首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The developing avian ciliary ganglion has been a particularly amenable system for the identification, isolation, and characterization of putative target-derived molecules that mediate retrograde interaction. To date a number of biochemically distinct activities that regulate neuronal survival, transmitter phenotype, and chemosensitivity of ciliary ganglion neruons have been identified. Of these, only two survival-promoting molecules have been purified to homogeneity: ciliary neurotrophic factor and a related molecule, growth-promoting activity. A somatostatin-inducing activity found in cultured choroid cells is very likely to be chick activin A. Other molecules that regulate acetylcholine and acetylcholine receptor expression comigrate on a gel filtration column at a molecular weight of 50–60 kD, but they have yet to be isolated. Once molecules that mimic retrorgrade influences are identified, a number of criteria must be met before their physiological significance can be established. These criteria are (1) availability of the molecule from the target at the appropriate time in development: (2) ability of the neurons to respond to the molecule at the appropriate time in development: (3) demonstration that blocking the activity or availability of the molecule is able to block the target-derived developmental change expressed in the neurons. Of the molecules that are thought to retrogradely influence ciliary neuron development, only growth-promoting activity is known to meet criteria 1 and 2, and experiments of growth-promoting activity in vivo will exacerbate normal cell death. 1994 John Wiley & Sons, Inc.  相似文献   

2.
Purification of the Chick Eye Ciliary Neuronotrophic Factor   总被引:26,自引:11,他引:26  
Dissociated 8-day chick embryo ciliary ganglionic neurons will not survive for even 24 h in culture without the addition of specific supplements. One such supplement is a protein termed the ciliary neuronotrophic factor (CNTF) which is present at very high concentrations within intraocular tissues that contain the same muscle cells innervated by ciliary ganglionic neurons in vivo. We describe here the purification of chick eye CNTF by a 2 1/2-day procedure involving the processing of intraocular tissue extract sequentially through DE52 ion-exchange chromatography, membrane ultrafiltration-concentration, sucrose density gradient ultracentrifugation, and preparative sodium dodecyl sulfate-polyacrylamide gradient electrophoresis. An aqueous extract of the tissue from 300 eyes will yield about 10-20 micrograms of biologically active, electrophoretically pure CNTF with a specific activity of 7.5 X 10(6) trophic units/mg protein. Purified CNTF has an Mr of 20,400 daltons and an isoelectric point of about 5, as determined by analytical gel electrophoresis. In addition to supporting the survival of ciliary ganglion neurons, purified CNTF also supports the 24-h survival of cultured neurons from certain chick and rodent sensory and sympathetic ganglia. CNTF differs from mouse submaxillary nerve growth factor (NGF) in molecular weight, isoelectric point, inability to be inactivated by antibodies to NGF, ability to support the in vitro survival of the ciliary ganglion neurons, and inability to support that of 8-day chick embryo dorsal root ganglionic neurons. Thus, CNTF represents the first purified neuronotrophic factor which addresses parasympathetic cholinergic neurons.  相似文献   

3.
The developmental expression of macroscopic Ca(2+)-activated K(+) currents in chick ciliary ganglion neurons is dependent on an avian ortholog of TGFbeta1, known as TGFbeta4, secreted from target tissues in the eye. Here we report that a different isoform, TGFbeta3, is also expressed in a target tissue of ciliary ganglion neurons. Application of TGFbeta3 inhibits the functional expression of whole-cell Ca(2+)-activated K(+) currents evoked by 12 hour treatment with either TGFbeta1 or beta-neuregulin-1 in ciliary ganglion neurons developing in vitro. TGFbeta3 had no effect on voltage-activated Ca(2+) currents. A neutralizing antiserum specific for TGFbeta3 potentiates stimulation of Ca(2+)-activated K(+) currents evoked by a target tissue (iris) extract in cultured ciliary ganglion neurons, indicating that TGFbeta3 is an inhibitory component of these extracts. Intraocular injection of TGFbeta3 causes a modest but significant inhibition of the expression of Ca(2+)-activated K(+) currents in ciliary ganglion neurons developing in vivo. Further, intraocular injection of a TGFbeta3-neutralizing antiserum stimulates expression of Ca(2+)-activated K(+) currents in ciliary ganglion neurons developing in vivo, indicating that endogenous TGFbeta3 regulates the functional expression of this current. The normal developmental expression of functional Ca(2+)-activated K(+) currents in ciliary ganglion neurons developing in vivo is therefore regulated by two different target-derived isoforms of TGFbeta, which produce opposing effects on the electrophysiological differentiation of these neurons.  相似文献   

