首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the mechanism by which ethanol lowers plasma free fatty acids, we tested the ability of two products of alcohol metabolism, acetate and lactate, to lower free fatty acids in man. Sodium acetate was given orally to five healthy fasting volunteers and caused a significant fall in plasma free fatty acids. After amounts of ethanol and acetate that produced similar reductions in free fatty acids, plasma acetate increased 3- to 4-fold within 20 min. In each of three subjects the fall of free fatty acids observed after acetate ingestion occurred at plasma acetate levels less than or equal to those reached after ethanol. In all studies plasma glucose remained stable. Oral administration of sodium lactate to another volunteer in amounts sufficient to raise plasma lactate concentrations to a level similar to that found after ethanol administration failed to lower plasma free fatty acids. Thus acetate, a metabolite of ethanol, reduces plasma free fatty acids at plasma acetate levels comparable to those resulting from ethanol metabolism, which suggests that the lowering of plasma free fatty acids produced by ethanol is mediated, at least in part, by acetate.  相似文献   

2.
Acetone powders prepared from a 20,000g participate preparation from spinach leaf catalyzed several reactions involving monoacylglycerol and diacylglycerol. When these substrates were presented as Triton X-100-mixed micelles, diacylglycerol gave rise to free fatty acids, monoacylglycerol, triacylglycerols, and steryl esters, and in the presence of ethanol, small amounts of ethyl esters of fatty acid. Monoacylglycerol gave rise to free fatty acids and diacylglycerol, and in the presence of ethanol, large amounts of ethyl esters of fatty acid. In the presence of bovine serum albumin, the conversion of monoacylglycerol to free fatty acid was retarded. In the presence of bovine serum albumin, steryl ester was an important product from diacylglycerol. The system containing Triton X-100-mixed micelles and bovine serum albumin permitted analysis of reaction products which showed diacylglycerol to be an acyl donor in steryl ester biosynthesis. All reactions observed in the mixed micelle system were transacylation reactions involving various acceptors: dipalmitoylglycerol → monopalmitoylglycerol + palmitate; monopalmitoylglycerol → glycerol + palmitate; dipalmitoylglycerol + sterol → monopalmitoylglycerol + steryl palmitate; monopalmitoylglycerol + ethanol → ethyl palmitate + glycerol; monopalmitoylglycerol → dipalmitoylglycerol (+glycerol); dipalmitoylglycerol → tripalmitoylglycerol (+monopalmitoylglycerol).  相似文献   

3.
One of the strategies to prevent insulin resistance is to reduce circulating free fatty acids (FFA). The aim of this study is to assess the effect of an oral lactulose load on fatty acid metabolism in overweight subjects. Eight overweight subjects received a primed constant intravenous infusion of [1-(13)C]acetate and of [1,1,2,3,3-(2)H(5)]glycerol for 9 h. After 3 h of tracer infusion, patients ingested 30 g lactulose, or saline solution. Arterialized blood samples were collected every 20 min. Basal plasma concentrations of acetate were similar before and between oral treatments as well as glycerol and FFA concentrations. Plasma acetate turnover was 11.4 +/- 2.4 vs. 10.7 +/- 1.4 micromol.kg(-1).min(-1) [not significant (NS)], and plasma glycerol turnover was 3.8 +/- 0.4 vs. 4.8 +/- 1.9 micromol.kg(-1).min(-1) (NS). After lactulose ingestion, acetate concentration increased twofold and then decreased to baseline. Acetate turnover rate increased to 15.5 +/- 2.2 micromol.kg(-1).min(-1) after lactulose treatment, whereas it was unchanged after saline treatment (10.3 +/- 2.2 micromol.kg(-1).min(-1), P < or = 0.0001). In contrast, FFA concentrations decreased significantly after lactulose ingestion and then increased slowly. Glycerol turnover decreased after lactulose ingestion compared with saline, 2.8 +/- 0.4 vs. 3.5 +/- 0.3 micromol.kg(-1).min(-1) (P < or = 0.05). A significant negative correlation was found between glycerol and acetate turnover after lactulose treatments (r = -0.78, P < or = 0.02). These results showed in overweight subjects a short-term decrease in FFA level and glycerol turnover after lactulose ingestion related to a decrease of lipolysis in close relationship with an increase of acetate production.  相似文献   

