首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
We have previously isolated and characterized cloned complementary DNAs (cDNAs) for striated and smooth muscle alpha-tropomyosin. The sequences of these cDNA clones suggested that these two isoforms were encoded by the same gene. Here, we have determined the complete structure of the alpha-tropomyosin (alpha-TM) gene, establishing that a single gene, with a sequence complexity of 28 kilobase pairs, is split into 12 exons and produces the smooth and striated muscle alpha-TM mRNA isoforms by alternative splicing of a minimum of five exchangeable isotype-specific exons. The elucidation of the intron/exon organization of alpha-TM suggests that this gene evolved from an ancestral gene encoding a 21-aa protein that might represent the primordial actin binding domain. Sequence comparison between the pairs of exons coding for the "isotype switch regions" and among the corresponding regions of tropomyosin genes in a variety of species ranging from insects to mammals, suggests that the alternatively spliced exons are very old and might have arisen before the radiation of the arthropods, more than 600 million years ago. Additionally, the examination of the intronic sequences has uncovered potential alternative intramolecular secondary structures (hairpin-loop structures) which might be involved in the tissue-specific expression of the duplicated and mutually exclusive alpha-TM isotype-specific exons.  相似文献   

4.
5.
We isolated and characterized a cDNA clone encoding tropomyosin isoform 2 (TM2) from a mouse fibroblast cDNA library. TM2 was found to contain 284 amino acids and was closely related to the rat smooth and skeletal muscle alpha-TMs and the human fibroblast TM3. The amino acid sequence of TM2 showed a nearly complete match with that of human fibroblast TM3 except for the region from amino acids 189 to 213, the sequence of which was identical to those of rat smooth and skeletal muscle alpha-TMs. These results suggest that TM2 is expressed from the same gene that encodes the smooth muscle alpha-TM, the skeletal muscle alpha-TM, and TM3 via an alternative RNA-splicing mechanism. Comparison of the expression of TM2 mRNA in low-metastatic Lewis lung carcinoma P29 cells and high-metastatic D6 cells revealed that it was significantly less in D6 cells than in P29 cells, supporting our previous observations (K. Takenaga, Y. Nakamura, and S. Sakiyama, Mol. Cell. Biol. 8:3934-3937, 1988) at the protein level.  相似文献   

6.
7.
8.
We have been using the rat beta-tropomyosin (beta-TM) gene as a model system to study the mechanism of alternative splicing. The beta-TM gene spans 10 kb with 11 exons and encodes two distinct isoforms, namely skeletal muscle beta-TM and fibroblast TM-1. Exons 1-5, 8, and 9 are common to all mRNAs expressed from this gene. Exons 6 and 11 are used in fibroblasts, as well as in smooth muscle cells, whereas exons 7 and 10 are used exclusively in skeletal muscle cells. Our previous studies localized the critical elements for regulated alternative splicing to sequences within exon 7 and the adjacent upstream intron. We also demonstrated that these sequences function, in part, to regulate splice-site selection in vivo by interacting with cellular factors that block the use of the skeletal muscle exon in nonmuscle cells (1). Here we have further characterized the critical cis-acting elements involved in alternative splice site selection. Our data demonstrate that exon 7 and its flanking intron sequences are sufficient to regulate the suppression of exon 7 in nonmuscle cells when flanked by heterologous exons derived from adenovirus. We have also shown by both in vivo and in vitro assays that the blockage of exon 7 in nonmuscle cells is primarily at its 3'-splice site. A model is presented for regulated alternative splicing in both skeletal muscle and nonmuscle cells.  相似文献   

9.
10.
Avian tropomyosin gene expression.   总被引:3,自引:2,他引:1       下载免费PDF全文
  相似文献   

11.
The alternative exon 5 of the striated muscle-specific cardiac troponin T (cTNT) gene is included in mRNA from embryonic skeletal and cardiac muscle and excluded in mRNA from the adult. The embryonic splicing pattern is reproduced in primary skeletal muscle cultures for both the endogenous gene and transiently transfected minigenes, whereas in nonmuscle cell lines, minigenes express a default exon skipping pattern. Using this experimental system, we previously showed that a purine-rich splicing enhancer in the alternative exon functions as a constitutive splicing element but not as a target for factors regulating cell-specific splicing. In this study, we identify four intron elements, one located upstream,and three located downstream of the alternative exon, which act in a positive manner to mediate the embryonic splicing pattern of exon inclusion. Synergistic interactions between at least three of the four elements are necessary and sufficient to regulate splicing of a heterologous alternative exon and heterologous splice sites. Mutations in these elements prevent activation of exon inclusion in muscle cells but do not affect the default level of exon inclusion in nonmuscle cells. Therefore, these elements function as muscle-specific splicing enhancers (MSEs) and are the first muscle-specific positive-acting splicing elements to be described. One MSE located downstream from the alternative exon is conserved in the rat and chicken cTNT genes. A related sequence is found in a third muscle-specific gene, that encoding skeletal troponin T, downstream from an alternative exon with a developmental pattern of alternative splicing similar to that of rat and chicken cTNT. Therefore, the MSEs identified in the cTNT gene may play a role in developmentally regulated alternative splicing in a number of different genes.  相似文献   