4.
Between stages 34 and 40 in the chick embryo, the ciliary ganglion (CG) undergoes a 50% loss of neurons. Such neuronal death is a common feature in neural development and it has been proposed that neurons are dependent for survival on trophic support from their target tissues. Using an in vitro bioassay it was previously shown in this laboratory that trophic activity for CG neurons is highly concentrated in eye structures containing CG target tissues. In the present study we have found that trophic activity in the eye increases markedly between stages 37 and 39, the time when neuronal death in the ciliary ganglion is ending. Thus, a developmental increase in trophic activity within the eye may be involved in determining neuronal survival in the CG. Furthermore, this study provides the first indication that the trophic content of target tissue is itself developmentally regulated.  相似文献   

5.
CNTF (ciliary neurotrophic factor), purified from rabbit sciatic nerves by a relatively simple procedure, is bioactive in tissue culture at low picomolar concentration and appears as a doublet on polyacrylamide gel electrophoresis (PAGE). In these nerves, CNTF accounts for more than one-half of the survival-promoting activity on ciliary neurons. The concentration of CNTF in rabbit sciatic nerves is estimated to be 5 nmol/kg, more than 1000 times higher than would seem to be required to support neurons if the neurotrophic factor were homogeneously distributed. With recombinant DNA technology, rat CNTF has been synthesized in Escherichia coli, purified without denaturating agents, and found to be bioactive at a slightly lower concentration than CNTF extracted from rabbit sciatic nerves. After radioiodination, CNTF retains biological activity but is not specifically internalized and retrogradely transported in motor and sensory axons. In peripheral nerves, ciliary neurotrophic factor differs biologically from nerve growth factor (NGF) by its much higher tissue concentration and apparent lack of internalization by peripheral nerve axons.  相似文献   

6.
It has been demonstrated that cultured cholinergic retinal neurons from 8-day-old chicken embryos respond to a polypeptide factor present in retinal cell-conditioned medium (RCM) and in retinal extracts. Compared with control cultures, the activity of acetyl-CoA:choline O-acetyltransferase (EC 2.3.1.6; ChAT) is enhanced more than twofold in neuronal retinal cultures grown for 7 days in the presence of RCM. The present study demonstrates that both ciliary neuronotrophic factor (CNTF), which is characterized by its trophic activity on parasympathetic ciliary neurons, and RCM exhibit identical stimulatory effects on ChAT activity in retinal monolayer cultures. Similarly, RCM supports the in vitro survival of ciliary neurons to the same extent as CNTF. The active species in RCM has a molecular weight (20,900 +/- 1,000) identical to that of CNTF, as determined by preparative sodium dodecyl sulfate gel electrophoresis. The results indicate that cholinergic retinal neurons represent a central neuronal target for CNTF or a closely related protein.  相似文献   

7.
CNTF (ciliary neurotrophic factor), purified from rabbit sciatic nerves by a relatively simple procedure, is bioactive in tissue culture at low picomolar concentration and appears as a doublet on polyacrylamide gel electrophoresis (PAGE). In these nerves, CNTF accounts for more than one-half of the survival-promoting activity on ciliary neurons. The concentration of CNTF in rabbit sciatic nerves is estimated to be 5 nmol/kg, more than 1000 times higher than would seem to be required to support neurons if the neurotrophic factor were homogeneously distributed. With recombinant DNA technology, rat CNTF has been synthesized in Escherichia coli, purified without denaturating agents, and found to be bioactive at a slightly lower concentration than CNTF extracted from rabbit sciatic nerves. After radioiodination, CNTF retains biological activity but is not specifically internalized and retrogradely transported in motor and sensory axons. In peripheral nerves, ciliary neurotrophic factor differs biologically from nerve growth factor (NGF) by its much higher tissue concentration and apparent lack of internalization by peripheral nerve axons. © 1992 John Wiley & Sons, Inc.  相似文献   