4.
Spinach chloroplasts, isolated by techniques yielding preparations with high O2- evolving activity, showed rates of light-dependent acetate incorporation into lipids 3-4 fold higher than any previously reported. Incorporation rates as high as 500 nmol of acetate/h per mg of chlorophyll were measured in buffered sorbitol solutions containing only NaHCO3 and [1-14C]acetate, and as high as 800 nmol/h per mg of chlorophyll when 0.13 mM-Triton X-100 was also included in the reaction media. The fatty acids synthesized were predominantly oleic (70-80% of the total fatty acid radioactivity) and palmitic (20-25%) with only minor amounts (1-5%) of linoleic acid. Linolenic acid synthesis was not detected in the system in vitro. Free fatty acids accounted for 70-90% of the radioactivity incorporated and the remainder was shared fairly evenly between 1,2-diacylglycerols and polar lipids. Oleic acid constituted 80-90% of the free fatty acids synthesized, but the diacylglycerols and polar lipids contained slightly more palmitic acid than oleic acid. Triton X-100 stimulated the synthesis of diacylglycerols 3-6 fold, but stimulated free fatty acid synthesis only 1-1.5-fold. Added glycerol 1-phosphate stimulated both the synthesis of diacylglycerols and palmitic acid relative to oleic acid, but did not increase acetate incorporation into total chloroplast lipids. CoA and ATP, when added separately, stimulated acetate incorporation into chloroplast lipids to variable extents and had no effect on the types of lipid synthesized, but when added together resulted in 34% of the incorporated acetate appearing in long-chain acyl-CoA. Pyruvate was a much less effective precursor of chloroplast fatty acids than was acetate.  相似文献   

5.
Changes in phospholipid metabolism in gastric mucosa caused by instillation of absolute ethanol (a cell-damaging agent) into the stomach of rats and the effects of pretreatment with 20% ethanol (a mild irritant) were investigated by using radioisotope-labeled fatty acids and glycerol. The labeled precursors were incorporated mainly into phosphatidylcholine and triacylglycerol, and also to lesser extents into phosphatidylethanolamine and phosphatidylinositol + phosphatidylserine. The instillation of absolute ethanol reduced the incorporation of fatty acids and glycerol into phospholipids within 15 min, indicating the inhibition by ethanol of de novo synthesis of phospholipids. Pretreatment with 20% ethanol caused the incorporation of fatty acids into phospholipids to be maintained after absolute ethanol instillation. These results suggest that the pretreatment with 20% ethanol may protect the cellular synthetic activity of phospholipids against damage by absolute ethanol. The incorporation of fatty acids into the free fatty acid fraction, monoacylglycerol and diacylglycerol was increased by absolute ethanol instillation, suggesting damage to the blood vessels of the gastric mucosa, and these changes were inhibited to some extent by the pretreatment with 20% ethanol.  相似文献   

6.
Abstract By culturing Trypanosoma cruzi epimastigotes in modified Grace's medium with 10% foetal bovine serum, a significant quantity of metacyclic forms could be obtained. Transformation was observed after 8 days of culture, with metacyclic forms reaching 75%. Cultured Vero cells were infected with metacyclic forms and maintained until free-amastigote forms were obtained. Additionally, amastigote-like forms could be obtained by subjecting metacyclic cultures to heat shock. Parasites were grown with glucose as the major carbon source. The metabolites produced and excreted during culture were identified by difference proton nuclear magnetic resonance spectroscopy and quantified by enzymatic methods. The final products of glucose catabolism differed not only quantitatively but also qualitatively for the three major life-cycle stages of T. cruzi . The end products of metabolism produced by epimastigote forms were mainly acetate and pyruvate and, to a lesser extend, l-alanine and ethanol. Differences between epimastigotes and metacyclic forms were only quantitative. However, free amastigotes as well as amastigote-like forms, excreted acetate, glycerol, and pyruvate and to a lesser extent succinate, but no l-alanine or ethanol.  相似文献   

