共查询到20条相似文献,搜索用时 15 毫秒
1.
The cotyledons of castor bean (Ricinus communis L.) act as absorption organs for amino acids, which are supplied to the medium. The analysis of the sieve-tube sap, which exudes from the cut hypocotyl, demonstrated the ability of the cotyledons to load particular amino acids into the phloem and to reject the loading of others. The sieve-tube sap of cotyledons, which were embedded in the endosperm, contained 150 mM amino acids, with 50 mM glutamine as the major amino acid, and 10–15 mM each of valine, isoleucine, lysine and arginine. Removal of the endosperm led to a drastic decline in the amino-acid content of sieve-tube sap down to 16 mM. Addition of single amino acid species to the medium increased the amino acid concentration in the sieve-tube sap in specific manner: glutamine caused the largest increase (up to 140 mM in exudate), glutamate and alanine smaller increases (up to 60 mM), and arginine the smallest. In addition, the amino acid composition of the sieve-tube sap changed, for instance, glutamine or alanine readily appeared in the sieve-tube sap upon incubation in glutamine or alanine, respectively, whereas glutamate was hardly discernible even in the case of incubation with glutamate; arginine was loaded into the sieve tubes only reluctantly. In general, glutamine and alanine accumulated four- to tenfold in the sieve tubes. The uptake of amino acids and of sucrose into the sieve tubes was interdependent: the loading of sucrose strongly reduced the amino acid concentration in the sieve-tube exudate and loading of amino acids decreased the sucrose concentration. Comparison of the concentrations of various amino acids on their way from the endosperm via the cotyledon-endosperm interface, through the cotyledons and into the sieve tubes showed that glutamine, valine, isoleucine and lysine are accumulated on this pathway, whereas glutamate and arginine are more concentrated in the cotyledons than in the sieve tubes. Obviously the phloem-loading system has a transport specificity different from that of the amino acid uptake system of the cotyledon in general and it strongly discriminates between amino acids within the cotyledons. 相似文献
2.
The sieve-tube sap of Ricinus communis L. seedlings has been analysed to determine whether or not hexoses can be taken up by the phloem. Under natural conditions, i.e. with the endosperm attached to the cotyledons, glucose and fructose occurred only in trace amounts in the sieve-tube sap. Incubation of the cotyledons with hexoses in the concentration range 25–200 mM caused a rapid and substantial uptake of hexoses into the phleom, where they appeared eventually in the sieve-tube sap at the same concentration as in the incubation medium. Phloem loading of glucose, 3-O-methyl-glucose and sorbitol occurred easily, whereas fructose was less well loaded. glucose and to a larger extent fructose were also transformed to sucrose, which was loaded into the phloem. The loading of hexoses into the sieve tubes as observed in the experimental exudation system also occurred in the intact seedling, but transloction in the latter soon came to a standstill, probably because of lack of consumption by the sink tissues. These results indicate that the virtual absence of hexoses in the sievetube sap under in-vivo conditions is not because of the inability of the phloem-loading system to transport the monosaccharides but because of the absence of sufficiently high concentrations in the apoplast. 相似文献
3.
Peter Geigenberger Silke Langenberger Ingo Wilke Dieter Heineke Hans W. Heldt Mark Stitt 《Planta》1993,190(4):446-453
Metabolites and enzyme activities were measured in the phloem sap exuding from a cut hypocotyl of germinating castor-bean (Ricinus communis L.) seedlings. The sap contained considerable quantities of adenine nucleotides, uridine nucleotides, uridine diphosphoglucose (UDPGlc), all the major phosphorylated metabolites required for glycolysis, fructose-2,6-bisphosphate and pyrophosphate. Supplying 200 mM glucose instead of sucrose to the cotyledons resulted in high concentrations of glucose in the sap, but did not modify the metabolite levels. In contrast, when 200 mM fructose was supplied we found only a low level of fructose but a raised sucrose concentration in the sap, which was accompanied by a three-to fourfold decrease of UDPGlc, and an increase of pyrophosphate, UDP and UTP. The measured levels of metabolites are used to estimate the molar mass action ratios and in-vivo free-energy change associated with the various reactions of sucrose breakdown and glycolysis in the phloem. It is concluded that the reactions catalysed by ATP-dependent phosphofructokinase and pyruvate kinase are removed from equilibrium in the phloem, whereas the reactions catalysed by sucrose synthase, UDPGlc-pyrophosphorylase, phosphoglucose mutase, phosphoglucose isomerase, aldolase, triose-phosphate isomerase, phosphoglycerate mutase and enolase are close to equilibrium within the conducting elements of the phloem. Since the exuded sap contained negligible or undetectable activities of the enzymes, it is concluded, that the responsible proteins are bound, or sequesterd behind plasmodesmata, possibly in the companion cells. It is argued that sucrose mobilisation via a reversible reaction catalysed by sucrose synthase is particularily well suited to allow the rate of sucrose breakdown in the phloem to respond to changes in the metabolic requirement for ATP, and for UDPGlc during callose production. It is also calculated that the transport of nucleotides in the phloem sap implies that there must be a very considerable uptake or de-novo biosynthesis of these cofactors in the phloem. 相似文献
4.