8.
The regulation of nicotinic acetylcholine receptors (AChRs) in chick ciliary ganglia was examined by using a radiolabeled anti-AChR mAb to quantitate the amount of receptor in ganglion detergent extracts after preganglionic denervation or postganglionic axotomy. Surgical transection of the preganglionic input to the ciliary ganglion in newly hatched chicks caused a threefold reduction in the total number of AChRs within 10 d compared with that present in unoperated contralateral control ganglia. Surgical transection of both the choroid and ciliary nerves emerging from the ciliary ganglion in newly hatched chicks to establish postganglionic axotomy led to a nearly 10-fold reduction in AChRs within 5 d compared with unoperated contralateral ganglia. The declines were specific since they could not be accounted for by changes in ganglionic protein or by decreases in neuronal survival or size. Light microscopy revealed no gross morphological differences between neurons in operated and control ganglia. A second membrane component of cholinergic relevance on chick ciliary ganglion neurons is the alpha-bungarotoxin (alpha-Bgt)-binding component. The alpha-Bgt-binding component also declined in number after either postganglionic axotomy or preganglionic denervation, but appeared to do so with a more rapid time course than did ganglionic AChRs. The results imply that cell-cell interactions in vivo specifically regulate both the number of AChRs and the number of alpha-Bgt-binding components in the ganglion. Regulation of these neuronal cholinergic membrane components clearly differs from that previously described for muscle AChRs.  相似文献   

9.
There are species differences with regard to the composition of the ciliary ganglion. For instance, in rabbits and cats it consists solely of oculomotor nerves and has no sympathetic or sensory innervation. The purpose of this study is to clarify the participation of these nerves in the ciliary ganglion of the dog by histochemical methods. Cholinesterase (ChE) activity was studied by Karnovsky's method and catecholamine fluorescence by the glyoxylic acid method. Furthermore, the origins of the respective nerves were investigated by a serial preparation method, involving unilateral cervical sympathectomy and tracer dye injection in the ganglion. The results obtained were: (1) Ciliary ganglion cells showed intense ChE activity. Oculomotor nerve fibers leading to the ganglion showed moderate ChE activity, while the reaction in the short ciliary nerves was strong. (2) Aminergic nerves were present in the intercellular space of the ciliary ganglion, and bilateral or central innervation was suggested by the results of cervical sympathectomy. (3) Connection between the ciliary and trigeminal ganglia was proved by the dye tracer study. The results show that the ciliary ganglion in dogs is composed of oculomotor, trigeminal and sympathetic nerves.  相似文献   

10.
Summary There are species differences with regard to the composition of the ciliary ganglion. For instance, in rabbits and cats it consists solely of oculomotor nerves and has no sympathetic or sensory innervation. The purpose of this study is to clarify the participation of these nerves in the ciliary ganglion of the dog by histochemical methods. Cholinesterase (ChE) activity was studied by Karnovsky's method and catecholamine fluorescence by the glyoxylic acid method. Furthermore, the origins of the respective nerves were investigated by a serial preparation method, involving unilateral cervical sympathectomy and tracer dye injection in the ganglion. The results obtained were: (1) Ciliary ganglion cells showed intense ChE activity. Oculomotor nerve fibers leading to the ganglion showed moderate ChE activity, while the reaction in the short ciliary nerves was strong. (2) Aminergic nerves were present in the intercellular space of the ciliary ganglion, and bilateral or central innervation was suggested by the results of cervical sympathectomy. (3) Connection between the ciliary and trigeminal ganglia was proved by the dye tracer study. The results show that the ciliary ganglion in dogs is composed of oculomotor, trigeminal and sympathetic nerves.  相似文献   