7.
In 1975, Cronan et al. (J. Biol. Chem. 250:5835-5840) reported that free fatty acids accumulated during glycerol starvation of an Escherichia coli glycerol auxotroph. On the basis of labeling experiments showing significant incorporation of [14C]acetate into the fatty acid fraction of glycerol-starved cells, these authors concluded that fatty acid synthesis proceeded normally in the absence of phospholipid synthesis. Since these findings might have been due to an increase in the intracellular specific activity of the [1-14C]acetyl coenzyme A pool of the glycerol-starved cells, we reexamined the effect of glycerol starvation on fatty acid synthesis. We found that (i) the incorporation of 3H2O and/or [2,3-14C]succinate into the fatty acid fraction of glycerol auxotrophs is severely reduced during starvation, (ii) the incorporation of [1-14C]acetate into the lipid fraction of an acetate-requiring glycerol auxotroph is inhibited by 95% during glycerol starvation, and (iii) the accumulation of fatty acids, as measured by microtitration, in glycerol-starved cells is less than 10% that of glycerol-supplemented cells. These results indicate that fatty acid synthesis is inhibited in the absence of phospholipid synthesis of E. coli.  相似文献   

8.
Physiological responses during growth on xylose and the xylose-degrading pathway of Candida tropicalis and Candida guilliermondii yeasts were investigated. The responses to a linearly decreasing oxygen transfer rate and a simultaneously increasing dilution rate were compared. C. guilliermondii produced acetate but no ethanol, and C. tropicalis ethanol but no acetate under oxygen limitation. Both strains produced glycerol. The D-xylose reductase of C. guilliermondii is exclusively NADPH-dependent. and acetate production regenerated NADPH. The xylose'reductase of C. tropicalis has a dual dependency for both NADH and NADPH. It regenerated NAD by producing ethanol. Both strains regenerated NAD by producing glycerol. The effect of intracellular NADH accumulation to xylose uptake and metabolite production was studied by using formate as a cosubstrate. Formate feeding in C. tropicalis triggered the accumulation of glycerol, ethanol and xylitol. Consequently, the specific xylose consumption increased 28% during formate feeding, from 477 to 609 C-mmol/C-mol cell dry-weight (CDW)/h. In C. guilliermondii cultures. formate feeding resulted only in glycerol accumulation. The specific xylose consumption increased 6%, from 301 to 319 C-mmol/C-mol CDW/h, until glycerol started to accumulate.  相似文献   

9.
Growth of biodiesel industries resulted in increased coproduction of crude glycerol which is therefore becoming a waste product instead of a valuable ‘coproduct’. Glycerol can be used for the production of valuable chemicals, e.g. biofuels, to reduce glycerol waste disposal. In this study, a novel bacterial strain is described which converts glycerol mainly to ethanol and hydrogen with very little amounts of acetate, formate and 1,2‐propanediol as coproducts. The bacterium offers certain advantages over previously studied glycerol‐fermenting microorganisms. Anaerobium acetethylicum during growth with glycerol produces very little side products and grows in the presence of maximum glycerol concentrations up to 1500 mM and in the complete absence of complex organic supplements such as yeast extract or tryptone. The highest observed growth rate of 0.116 h?1 is similar to that of other glycerol degraders, and the maximum concentration of ethanol that can be tolerated was found to be about 60 mM (2.8 g l?1) and further growth was likely inhibited due to ethanol toxicity. Proteome analysis as well as enzyme assays performed in cell‐free extracts demonstrated that glycerol is degraded via glyceraldehyde‐3‐phosphate, which is further metabolized through the lower part of glycolysis leading to formation of mainly ethanol and hydrogen. In conclusion, fermentation of glycerol to ethanol and hydrogen by this bacterium represents a remarkable option to add value to the biodiesel industries by utilization of surplus glycerol.  相似文献   