Sucrose is taken up and accumulated by cotyledons of Ricinus communis L. Autoradiographic studies reveal a predominant accumulation of sucrose in the phloem of the cotyledons. The export of sucrose from the cotyledons to hypocotyl and roots proceeds in the phloem by mass flow. These results, taken together with previous data, are experimental evidence for proton-sucrose symport as the mechanism of phloem loading. 相似文献
5.
During growth of Ricinus communis seedlings, magnesium ions are mobilized in the endosperm, taken up by and accumulated to very high levels (150 μmol·g FW?1) in the cotyledons, and translocated to hypocotyl and roots. The magnesium gain from days 6 to 7 in the cotyledons and the seedling axis necessitates a total up-take rate of 600 nmol·h?1-seedling?1 and the phloem translocation rate must amount to 200 nmol·h?1. seedling?1. The phloem loading of magnesium and the regulatory properties of this process were investigated, making specific use of the ability to collect pure phloem sap from the cut hypocotyl of 6-d-old Ricinus seedlings. The concentration of magnesium in sieve-tube sap (5 mM) was fairly constant under many incubation conditions, e.g. incubation in magnesium-free buffer, incubation with different cations (K+, Na+, NH 4 + ) or anions (Cl?, NO 4 - , SO 4 2- ), or incubation with sucrose and amino acids. Even addition of magnesium chloride to the cotyledons did not enhance phloem loading of magnesium ions. Therefore the high magnesium content of the cotyledons was sufficient for continuous phloem loading of magnesium, irrespective of external ionic conditions. Also, the flow rate of sieve-tube sap did not influence the magnesium concentration in the sap. Only the incubation with sulfate and phosphate ions increased the magnesium-ion concentration in the phloem. Magnesium sulfate offered to the cotyledons caused a threefold increase of magnesium ions in the sieve-tube sap, which was inhibited by Na+, NH 4 + and Ca2+ in rising order, but not by K+. Incubation with phosphate for a prolonged period (8 h) led to an increased mobilization of intra-cotyle-donary magnesium and an enhanced phloem loading of mobilized magnesium. It is concluded that phosphate availability is a decisive factor for mobilization and translocation of magnesium ions within the plant. 相似文献
6.
The phloem sap of Ricinus seedlings was analyzed for cytokinins and the concentration was compared with that in cotyledons and xylem sap. The dominant cytokinin in the phloem sap was isopentenyladenine (70 nM) when the endosperm was attached to the cotyledons; zeatin, dihydrozeatin and cytokinin-ribosides were present at relatively low concentrations (1–2 nM). Removal of the endosperm and incubation of the cotyledons in buffer led to a sharp decrease in the level of isopentenyladenine in the phloem sap, down to the value for zeatin, namely 1–2 nM. Similar low cytokinin concentrations were found in the xylem sap, too, whereas in the cotyledons the cytokinin content was at least 10-fold higher. Incubation of the cotyledons with various cytokinins (isopentenyladenine, zeatin and their ribosides) led to an increase of each of the applied cytokinins in the phloem sap, including also the metabolically closely related cytokinins. Zeatin was especially well loaded. It is concluded that the phloem translocates most free bases and ribosides of the various cytokinin species, if they are offered to the phloem. The data also show that the cytokinin levels in the phloem, which may be far higher than in the xylem, are subject to strong fluctuations depending on the physiological situation.This work was supported by the Deutsche Forschungsgemeinschaft (SFB 137). The experimental assistance by P. Geigenberger and the help in cytokinin analysis by Dr. A. Fußeder, Dr. B. Wagner, W. Peters (all Bayreuth) and by Prof. E. Weiler (Bochum) is gratefully acknowledged. Also the constructive discussions with Profs. E. Weiler (Bochum) and E. Beck (Bayreuth) are much appreciated. 相似文献
7.
