was quite low. Equilibrium binding of hMutSalpha to DNA containing (photoproduct/base) mismatches and to (T/G)-mismatched DNA was reduced similarly by ATP (in the absence of magnesium).  相似文献   

3.
4.
Escherichia coli contains a base mismatch correction system called VSP repair that is known to correct T:G mismatches to C:G when they occur in certain sequence contexts. The preferred sequence context for this process is the site for methylation by the E. coli DNA cytosine methylase (Dcm). For this reason, VSP repair is thought to counteract potential mutagenic effects of deamination of 5-methylcytosine to thymine. We have developed a genetic reversion assay that quantitates the frequency of C to T mutations at Dcm sites and the removal of such mutations by DNA repair processes. Using this assay, we have studied the repair of U: G mismatches in DNA to C: G and have found that VSP repair is capable of correcting these mismatches. Although VSP repair substantially affects the reversion frequency, it may not be as efficient at correcting U: G mismatches as the uracil DNA glycosylase-mediated repair process.  相似文献   

5.
Discrimination and versatility in mismatch repair   总被引:3,自引:0,他引:3  
Hays JB  Hoffman PD  Wang H 《DNA Repair》2005,4(12):51-1474
Evolutionarily-conserved mismatch-repair (MMR) systems correct all or almost all base-mismatch errors from DNA replication via excision-resynthesis pathways, and respond to many different DNA lesions. Consideration of DNA polymerase error rates and possible consequences of excess gratuitous excision of perfectly paired (homoduplex) DNA in vivo suggests that MMR needs to discriminate against homoduplex DNA by three to six orders of magnitude. However, numerous binding studies using MMR base-mispair-recognition proteins, bacterial MutS or eukaryotic MSH2.MSH6 (MutSalpha), have typically shown discrimination factors between mismatched and homoduplex DNA to be 5-30, depending on the binding conditions, the particular mismatches, and the DNA-sequence contexts. Thus, downstream post-binding steps must increase MMR discrimination without interfering with the versatility needed to recognize a large variety of base-mismatches and lesions. We use a complex but highly MMR-active model system, human nuclear extracts mixed with plasmid substrates containing specific mismatches and defined nicks 0.15 kbp away, to measure the earliest quantifiable committed step in mismatch correction, initiation of mismatch-provoked 3'-5' excision at the nicks. We compared these results to binding of purified MutSalpha to synthetic oligoduplexes containing the same mismatches in the same sequence contexts, under conditions very similar to those prevailing in the nuclear extracts. Discrimination against homoduplex DNA, only two-to five-fold in the binding studies, increased to 60- to 230-fold or more for excision initiation, depending on the particular mismatches. Remarkably, the mismatch-preference order for excision initiation was substantially altered from the order for hMutSalpha binding. This suggests that post-binding steps not only strongly discriminate against homoduplex DNA, but do so by mechanisms not tightly constrained by initial binding preferences. Pairs of homoduplexes (40, 50, and 70 bp) prepared from synthetic oligomers or cut out of plasmids showed virtually identical hMutSalpha binding affinities, suggesting that high hMutSalpha binding to homoduplex DNA is not the result of misincorporations or lesions introduced during chemical synthesis. Intrinsic affinities of MutS homologs for perfectly paired DNA may help these proteins efficiently position themselves to carry out subsequent mismatch-specific steps in MMR pathways.  相似文献   

6.
Negishi K  Loakes D  Schaaper RM 《Genetics》2002,161(4):1363-1371
Deoxyribosyl-dihydropyrimido[4,5-c][1,2]oxazin-7-one (dP) is a potent mutagenic deoxycytidine-derived base analogue capable of pairing with both A and G, thereby causing G. C --> A. T and A. T --> G. C transition mutations. We have found that the Escherichia coli DNA mismatch-repair system can protect cells against this mutagenic action. At a low dose, dP is much more mutagenic in mismatch-repair-defective mutH, mutL, and mutS strains than in a wild-type strain. At higher doses, the difference between the wild-type and the mutator strains becomes small, indicative of saturation of mismatch repair. Introduction of a plasmid containing the E. coli mutL(+) gene significantly reduces dP-induced mutagenesis. Together, the results indicate that the mismatch-repair system can remove dP-induced replication errors, but that its capacity to remove dP-containing mismatches can readily be saturated. When cells are cultured at high dP concentration, mutant frequencies reach exceptionally high levels and viable cell counts are reduced. The observations are consistent with a hypothesis in which dP-induced cell killing and growth impairment result from excess mutations (error catastrophe), as previously observed spontaneously in proofreading-deficient mutD (dnaQ) strains.  相似文献   