10.
The effects of glucose (10 mm), glycerol (3 mm), and lactate/pyruvate (10 mm) on the incorporation of 3H from 3H2O into fatty acids were studied in isolated hepatocytes prepared from chow-fed female rats. Lactate/pyruvate markedly increased lipogenic rates, while glucose and glycerol did not significantly affect rates of lipogenesis. In cells incubated with lactate/pyruvate plus glycerol, the increase in 3H incorporation was greater than observed with lactate/pyruvate alone. In hepatocytes isolated from 24-h starved rats, lactate/pyruvate again increased de novo fatty acid synthesis to a greater extent than either glucose or glycerol. Glycerol significantly increased lipogenesis compared to the endogenous rates and when incubated with lactate/pyruvate produced an increase above lactate/pyruvate alone. (?)-Hydroxycitrate, a potent inhibitor of ATP-citrate lyase (EC 4.1.3.8), and agaric acid, an inhibitor of tricarboxylate anion translocation, were studied in hepatocytes to determine their effects on lipogenesis by measuring 3H2O, [1-14C]acetate, and [2-14C]lactate incorporation into fatty acids. 3H incorporation into fatty acids was markedly inhibited by both inhibitors with agaric acid (60 μm) producing the greater inhibition. (?)-Hydroxycitrate (2 mm) increased acetate incorporation into fatty acids from [1-14C]acetate and agaric acid produced a strong inhibitory effect. Combined effects of (?)-hydroxycitrate and agaric acid on lipogenesis from [1-14C]acetate showed an inhibitory response to a lesser extent than with agaric acid alone. With substrate concentrations of acetate present, there was no significant increase in rates of lipogenesis from [1-14C]acetate and the increase previously observed with (?)-hydroxycitrate alone was minimized. Agaric acid significantly inhibited fatty acid synthesis from acetate in the presence of exogenous substrate, but the effect was decreased in comparison to rates with only endogenous substrate present. With [2-14C]lactate as the lipogenic precursor, agaric acid and (?)-hydroxycitrate strongly inhibited fatty acid synthesis. However, agaric acid despite its lower concentration (60 μm vs 2 mm) was twice as effective as (?)-hydroxycitrate. A similar pattern was observed when substrate concentrations of lactate/pyruvate (10 mm) were added to the incubations. When (?)-hydroxycitrate and agaric acid were simultaneously incubated in the presence of endogenous substrate, there was an additive effect of the inhibitors on decreasing fatty acid synthesis. Results are discussed in relation to the origin of substrate for hepatic lipogenesis and whether specific metabolites increase lipogenic rates.  相似文献   

11.
ArcA is a global regulator that switches on the expression of fermentation genes and represses the aerobic pathways when Escherichia coli enters low oxygen growth conditions. The metabolic profile of E. coli CT1062 (DeltaarcA)and CT1061 (arcA2) grown in microaerobiosis with glycerol as carbon source were determined and compared with E. coli K1060, the arcA+ parent strain. Both arcA mutants achieved higher biomass yields than the wild-type strain. The production of acetate, formate, lactate, pyruvate, succinate and ethanol were determined in the supernatants of cultures grown on glycerol under microaerobic conditions for 48 h. The yield of extracellular metabolites on glycerol showed lower acid and higher ethanol values for the mutants. The ethanol/acetate ratio was 0.87 for the parent strain, 2.01 for CT1062, and 12.51 for CT1061. Accordingly, the NADH/NAD+ ratios were 0.18, 0.63, and 0.97, respectively. The extracellular succinate yield followed a different pattern, with yield values of 0.164 for K1060, 0.442 for CT1062 and 0.214 for CT1061. The dissimilarities observed can be attributed to the different effects exerted by the deletion and point mutations in a global regulator.  相似文献   