Phloem-sap composition was studied in plants of Ricinus communis L. grown on a waterculture medium. The sap possessed a relatively high K+:Na+ ratio and low levels of Ca2+ and free H+. Sucrose and K+ (together with its associated anions) accounted for 75% of the phloem-sap solute potential (s). In plants kept in continuous darkness, a decrease in phloem-sap sucrose levels over 24h was accompanied by an increase in K+ levels. Measurements of phloem-sap s and xylem water potential () indicated that this resulted in a partial maintenance of phloem turgor pressure p. In darkness there was also a marked decrease in the malate content of the leaf tissue, and it is possible that organic carbon from this source was mobilized for export in the phloem. The results support the concept of the phloem sap as a symplastic phase. We interpret the increase in K+ levels in the phloem in darkness as an osmoregulatory response to conditions of restricted solute availability. This reponse can be explained on the basis of the sucrose-H+ co-transport mechanism of phloem loading.Abbreviations
water potential
- s
solute potential
- p
pressure potential 相似文献
8.
The unloading of sucrose in the apical part of the hypocotyl of Ricinus communis L. seedlings was measured by 13C-nuclear magnetic resonance (NMR) spectroscopy. The cotyledons of the seedling were immersed in 5 mM Mes buffer containing
100 mM 13C-labeled sucrose. At intervals of 70–90 min, 13C-NMR spectra with broadband decoupling and nuclear Overhauser enhancement were acquired in vivo. The spectra showed growing 13C-resonances of the labeled positions in the sucrose molecule reaching steady-state labeling within 7–8 h. The specific 13C labeling of sucrose in the G1-position changed from 0.38 in the supplied sucrose solution to 0.16 in the sucrose extracted from the hypocotyl piece at
the end of the experiment (13 h). Labeling of starch (and other insolubles) in the hypocotyl piece was ca. 0.10. It is proposed
that the decreased specific labeling of unloaded sucrose is mostly due to the separate local pools of sucrose in the cortex
and pith parenchyma, respectively, and less to continuous starch degradation and conversion to sucrose. The report gives an
example of the application of 13C-NMR spectroscopy in assimilate allocation studies.
Received: 10 October 1998 / Accepted: 31 December 1998 相似文献
9.
The osmotic characteristics of phloem-sap exudation were examined in soil-grown and watercultured plants of Ricinus communis L. Prolonged exudation occurred from bark incisions in water-cultured plants. Fresh incisions caused large alterations in solute flux, but phloem-sap solute potential s changed by less than ±8% over a period of 7 h. This was associated with a constancy in the levels of sucrose and K+, the principal solutes in the sap. Studies with foliar-applied tracers and leaf-excision experiments suggested that exudation was maintained by solute loading from mature leaves. A wide range of mass transfer values through the phloem was found, these being a function of exudation rate. We consider that the exudation process possesses essentially similar characteristics to phloem transport in the intact plant. The way in which bark incisions bring about large changes in solute flux is discussed in terms of the physical properties of the sieve-tube system.Abbreviations
water potential
- s
solute potential
- p
pressure potential 相似文献
10.
Moni Brauer Wen-Jun Zhong Till Jelitto Christian Schobert Dale Sanders Ewald Komor 《Planta》1998,206(1):103-107
Changes in free Ca2+ in sieve-tube sap have been proposed to be important in the regulation of phloem transport, and Ca2+-activated protein kinase activity has been described in phloem exudate (S.A. Avdiushko et al. 1997 J Plant Physiol 150: 552–559).