11.
Abstract: The structure-function relationships of human ciliary neurotrophic factor (CNTF) were analyzed by mutagenic means. Amino acid substitutions at helix D caused marked changes in the biological activity of CNTF, suggesting that the residues at helix D of CNTF participate in receptor recognition. In particular, both the cell survival-promoting activity and receptor binding ability of V170 mutant CNTF proteins correlated well with the hydrophobicity of amino acids at position 170. The reduction of hydrophobicity at position 170 resulted in a loss of biological activity, indicating that the hydrophobicity of V170 is essential for the receptor binding and cell survival-promoting activity. Substitutions of R171 or D175 evoked very little folding ability and negated the biological activity of CNTF. As R171 and D175 interact electrostatically with each other and with E75 and R72, respectively, these interactions would be indispensable for stabilizing the whole CNTF protein and for maintaining the structure of the receptor binding epitope.  相似文献   

12.
Parasympathetic neurons from 8-day-old chick embryo ciliary ganglia were grown in culture for 24 hr in the presence of extracts of chick heart from animals aged 7 days in ovo to 8 days posthatching. The biological activity of these cardiac extracts with respect to both neuronal survival and nerve fiber production increased with age of the donor animal to reach a plateau around hatching. Following polyacrylamide gel isoelectric focusing of posthatching chick heart and eye, a peak in activity that supports parasympathetic neuronal survival was found associated with eluates of gel slices of pH between 4.5 and 5.5 for both tissues. Our results suggest that the factor responsible for parasympathetic neuronal survival is common to at least two parasympathetic target organs.  相似文献   

13.
Abstract: Previous studies have indicated that certain members of the cyclin-dependent kinase/mitogen-activated protein kinase superfamily are involved in apoptosis of neuronal cells. Here, we have examined programmed cell death induced by withdrawal of neurotrophic support from CNS (rat retinal) and PNS (chick sympathetic, sensory, and ciliary) neurons. All four neuron types were equally rescued by the purine analogues olomoucine and roscovitine. Olomoucine inhibits multiple cyclin-dependent and mitogen-activated protein kinases with similar potency. Roscovitine is a more selective cyclin-dependent kinase inhibitor; but, so is butyrolactone I, which did not prevent retinal ganglion cell death. The specific p38MAPK inhibitor SB-203580 did not prevent apoptosis in retinal ganglion cells. Death of these cells in the absence of neurotrophic factors was accompanied by morphological changes indicative of apoptosis, including nuclear condensation and fragmentation. Treatment with olomoucine or roscovitine not only prevented these apoptotic changes in retinal ganglion cells but also blocked neurite outgrowth. The survival-promoting activity of olomoucine correlated with its in vitro IC50 for c-Jun N-terminal kinase-1 and its potency to repress c- jun induction in live PC12 cells. Roscovitine was more potent in rescuing neurons than in inhibiting Jun kinase. Thus, the antiapoptotic action of roscovitine might be due to inhibition of additional kinases.  相似文献   

14.
1. An enzyme similar to mammalian acetylcholinesterase is found in high activity in the nervous tissue of Palaemonetes varians, i.e. eyes plus stalks, brain, suboesophageal ganglion and ventral cord. Acetylcholinesterase is also found associated with the abdominal muscles. Multiple enzyme forms are found in extracts of nervous tissues and muscles by electrophoresis and isoelectric focusing. 2. Cholinesterase is present in high activity in the stomatogastric system of P. varians. Three electrophoretically separable forms are found, having isoelectric points at pH4.2, 4.5 and 5.4. 3. Approx. 50% of the total acetylcholinesterase activity, approx. 80% of the choline acetyltransferase activity and 100% of the acetylcholine equivalents are found associated with the nervous tissue. Among the tissues examined, eyes plus stalks were the richest source of both choline acetyltransferase and acetylcholine equivalents. Suboesophageal ganglion and brain also contained large amounts of these components. 4. The distribution of these components could support the function of acetylcholine as a central and/or sensory transmitter in P. varians.  相似文献   