12.
In experimental rat liver perfusion we observed net production of free acetate accompanied by accelerated ketogenesis with long-chain fatty acids. Mitochondrial acetyl-CoA hydrolase, responsible for the production of free acetate, was found to be inhibited by the free form of CoA in a competitive manner and activated by reduced nicotinamide adenine dinucleotide (NADH). The conditions under which the ketogenesis was accelerated favored activation of the hydrolase by dropping free CoA and elevating NADH levels. Free acetate was barely metabolized in the liver because of low affinity, high K(m), of acetyl coenzyme A (acetyl-CoA) synthetase for acetate. Therefore, infused ethanol was oxidized only to acetate, which was entirely excreted into the perfusate. The acetyl-CoA synthetase in the heart mitochondria was much lower in K(m) than it was in the liver, thus the heart mitochondria was capable of oxidizing free acetate as fast as other respiratory substrates, such as succinate. These results indicate that rat liver produces free acetate as a byproduct of ketogenesis and may supply free acetate, as in the case of ketone bodies, to extrahepatic tissues as fuel.  相似文献   

13.
Starvation of strains of Escherichia coli which are glycerol auxotrophs and are also defective in beta oxidation results in the accumulation of large amounts of free fatty acid (Cronan, J. E., Jr., Weisberg, L. W., and Allen, R. G. (1975) J. Biol. Chem. 250, 5835-5840). We now report that addition of exogenous oleic acid to these cultures results in no decrease in the synthesis of the unsaturated acids of the free fatty acid fraction although a 40 to 60% decrease of [14C]acetate incorporation into phospholipid unsaturated acyl moieties occurs under these conditions. This result indicates that the decreased synthesis of phospholipid unsaturated acyl moieties observed by others during oleic acid supplementation can be attributed to competition between exogenous and endogenously synthesized unsaturated fatty acids rather than a curtailment of unsaturated fatty acid synthesis per se.  相似文献   

14.
1. A single glucose meal stimulated the incorporation of acetate into fatty acids in liver slices. If the glucose was added in vitro, it had no effect. Fructose and glycerol in vitro markedly stimulated fatty acid synthesis from acetate. Fructose and glycerol probably by-passed a rate-controlling reaction between glucose and triose phosphate. This reaction may have been stimulated by glucose administered in vivo. 2. The stimulation of fatty acid synthesis caused by fructose did not require the synthesis of enzyme, thus indicating that fatty acid-synthesizing enzymes were present in a latent form in the livers from unfed chicks.  相似文献   

15.
Acute ethanol consumption leads to the accumulation of triglycerides (TGs) in hepatocytes. The increase in lipogenesis and reduction of fatty acid oxidation are implicated as the mechanisms underlying ethanol-induced hepatic TG accumulation. Although glycerol-3-phosphate (Gro3P), formed by glycerol kinase (GYK) or glycerol-3-phosphate dehydrogenase 1 (GPD1), is also required for TG synthesis, the roles of GYK and GPD1 have been the subject of some debate. In this study, we examine (1) the expression of genes involved in Gro3P production in the liver of C57BL/6J mice in the context of hepatic TG accumulation after acute ethanol intake, and (2) the role of GPD1 in the progression of ethanol-induced fatty liver using GPD1 null mice. As a result, in C57BL/6J mice, ethanol-induced hepatic TG accumulation began within 2 h and was 1.7-fold greater than that observed in the control group after 6 h. The up-regulation of GPD1 began 2 h after administering ethanol, and significantly increased 6 h later with the concomitant escalation in the glycolytic gene expression. The incorporation of 14C-labelled glucose into TG glycerol moieties increased during the same period. On the other hand, in GPD1 null mice carrying normal GYK activity, no significant increase in hepatic TG level was observed after acute ethanol intake. In conclusion, GPD1 and glycolytic gene expression is up-regulated by ethanol, and GPD1-mediated incorporation of glucose into TG glycerol moieties together with increased lipogenesis, is suggested to play an important role in ethanol-induced hepatic TG accumulation.  相似文献   