Using atomic absorption spectrometry, we have determined that the total Ca2+ concentration in sieve-tube sap from Ricinus seedlings containing the endosperm is about 100 μM (range 80–150 μM). We used
three independent methods to determine the free calcium ion concentration in the phloem sap ([Ca2+]p). The first method was to calculate [Ca2+]p from the total Ca2+ concentration, in combination with the binding constants and concentrations of the ionic solutes in phloem sap. The resultant
estimate of [Ca2+]p was 63 μM. The second method used the Ca-specific fluorescent dye 2-[2-(5-carboxy)oxazole]-5-hydroxy-6-aminobenzofuran-N,N,O-triacetic-acid
(FURAPTRA) on exuded sieve-tube sap. Although the sap interfered severely with the fluorescence properties of the dye, Ca2+ titrations enabled a value of [Ca2+]p = 20 μM to be deduced. The third method used Ca2+-selective microelectrodes on exuded sap samples, which gave an average value for [Ca2+]p = 13 μM. No significant change in this value was observed during the sap exudation period. The Ca2+ buffer capacity was determined and the result of about 0.6 mmol · l−1 · pCa−1 displayed excellent agreement with the measured values of free and total Ca2+ concentration in sieve-tube sap. Since the measured values for free Ca2+ are 20- to 100-fold higher than those usually reported for the cytosol of a range of plant cells in resting conditions, it
is concluded that either regulation of [Ca2+]p is of limited physiological importance, or that the Ca2+-dependent proteins respond only to relatively high [Ca2+]p. The implications for regulation of cytosolic free Ca2+ in symplastically connected companion cells is discussed.
Received: 15 February 1998 / Accepted: 14 March 1998 相似文献
11.
D. Vreugdenhil 《Planta》1985,163(2):238-240
The potassium contents of bark strips of cassava (Manihot esculenta Crantz) and of phloem exudate of castor bean (Ricinus communis L.) were analyzed at different regions of the stem. In cassava, a peak in potassium content was observed near the first mature leaf, leveling off both above and below this point. In castor bean, only a downward decreasing gradient was observed. In both plants, the direction of the potassium gradient coincided with the presumed direction of assimilate flow. 相似文献
12.
Ewald Komor 《Planta》1977,137(2):119-131
Cotyledons of Ricinus communis take up externally supplied sucrose at a rate of up to 150 mol/h/g fresh weight, which is very high when compared with other sugar transport systems of higher plants. The uptake of sucrose is catalysed with a K
m
of 25 mmol l–1; at high sucrose concentrations a linear (diffusion) component becomes obvious. Other mono-, di-, or trisaccharides do not compete for sucrose uptake. Sucrose is accumulated by the cotyledons up to 100-fold, whereby most of the transported, externally supplied sucrose mixes with sucrose present in the tissue. At low sucrose concentrations, however; a small unexchangeable internal pool of sucrose becomes evident. Poisons of energy metabolism such as FCCP inhibit uptake and accumulation of sucrose. The transport of sucrose induces an increase of respiration, from which an energy requirement of 1.4 ATP/sucrose taken up can be calculated. Sucrose is taken up together with protons at an apparent stoichiometry of 0.3 protons/sucrose. Other sugars do not cause proton uptake. The K
m
for sucrose induced proton uptake is 5 mmol l–1; the discrepancy to the K
m
for sucrose uptake as well as the low proton: sucrose stoichiometry might possibly be caused by a large contribution of diffusion barriers. The estimated proton-motive potential difference would by sufficient to explain an electrogenic sucrose accumulation. The rate of uptake of sucrose is subject to feedback inhibition by internal sucrose. It is also regulated during growth of the seedlings since it develops rapidly during the first days of germination and declines again after the 4th day of germination, though no substantial increase of passive permeability resistance was observed.Abbreviations DMO
dimethyloxazolidinedione
- FCCP
trifluoromethoxy (carbonyl-cyanide) phenylhydrazon
- fr. wt.
fresh weight 相似文献
13.
The influence of plant water relations on phloem loading was studied in Ricinus communis L. Phloem transport was maintained in response to bark incisions even at severe water deficits. Water stress was associated with a net increase in the solute content of the sieve tubes, which resulted in maintenance of a positive phloem turgor pressure p. There was a significant increase in solute flux through the phloem with decreasing xylem water potential (). In addition, sugar uptake by leaf discs was examined in media adjusted to different water potentials with either sorbitol (a relatively impermeant solute) or ethylene glycol (a relatively permeant solute). The limitations in this experimental system are discussed. The results nevertheless indicated that sucrose uptake can be stimulated by a reduction in cell p, but that it is little affected by cell or solute potential s. On the basis of these data we suggest that sucrose loading is turgor-pressure dependent. This may provide the mechanism by which transport responds to changes in sink demand in the whole plant.Abbreviations
water potential
- s
solute potential
- p
pressure potential 相似文献
14.