15.
Little is known about the signal transduction mechanisms involved in the response to neurotrophins and other neurotrophic factors in neurons, beyond the activation of the tyrosine kinase activity of the neurotrophin receptors belonging to the trk family. We have previously shown that the introduction of the oncogene product ras p21 into the cytoplasm of chick embryonic neurons can reproduce the survival and neurite-outgrowth promoting effects of the neurotrophins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), and of ciliary neurotrophic factor (CNTF). To assess the potential signal- transducing role of endogenous ras p21, we introduced function-blocking anti-ras antibodies or their Fab fragments into cultured chick embryonic neurons. The BDNF-induced neurite outgrowth in E12 nodose ganglion neurons was reduced to below control levels, and the NGF- induced survival of E9 dorsal root ganglion (DRG) neurons was inhibited in a specific and dose-dependent fashion. Both effects could be reversed by saturating the epitope-binding sites with biologically inactive ras p21 before microinjection. Surprisingly, ras p21 did not promote the survival of NGF-dependent E12 chick sympathetic neurons, and the NGF-induced survival in these cells was not inhibited by the Fab-fragments. The survival effect of CNTF on ras-responsive ciliary neurons could not be blocked by anti-ras Fab fragments. These results indicate an involvement of ras p21 in the signal transduction of neurotrophic factors in sensory, but not sympathetic or ciliary neurons, pointing to the existence of different signaling pathways not only in CNTF-responsive, but also in neurotrophin-responsive neuronal populations.  相似文献   

16.
CNTF (ciliary neurotrophic factor) has been suggested to be an important survival factor for oligodendrocytes; however, this effect is inconsistently obtained and myelination appears normal in CNTF null animals. On the other hand, CNTF stimulates astrocytes to produce growth and trophic factors. Therefore, we tested the hypothesis that CNTF acts indirectly through astrocytes to promote oligodendrocyte survival. We show that CNTF-stimulated astrocytes release a trophic factor(s) that leads to more than double the number of oligodendrocyte progenitor cells (OPCs) by 48 h. The trophic activity fractionates at greater than 30 kD. By contrast, OPCs grown in CNTF supplemented chemically defined medium fared no better than cells grown without CNTF. Untreated astrocytes, and CNTF- and IL-1β -stimulated astrocytes all promoted the proliferation of OPCs to a similar extent, but only the CNTF-stimulated astrocyte conditioned media (CM) resulted in increased OPCs numbers. Cumulatively, these results confirm previous data indicating that astrocytes release potent mitogens for oligodendroglia, and demonstrate that CNTF stimulates astrocytes to release an OPC survival-promoting activity.  相似文献   

17.
 本文用改进的方法从一些动物组织中抽提了DNA拓扑异构酶Ⅱ,并用电镜、电泳方法对该酶解结活性进行了鉴定。酶活力测定结果表明该酶在不同组织中分布不尽相同,增殖较旺盛的组织具有相对较高的酶活性。pH值、温度、一些激动剂、抑制剂及组织的状态均对酶活力有影响。  相似文献   