16.
In this study, ethanol production from pure and crude glycerol using Enterobacter aerogenes ATCC 29007 was evaluated under anaerobic culture conditions. Inhibitory effects of substrate concentrations, pH, and salt concentrations were investigated based on crude glycerol components. Ethanol production was performed with pure glycerol concentrations ranging from 5 to 30 g/L to evaluate the effects of substrate concentration and osmotic pressure. The consumed glycerol was 5-14.33 g/L, and the yield of ethanol was higher than 0.75 mol ethanol/mol glycerol after 24 h of cultivation. To evaluate the inhibitory effects of salts (NaCl and KCl), experiments were performed with 0-20 g/L of each salt. Inhibitory effects of salts were strongest at high salt concentrations. The inhibitory effect of pH was performed in the pH range 4-10, and cell growth and ethanol production were highest at pH 5-6. Also, ethanol production was slightly inhibited at low concentration of crude glycerol comparison with pure glycerol. However, significant inhibitory effects were not observed at 1.5 and 2% crude glycerol which showed higher ethanol production compared to pure glycerol.  相似文献   

17.
P Jiang  J E Cronan  Jr 《Journal of bacteriology》1994,176(10):2814-2821
The effects of inhibition of Escherichia coli phospholipid synthesis on the accumulation of intermediates of the fatty acid synthetic pathway have been previously investigated with conflicting results. We report construction of an E. coli strain that allows valid [14C]acetate labeling of fatty acids under these conditions. In this strain, acetate is a specific precursor of fatty acid synthesis and the intracellular acetate pools are not altered by blockage of phospholipid synthesis. By use of this strain, we show that significant pools of fatty acid synthetic intermediates and free fatty acids accumulate during inhibition of phospholipid synthesis and that the rate of synthesis of these intermediates is 10 to 20% of the rate at which fatty acids are synthesized during normal growth. Free fatty acids of abnormal chain length (e.g., cis-13-eicosenoic acid) were found to accumulate in glycerol-starved cultures. Analysis of extracts of [35S]methionine-labeled cells showed that glycerol starvation resulted in the accumulation of several long-chain acyl-acyl carrier protein (ACP) species, with the major species being ACP acylated with cis-13-eicosenoic acid. Upon the restoration of phospholipid biosynthesis, the abnormally long-chain acyl-ACPs decreased, consistent with transfer of the acyl groups to phospholipid. The introduction of multicopy plasmids that greatly overproduced either E. coli thioesterase I or E. coli thioesterase II fully relieved the inhibition of fatty acid synthesis seen upon glycerol starvation, whereas overexpression of ACP had no effect. Thioesterase I overproduction also resulted in disappearance of the long-chain acyl-ACP species. The release of inhibition by thiosterase overproduction, together with the correlation between the inhibition of fatty acid synthesis and the presence of abnormally long-chain acyl-ACPs, suggests with that these acyl-ACP species may act as feedback inhibitors of a key fatty acid synthetic enzyme(s).  相似文献   