The loading of amino acids and nitrate into the xylem was investigated by collection and analysis of root-pressure exudate from the cut hypocotyl stumps of seedlings of Ricinus communis L. Glutamine was found to be the dominant amino acid in the exudate and also to be the amino acid which is transferred to the xylem most rapidly and accumulated to the greatest extent. The comparison between uptake and xylem loading showed significant differences in specificity between these two transport reactions, indicating a different set of transport systems. Nitrate is transferred to the xylem at a higher relative rate than any amino acid despite the great nitrate-storage capacity of the root system. Thus the supply of nitrate to Ricinus plants leads to enhanced nitrogen allocation to the shoots. 相似文献
15.
Mature leaves of Ricinus communis fed with 35SO
4
2-
in the light export labeled sulfate and reduced sulfur compounds by phloem transport. Only 1–2% of the absorbed radiosulfur is exported to the stem within 2–3 h, roughly 12% of 35S recovered was in reduced form. The composition of phloem translocate moving down the stem toward the root was determined from phloem exudate: 20–40% of the 35S moved in the form of organic sulfur compounds, however, the bulk of sulfur was transported as inorganic sulfate. The most important organic sulfur compound translocated was glutathione, carrying about 70% of the label present in the organic fraction. In addition, methionine and cysteine were involved in phloem sulfur transport and accounted for roughly 10%. Primarily, the reduced forms of both, glutathione and cysteine are prsent in the siever tubes.Abbreviations CySH
cysteine
- GSH
glutathione
- GSSG
glutathione disulfide
- NEM
N-ethylmaleimide
- CyS-SCy
cystine 相似文献
16.
Thomas Sakuth Christian Schobert Attila Pecsvaradi Arnulf Eichholz Ewald Komor Gabriele Orlich 《Planta》1993,191(2):207-213
Ricinus communis L. seedlings exuded pure phloem sap from the cut hypocotyl for several hours. Throughout the entire exudation period proteins were present in the phloem exudate at a constant concentration ranging from 0.11 to 0.41 mg·ml–1 depending on the culture conditions and the age of the seedlings. Manipulation of the nutrient supply at the cotyledons after removal of the endosperm did not change the protein concentration in the exudate. Comparison of sieve-tube exudate proteins (STEPs) with soluble proteins extracted from the hypocotyl and the cotyledons showed a unique abundance of small proteins in the exudate, with molecular weights ranging from 10 to 25 kDa. Bands at 18, 19 and 20 kDa were especially dominant. The proteins found transiently in the xylem exudate, which might represent proteins secreted at the wound surface, were different in pattern. Two-dimensional separation of STEPs revealed that more than 100 distinct polypeptides occurred in the sieve-tube exudate, most of them slightly acidic with isoelectric points ranging from 4 to 6 and a few basic ones around 8. [35S]Methionine fed to the cotyledons led to labelling of STEPs, demonstrating their rapid synthesis. It is concluded that there is a continuous synthesis and translocation of specific sieve-tube proteins, whose function is unknown.Abbreviations IEF
isoelectric focussing
- pI
isoelectric point
- STEP
sieve-tube exudate protein
- SDS-PAGE
sodium dodecyl sulfate-polyacrylamide gel electrophoresis
- TCA
trichloroacetic acid
We wish to thank Pia Großmann and Libuse Badewitz for technical help. 相似文献
17.
Jutta Verscht Bernhard Kalusche Jutta Köhler Walter Köckenberger Alexander Metzler Axel Haase Ewald Komor 《Planta》1998,205(1):132-139
The sucrose concentration was measured at 70-min intervals in the phloem of individual bundles of the hypocotyl of Ricinus seedlings by 1H nuclear magnetic resonance (NMR) spectroscopic imaging. The sucrose concentration stayed fairly constant in all bundles
for more than 7 h if the cotyledons were embedded in the endosperm or excised and incubated in 100 mM sucrose. If, however,
the sucrose solution was replaced by sucrose-free buffer solution, the sucrose levels in the phloem decreased with a kinetic
depending on the seedling: in some cases there was a smooth decline, in some a decline followed by a slight recovery and in
some cases a clear-cut oscillation. The sucrose concentration was often not identical in the phloem of the individual bundles.