7.
R Zell  H J Fritz 《The EMBO journal》1987,6(6):1809-1815
Derivatives of phage M13 were constructed and used for the in vitro preparation of heteroduplex DNA molecules containing base/base mismatches that mimick DNA lesions caused by hydrolytic deamination of 5-meC residues in Escherichia coli DNA (i.e. they carry a T/G mismatch in the special sequence context provided by the recognition site -CCA/TGG-of the Dcm-methyltransferase). Upon introduction of these heteroduplex DNAs into CaCl2-treated E. coli cells, the mismatches are efficiently repaired with high bias in favour of the DNA strand containing the mismatched guanine residue. This special DNA mismatch-repair operates on fully dam-methylated DNA and is independent of gene mutH. It thus fulfills the salient requirements of a repair pathway responsible for counteracting the spontaneous hydrolytic deamination of 5-meC in vivo. The repair efficiency is boosted by a 5-methyl group present on the cytosine residue at the next-nearest position to the 5' side of the mismatched guanine. The repair is severely impaired in host strains carrying a mutation in any of the three loci dcm, mutL and mutS.  相似文献   

8.
Besides orthologs of other eukaryotic mismatch-repair (MMR) proteins, plants encode MSH7, a paralog of MSH6. The Arabidopsis thaliana recognition heterodimers AtMSH2·MSH6 (AtMutSα) and AtMSH2·MSH3 (AtMutSβ) were previously found to bind the same subsets of mismatches as their counterparts in other eukaryotes—respectively, base–base mismatches and single extra nucleotides, loopouts of extra nucleotides (one or more) only—but AtMSH2·MSH7 (AtMutSγ) bound well only to a G/T mismatch. To test hypotheses that MSH7 might be specialized for G/T, or for base mismatches in 5-methylcytosine contexts, we compared binding of AtMutSα and AtMutSγ to a series of mismatched DNA oligoduplexes, relative to their (roughly similar) binding to G/T DNA. AtMutSγ bound G/G, G/A, A/A and especially C/A mispairs as well or better than G/T, in contrast to MutSα, for which G/T was clearly the best base mismatch. The presence of 5-methylcytosine adjacent to or in a mispair generally lowered binding by both heterodimers, with no systematic difference between the two. Alignment of protein sequences reveals the absence in MSH7 of the clamp domains that in bacterial MutS proteins—and by inference MSH6 proteins—non-specifically bind the backbone of mismatched DNA, raising new questions as to how clamp domains enhance mismatch recogni tion. Plants must rigorously suppress mutation during mitotic division of meristematic cells that eventually give rise to gametes and may also use MMR proteins to antagonize homeologous recombination. The MSH6 versus MSH7 divergence may reflect specializations for particular mismatches and/or sequence contexts, so as to increase both DNA-replication and meiotic-recombination fidelity, or dedication of MSH6 to the former and MSH7 to the latter, consistent with genetic evidence from wheat.  相似文献   

9.
Analyses in vitro of correction of DNA mismatches have been pivotal in biochemical dissection of mismatch repair pathways. However, the complex procedures needed to prepare DNA substrates for mismatch repair have posed substantial barriers to investigators who wish to pursue such analyses. Here we describe a simple, efficient way to prepare a variety of mismatched DNA substrates. We use in our procedure high-copy-number pUC19-derived plasmids, and a newly commercially available endonuclease N.BstNBI that makes site-specific single-strand nicks. The ability to prepare large substrate quantities in a relatively short time and to construct wider ranges of different mismatches in various sequence contexts will facilitate future research. Supported in part by NIH grant ESO94848 to J.B.H. This is Technical Report No. 11680 from the Oregon Agricultural Experiment Station  相似文献   