18.
In recent years, bio‐based production of free fatty acids from renewable resources has attracted attention for their potential as precursors for the production of biofuels and biochemicals. In this study, the oleaginous yeast Yarrowia lipolytica was engineered to produce free fatty acids by eliminating glycerol metabolism. Free fatty acid production was monitored under lipogenic conditions with glycerol as a limiting factor. Firstly, the strain W29 (Δgpd1), which is deficient in glycerol synthesis, was obtained. However, W29 (Δgpd1) showed decreased biomass accumulation and glucose consumption in lipogenic medium containing a limiting supply of glycerol. Analysis of substrate utilization from a mixture of glucose and glycerol by the parental strain W29 revealed that glycerol was metabolized first and glucose utilization was suppressed. Thus, the Δgpd1Δgut2 double mutant, which is deficient also in glycerol catabolism, was constructed. In this genetic background, growth was repressed by glycerol. Oleate toxicity was observed in the Δgpd1Δgut2Δpex10 triple mutant strain which is deficient additionally in peroxisome biogenesis. Consequently, two consecutive rounds of selection of spontaneous mutants were performed. A mutant released from growth repression by glycerol was able to produce 136.8 mg L?1 of free fatty acids in a test tube, whereas the wild type accumulated only 30.2 mg L?1. Next, an isolated oleate‐resistant strain produced 382.8 mg L?1 of free fatty acids. Finely, acyl‐CoA carboxylase gene (ACC1) over‐expression resulted to production of 1436.7 mg L?1 of free fatty acids. The addition of dodecane promoted free fatty acid secretion and enhanced the level of free fatty acids up to 2033.8 mg L?1 during test tube cultivation.
  相似文献   

19.
The systemic flux of glycerol and palmitate [a representative nonesterified free fatty acid (NEFA)] was assessed in three different phases of the menstrual cycle at rest and during moderate-intensity exercise. It was hypothesized that circulating glycerol and NEFA turnover would be greatest in the midfollicular (MF) phase of the menstrual cycle, when estrogen is elevated but progesterone low, followed by the midluteal phase (ML; high estrogen and progesterone), and lowest in the early follicular (EF) phase of the menstrual cycle (low estrogen and progesterone). Subjects included moderately active, eumenorrheic, healthy women. Testing occurred after 3 days of diet control and after an overnight fast (12-13 h). Resting and exercise (50% maximal oxygen uptake, 90 min) measurements of tracer-determined glycerol and palmitate kinetics were made. There was a significant increase in both glycerol and palmitate turnover from rest to exercise in all phases of the menstrual cycle (P<0.0001). No significant differences, however, were observed between cycle phases in the systemic flux of glycerol or palmitate, at rest or during exercise. Maximal peripheral lipolysis during exercise, as represented by glycerol rate of appearance at 90 min, equaled 8.45+/-0.96, 8.35+/-1.12, and 7.71+/-0.96 micromol.kg-1.min-1 in the EF, MF, and ML phases, respectively. Circulating free fatty acid utilization also peaked at 90 min of exercise, as indicated by the palmitate rate of disappearance (3.31+/-0.35, 3.17+/-0.39, and 3.47+/-0.26 micromol.kg-1.min-1) in the EF, MF, and ML phases, respectively. In conclusion, systemic rates of glycerol and NEFA turnover (as represented by palmitate flux) were not significantly affected by the cyclic fluctuations in estrogen and progesterone that occur throughout the normal menstrual cycle, either at rest or during 90 min of moderate exercise.  相似文献   

20.
The interactions between acetate or ethanol metabolism, lipogenesis, and ketone body utilization have been studied in isolated livers from fed rats perfused with 15 mM glucose and 10 mM acetate or ethanol. The contribution of acetate to ketogenesis is constant; on the other hand, the contribution of ethanol to ketogenesis increases with time, presumably because of the accumulation of acetate in the perfusate. Ketogenesis is decreased in the presence of ethanol (but not acetate), while ketone body utilization is not affected by ethanol or acetate. Acetate contributes one third and ethanol contributes one half of the carbon incorporated into fatty acids and 3-beta-hydroxysterols. Only a small fraction (less than 5%) of the incorporation of acetate or ethanol into fatty acids and sterols occurs via transient incorporation into ketone bodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号