The oscillations were larger in the phloem at the apex of the hypocotyl than in the phloem at the base of the hypocotyl. Cutting
the petiole of one cotyledon led to a decrease in sucrose not only in the four bundles directly connected to the severed petiole
but in all eight bundles of the hypocotyl. Cutting the petiole and dividing the vascular ring at the cotyledonary node and
at the root crown did not prevent the decline of sucrose in all eight bundles. Therefore, a functional equilibration of translocated
solutes between the eight bundles may occur within the 1-h measuring interval by radial diffusion through the parenchyma of
the hypocotyl.
Received 4 July 1997 / Accepted: 4 October 1997 相似文献
18.
Microautoradiographs showed that [14C]sucrose taken up in the xylem of small and intermediate (longitudinal) vascular bundles of Zea mays leaf strips was quickly accumulated by vascular parenchyma cells abutting the vessels. The first sieve tubes to exhibit 14C-labeling during the [14C]sucrose experiments were thick-walled sieve tubes contiguous to the more heavily labeled vascular parenchyma cells. (These two cell types typically have numerous plasmodesmatal connections.) With increasing [14C]sucrose feeding periods, greater proportions of thick- and thin-walled sieve tubes became labeled, but few of the labeled thin-walled sieve tubes were associated with labeled companion cells. (Only the thin-walled sieve tubes are associated with companion cells.) When portions of leaf strips were exposed to 14CO2 for 5 min, the vascular parenchyma cells-regardless of their location in relation to the vessels or sieve tubes-were the most consistently labeled cells of small and intermediate bundles, and label (14C-photosynthate) appeared in a greater proportion of thin-walled sieve tubes than thick-walled sieve tubes. After a 5-min chase with 12CO2, the thin-walled sieve tubes were more heavily labeled than any other cell type of the leaf. After a 10-min chase with 12CO2, the thin-walled sieve tubes were even more heavily labeled. The companion cells generally were less heavily labeled than their associated thin-walled sieve tubes. Although all of the thick-walled sieve tubes were labeled in portions of leaf strips fed 14CO2 for 5 min and given a 10-min 12CO2 chase, only five of 72 vascular bundles below the 14CO2-exposed portions contained labeled thick-walled sieve tubes. Moreover, the few labeled thick-walledsieve tubes of the transport region always abutted 14C-labeled vascular parenchyma cells. The results of this study indicate that (1) the vascular parenchyma cells are able to retrieve at least sucrose from the vessels and transfer it to the thick-walled sieve tubes, (2) the thick-walled sieve tubes are not involved in long-distance transport, and (3) the thin-walled sieve tubes are capable themselves of accumulating sucrose and photosynthates from the apoplast, without the companion cells serving as intermediary cells. 相似文献
19.
The anatomical and physiological isolation of the sieve element-companion cell complex (se-cc complex) was investigated in stems of Ricinus communis L. and Salix alba L. In Ricinus, the plasmodesmatal frequencies were in the proportions 8∶1∶2∶30, in the order given, at the interfaces between sieve tube-companion cell, sieve tube-phloem parenchyma cell, companion cellphloem parenchyma cell, and phloem parenchyma cellphloem parenchyma cell. The membrane potentials of the se-cc complex and the surrounding phloem-parenchyma cells sharply contrasted: the membrane potential of the se-cc complex was about twice as negative as that of the phloem parenchyma. Lucifer Yellow CH injected into the sieve element or into the companion cell remained within the se-cc complex. Dye introduced into phloem parenchyma only moved (mostly poorly) to other phloem-parenchyma cells. The distribution of the plasmodesmatal frequencies, the differential dye-coupling and the sharp discontinuities in membrane potentials indicate that the se-cc complexes constitute symplast domains in the stem phloem. Symplastic autonomy is discussed as a basic necessity for the functioning of the se-cc complex in the stem. 相似文献