10.
Escherichia coli mutator mutD5 is the most potent mutator known. The mutD5 mutation resides in the dnaQ gene encoding the proofreading exonuclease of DNA polymerase III holoenzyme. It has recently been shown that the extreme mutability of this strain results, in addition to a proofreading defect, from a defect in mutH, L, S-encoded postreplicational DNA mismatch repair. The following measurements of the mismatch-repair capacity of mutD5 cells demonstrate that this mismatch-repair defect is not structural, but transient. mutD5 cells in early log phase are as deficient in mismatch repair as mutL cells, but they become as proficient as wild-type cells in late log phase. Second, arrest of chromosomal replication in a mutD5-dnaA(Ts) strain at a nonpermissive temperature restores mismatch repair, even from the early log phase of growth. Third, transformation of mutD5 strains with multicopy plasmids expressing the mutH or mutL gene restores mismatch repair, even in rapidly growing cells. These observations suggest that the mismatch-repair deficiency of mutD strains results from a saturation of the mutHLS-mismatch-repair system by an excess of primary DNA replication errors due to the proofreading defect.  相似文献   

11.
The cytosine methyltransferases (MTases) M. HhaIand M. HpaII bind substrates in which the target cytosine is replaced by uracil or thymine, i.e. DNA containing a U:G or a T:G mismatch. We have extended this observation to the EcoRII MTase (M. EcoRII) and determined the apparent Kd for binding. Using a genetic assay we have also tested the possibility that MTase binding to U:G mismatches may interfere with repair of the mismatches and promote C:G to T:A mutations. We have compared two mutants of M. EcoRII that are defective for catalysis by the wild-type enzyme for their ability to bind DNA containing U:G or T:G mismatches and for their ability to promote C to T mutations. We find that although all three proteins are able to bind DNAs with mismatches, only the wild-type enzyme promotes C:G to T:A mutations in vivo. Therefore, the ability of M. EcoRII to bind U:G mismatched duplexes is not sufficient for their mutagenic action in cells. Received: 14 November 1996 / Accepted: 17 February 1997  相似文献   

12.
Mouse models for human DNA mismatch-repair gene defects   总被引:1,自引:0,他引:1  
The mammalian DNA mismatch-repair genes belong to a family of genes that comprise several homologs of the Escherichia coli mutS and mutL genes. The observation that mutations in the two human repair genes MSH2 and MLH1 are responsible for hereditary nonpolyposis colorectal cancer, as well as a significant number of sporadic colorectal cancers, raises several questions about the role of these proteins and their family members in the initiation and progression of colorectal cancer. To address these questions, mice with inactivating mutations in all the known mutS and mutL homologs have been generated. The development of these mouse lines has permitted the systematic analysis of the role of each gene in the repair process and has underscored their significance in mutation avoidance and cancer susceptibility. These analyses were critical for our understanding of the function of these genes at the organismal level and also revealed an essential role for some of the DNA mismatch-repair genes in mammalian meiosis.  相似文献   

13.
《Biophysical journal》2022,121(9):1691-1703
T:G mismatches in DNA result in humans primarily from deamination of methylated CpG sites. They are repaired by redundant systems, such as thymine DNA glycosylase (TDG) and methyl-binding domain enzyme (MBD4), and maintenance of these sites has been implicated in epigenetic processes. The process by which these enzymes identify a canonical DNA base in the incorrect basepairing context remains a mystery. However, the conserved contacts of the repair enzymes with the DNA backbone suggests a role for protein-phosphate interaction in the recognition and repair processes. We have used 31P NMR to investigate the energetics of DNA backbone BI-BII interconversion, and for this work have focused on alterations to the activation barriers to interconversion and the effect of a mismatch compared with canonical DNA. We have found that alterations to the ΔG of interconversion for T:G basepairs are remarkably similar to U:G basepairs in the form of stepwise differences in ΔG of 1–2 kcal/mol greater than equivalent steps in unmodified DNA, suggesting a universality of this result for TDG substrates. Likewise, we see perturbations to the free energy (~1 kcal/mol) and enthalpy (2–5 kcal/mol) of activation for the BI-BII interconversion localized to the phosphates flanking the mismatch. Overall our results strongly suggest that the perturbed backbone energetics in T:G basepairs play a significant role in the recognition process of DNA repair enzymes.  相似文献   