18.
A series of in vivo studies have been carried out using the chick embryo to address several critical questions concerning the biological, and to a lesser extent, the biochemical characteristics of a putative avian muscle-derived trophic agent that promotes motoneuron survival in vivo. A partially purified fraction of muscle extract was shown to be heat and trypsin sensitive and rescued motoneurons from naturally occurring cell death in a dose-dependent fashion. Muscle extract had no effect on mitotic activity in the spinal cord and did not alter cell number when administered either before or after the normal cell death period. The survival promoting activity in the muscle extract appears to be developmentally regulated. Treatment with muscle extract during the cell death period did not permanently rescue motoneurons. The motoneuron survival-promoting activity found in skeletal muscle was not present in extracts from a variety of other tissues, including liver, kidney, lung, heart, and smooth muscle. Survival activity was also found in extracts from fetal mouse, rat, and human skeletal muscle. Conditioned medium derived from avian myotube cultures also prevented motoneuron death when administered in vivo to chick embryos. Treatment of embryos in ovo with muscle extract had no effect on several properties of developing muscles. With the exception of cranial motoneurons, treatment with muscle extract did not promote the survival of several other populations of neurons in the central and peripheral nervous system that also exhibit naturally occurring cell death. Initial biochemical characterization suggests that the activity in skeletal muscle is an acidic protein between 10 and 30 kD. Examination of a number of previously characterized growth and trophic agents in our in vivo assay have identified several molecules that promote motoneuron survival to one degree or another. These include S100β, brain-derived neurotrophic factor (BDNF), neurotrophin 4/5 (NT-4/5), ciliary neurotrophic factor (CNTF), transforming growth factor β (TGFβ), platelet-derived growth factor-AB (PDGF-AB), leukemia inhibitory factor (CDF/LIF), and insulin-like growth factors I and II (IGF). By contrast, the following agents were ineffective: nerve growth factor (NGF), neurotrophin-3 (NT3), epidermal growth factor (EGF), acidic and basic fibroblast growth factors (aFGF, bFGF), and the heparin-binding growth-associated molecule (HB-GAM). Of those agents that were effective, CDF/LIF, IGF-1 and -2, BDNF, and TGF are reported to be expressed in developing or adult muscle. Studies are underway to determine whether the survival activity found in avian muscle extract can be accounted for by one or more of these growth factors. Of all the tissue extracts and purified proteins tested here, only the neurotrophins—NGF, NT-3, and BDNF (but not NT-4/5)—rescured sensory neurons from naturally occurring cell death. © 1993 John Wiley & Sons, Inc.  相似文献   

19.
In vivo synaptogenesis is described in a simple vertebrate system, the chick ciliary ganglion, a parasympathetic autonomic ganglion. An attempt is made to integrate anatomical, physiological and biochemical observations during synapse formation in the ganglion and in the peripheral target structures; the iris, ciliary muscle, and smooth muscle of the choroid coat. The relationship between synaptogenesis and neuron survival is explored, and it is shown that a critically timed interaction between the neuron and target organ is necessary for full neuronal maturation and survival. The existence of an active competition between neurons for survival is documented, and the possible relationship between neuronal cell death and specificity of connections is discussed.  相似文献   

20.
This investigation examines tubulin labeling associated with the apical ganglion in a variety of planktotrophic and lecithotrophic opisthobranch larvae. Emphasis is on the ampullary neurons, in which ciliary bundles within the ampulla are strongly labeled. The larvae of all but one species have five ampullary neurons and their associated ciliary bundles. The anaspid Phyllaplysia taylori, a species with direct development and an encapsulated veliger stage, has only four ampullary neurons. The cilia-containing ampulla extends to the pretrochal surface via a long, narrow canal that opens to the external environment through a very small pore (0.1 microm diameter). Cilia within the canal were never observed to project beyond the opening of the apical pore. The ampullary canals extend toward and are grouped with the ciliary tuft cells and remain in this location as planktotrophic larvae feed and grow. If, as has been reported, the ciliary tuft is motile, the pores may be continually bathed in fresh seawater. Such an arrangement would increase sensitivity to environmental chemical stimuli if the suggested chemosensory function of these neurons is correct. In general, ciliary bundles of newly hatched veligers are smaller in planktotrophic larvae than in lecithotrophic larvae. In planktotrophic larvae of Melibe leonina, the ciliary bundles increase in length and width as the veligers feed and grow. This may be related to an increase in sensitivity for whatever sensory function these neurons fulfill. An unexpected tubulin-labeled structure, tentatively called the apical nerve, was also found to be associated with the apical ganglion. This putative nerve extends from the region of the visceral organs to a position either within or adjacent to the apical ganglion. One function of the apical nerve might be to convey the stimulus resulting from metamorphic induction to the visceral organs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号