14.
Cell lines with resistance to cisplatin and carboplatin often retain sensitivity to platinum complexes with different carrier ligands (e.g., oxaliplatin and JM216). HeLa cell extracts were shown to excise cisplatin, oxaliplatin, and JM216 adducts with equal efficiency, suggesting that nucleotide excision repair does not contribute to the carrier-ligand specificity of platinum resistance. We have shown previously that the extent of replicative bypass in vivo is influenced by the carrier ligand of the platinum adducts. The specificity of replicative bypass may be determined by the DNA polymerase complexes that catalyze translesion synthesis past Pt-DNA adducts, by the mismatch-repair system that removes newly synthesized DNA opposite Pt-DNA adducts, and/or by DNA damage-recognition proteins that bind to the Pt-DNA adducts and block translesion synthesis. Primer extension on DNA templates containing site-specifically placed cisplatin, oxaliplatin, or JM216 Pt-GG adducts revealed that the eukaryotic DNA polymerases beta, zeta, gamma and HIV-1 RT had a similar specificity for translesion synthesis past Pt-DNA adducts (oxaliplatin > or = cisplatin > JM216). In addition, defects in the mismatch-repair proteins hMSH6 and hMLH1 led to increased replicative bypass of cisplatin adducts, but not of oxaliplatin adducts. Finally, primer extension assays performed in the presence of HMG1, which is known to recognize cisplatin-damaged DNA, revealed that inhibition of translesion synthesis by HMG1 also depended on the carrier ligand of the Pt-DNA adduct (cisplatin > oxaliplatin = JM216). These studies show that DNA polymerases, the mismatch-repair system and damage-recognition proteins can all impart specificity to replicative bypass of Pt-DNA adducts. Replicative bypass, in turn, may influence the carrier-ligand specificity of resistance.  相似文献   

15.
Escherichia coli contains a base mismatch correction system called VSP repair that is known to correct T:G mismatches to C:G when they occur in certain sequence contexts. The preferred sequence context for this process is the site for methylation by the E. coli DNA cytosine methylase (Dcm). For this reason, VSP repair is thought to counteract potential mutagenic effects of deamination of 5-methylcytosine to thymine. We have developed a genetic reversion assay that quantitates the frequency of C to T mutations at Dcm sites and the removal of such mutations by DNA repair processes. Using this assay, we have studied the repair of U: G mismatches in DNA to C: G and have found that VSP repair is capable of correcting these mismatches. Although VSP repair substantially affects the reversion frequency, it may not be as efficient at correcting U: G mismatches as the uracil DNA glycosylase-mediated repair process.  相似文献   

16.
Mismatches in DNA occur either due to replication error or during recombination between homologous but non-identical DNA sequences or due to chemical modification of bases. The mismatch in DNA, if not repaired, result in high spontaneous mutation frequency. The repair has to be in the newly synthesized strand of the DNA molecule, otherwise the error will be fixed permanently. Three distinct mechanisms have been proposed for the repair of mismatches in DNA in prokaryotic cells and gene functions involved in these repair processes have been identified. The methyl-directed DNA mismatch repair has been examined inVibrio cholerae, a highly pathogenic gram negative bacterium and the causative agent of the diarrhoeal disease cholera. The DNA adenine methyltransferase encoding gene (dam) of this organism which is involved in strand discrimination during the repair process has been cloned and the complete nucleotide sequence has been determined.Vibrio cholerae dam gene codes for a 21.5 kDa protein and can substitute for theEscherichia coli enzyme. Overproduction ofVibrio cholerae Dam protein is neither hypermutable nor lethal both in Escherichia coli andVibrio cholerae. WhileEscherichia coli dam mutants are sensitive to 2-aminopurine,Vibrio cholerae 2-aminopurine sensitive mutants have been isolated with intact GATC methylation activity. The mutator genesmutS andmutL involved in the recognition of mismatch have been cloned, nucleotide sequence determined and their products characterized. Mutants ofmutS andmutL ofVibrio cholerae have been isolated and show high rate of spontaneous mutation frequency. ThemutU gene ofVibrio cholerae, the product of which is a DNA helicase II, codes for a 70 kDa protein. The deduced amino acid sequence of themutU gene hs all the consensus helicase motifs. The DNA cytosine methyltransferase encoding gene (dam) ofVibrio cholerae has also been cloned. Thedcm gene codes for a 53 kDa protein. This gene product might be involved in very short patch (VSP) repair of DNA mismatches. The vsr gene which is directly involved in VSP repair process codes for a 23 kDa protein. Using these information, the status of DNA mismatch repair inVibrio cholerae will be discussed.  相似文献   

17.
Tumor cell lines can replicate faster than normal cells and many also have defective DNA repair pathways. This has lead to the investigation of the inhibition of DNA repair proteins as a means of therapeutic intervention. An alternative approach is to hide or mask damaged DNA from the repair systems. We have developed a protocol to investigate the structures of the complexes of damaged DNA with drug like molecules. Nucleotide resolution structural information can be obtained using an improved hydroxyl radical cleavage protocol. The use of a dT(n) tail increases the length of the smallest fragments of interest and allows efficient co-precipitation of the fragments with poly(A). The use of a fluorescent label, on the 5' end of the dT(n) tail, in conjunction with modified cleavage reaction conditions, avoids the lifetime and other problems with (32)P labeling. The structures of duplex DNAs containing AC and CC mismatches in the presence and absence of minor groove binders have been investigated as have those of the fully complementary DNA. The results indicate that the structural perturbations of the mismatches are localized, are sequence dependent and that the presence of a mismatch can alter the binding of drug like molecules.  相似文献   

18.
Effect of base pair mismatches on recombination via the RecBCD pathway   总被引:11,自引:0,他引:11  
Summary The effect of base pair mismatches on recombination via the RecBCD pathway was studied in mutS and wild-type Escherichia coli, using substrates that contain single or multiple mismatches. Recombination between homologous DNA inserts in lambda phage and pBR322-derived plasmids forms phage-plasmid cointegrates that result from an odd number of crossovers. In the mutS host, when the sequence homology of a pair of 405 bp substrates decreased from 100% to 89%, the recombinant frequency decreased by about 9-fold, while in the wild-type host the decrease was about 240-fold. These results suggest that multiple mismatches can reduce recombinant frequencies by impeding the mechanism of recombination itself, and by provoking mismatch repair. Single mismatches in 31 bp substrates caused reductions in recombinant frequencies of 2-or 12-fold, depending on the location of the mismatch. However, unlike the reduction by multiple mismatches, the reduction of the recombinant frequencies by single mismatches was the same in both mutS and wild-type hosts. Thus a single match repair seems unable to act on single mismatches in very short homologies during recombination.  相似文献   

19.
DNA mismatch repair, which involves is a widely conserved set of proteins, is essential to limit genetic drift in all organisms. The same system of proteins plays key roles in many cancer related cellular transactions in humans. Although the basic process has been reconstituted in vitro using purified components, many fundamental aspects of DNA mismatch repair remain hidden due in part to the complexity and transient nature of the interactions between the mismatch repair proteins and DNA substrates. Single molecule methods offer the capability to uncover these transient but complex interactions and allow novel insights into mechanisms that underlie DNA mismatch repair. In this review, we discuss applications of single molecule methodology including electron microscopy, atomic force microscopy, particle tracking, FRET, and optical trapping to studies of DNA mismatch repair. These studies have led to formulation of mechanistic models of how proteins identify single base mismatches in the vast background of matched DNA and signal for their repair.  相似文献   

20.
High-throughput DNA sensors capable of detecting single-base mismatches are required for the routine screening of genetic mutations and disease. A new strategy for the electrochemical detection of single-base mismatches in DNA has been developed based upon charge transport through DNA films. Double-helical DNA films on gold surfaces have been prepared and used to detect DNA mismatches electrochemically. The signals obtained from redox-active intercalators bound to DNA-modified gold surfaces display a marked sensitivity to the presence of base mismatches within the immobilized duplexes. Differential mismatch detection was accomplished irrespective of DNA sequence composition and mismatch identity. Single-base changes in sequences hybridized at the electrode surface are also detected accurately. Coupling the redox reactions of intercalated species to electrocatalytic processes in solution considerably increases the sensitivity of this assay. Reporting on the electronic structure of DNA, as opposed to the hybridization energetics of single-stranded oligonucleotides, electrochemical sensors based on charge transport may offer fundamental advantages in both scope and sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号