12.
A single human myosin light chain kinase gene (MLCK; MYLK)   总被引:7,自引:0,他引:7  
Lazar V  Garcia JG 《Genomics》1999,57(2):256-267
The myosin light chain kinase (MLCK) gene, a muscle member of the immunoglobulin gene superfamily, yields both smooth muscle and nonmuscle cell isoforms. Both isoforms are known to regulate contractile activity via calcium/calmodulin-dependent myosin light chain phosphorylation. We previously cloned from a human endothelial cell (EC) cDNA library a high-molecular-weight nonmuscle MLCK isoform (EC MLCK (MLCK 1) with an open reading frame that encodes a protein of 1914 amino acids. We now describe four novel nonmuscle MLCK isoforms (MLCK 2, 3a, 3b, and 4) that are the alternatively spliced variants of an mRNA precursor that is transcribed from a single human MLCK gene. The primary structure of the cDNA encoding the nonmuscle MLCK isoform 2 is identical to the previously published human nonmuscle MLCK (MLCK 1) (J. G. N. Garcia et al., 1997, Am. J. Respir. Cell Mol. Biol. 16, 489-494) except for a deletion of nucleotides 1428-1634 (D2). The full nucleotide sequence of MLCK isoforms 3a and 3b and partial sequence for MLCK isoform 4 revealed identity to MLCK 1 except for deletions at nucleotides 5081-5233 (MLCK 3a, D3), double deletions of nucleotides 1428-1634 and 5081-5233 (MLCK 3b), and nucleotide deletions 4534-4737 (MLCK 4, D4). Northern blot analysis demonstrated the extended expression pattern of the nonmuscle MLCK isoform(s) in both human adult and human fetal tissues. RT-PCR using primer pairs that were designed to detect specifically nonmuscle MLCK isoforms 2, 3, and 4 deletions (D2, D3, and D4) confirmed expression in both human adult and human fetal tissues (lung, liver, brain, and kidney) and in human endothelial cells (umbilical vein and dermal). Furthermore, relative quantitative expression studies demonstrated that the nonmuscle MLCK isoform 2 is the dominant splice variant expressed in human tissues and cells. Further analysis of the human MLCK gene revealed that the MLCK 2 isoform represents the deletion of an independent exon flanked by 5' and 3' neighboring introns of 0.6 and 7.0 kb, respectively. Together these studies demonstrate for the first time that the human MLCK gene yields multiple nonmuscle MLCK isoforms by alternative splicing of its transcribed mRNA precursor with differential distribution of these isoforms in various human tissues and cells.  相似文献   

13.
A considerable amount of smooth muscle phenotypic diversity is generated by tissue-specific and developmentally regulated splicing of alternative exons. The control mechanisms are unknown. We are using a myosin phosphatase targeting subunit-1 (MYPT1) alternative exon as a model to investigate this question. In the present study, we show that the RNA binding proteins TIA and PTB function as antagonistic enhancers and suppressors of splicing of the alternative exon, respectively. Each functions through a single U-rich element, containing two UCUU motifs, just downstream of the alternative exon 5' splice site. Tissue-specific down-regulation of TIA protein in the perinatal period allows PTB to bind to the U-rich element and suppress splicing of the alternative exon as the visceral smooth muscle acquires the fast-phasic smooth muscle contractile phenotype. This provides a novel role for PTB in the tissue-specific regulation of splicing of alternative exons during the generation of smooth muscle phenotypic diversity.  相似文献   

14.
15.
R E Breitbart  B Nadal-Ginard 《Cell》1987,49(6):793-803
Alternative RNA splicing is a ubiquitous process permitting single genes to encode multiple protein isoforms. Here we report experiments in which a gene construct, containing combinatorial Troponin T (TnT) exons that manifest an exceptional diversity of alternative splicing in vivo, has been transfected into muscle and nonmuscle cells. Analyses of the spliced RNAs show that the alternative TnT exons retain their capacity for differential splicing in the modified minigene context when introduced into a variety of nonmuscle and muscle cells. The patterns of alternative splicing differ depending on cell type. Only in differentiated myotubes are the alternative exons normally incorporated during splicing, reproducing their behavior in the native gene; they are excluded in nonmuscle cells and myoblasts that do not express the endogenous TnT. These results provide proof that trans factors required for correct alternative splicing are induced during myogenesis. Surprisingly, such factors are also required for the correct splicing of constitutive TnT exons.  相似文献   

16.
17.
The rat beta-tropomyosin (beta-TM) gene encodes both skeletal muscle beta-TM mRNA and nonmuscle TM-1 mRNA via alternative RNA splicing. This gene contains eleven exons: exons 1-5, 8, and 9 are common to both mRNAs; exons 6 and 11 are used in fibroblasts as well as in smooth muscle, whereas exons 7 and 10 are used in skeletal muscle. Previously we demonstrated that utilization of the 3' splice site of exon 7 is blocked in nonmuscle cells. In this study, we use both in vitro and in vivo methods to investigate the regulation of the 5' splice site of exon 7 in nonmuscle cells. The 5' splice site of exon 7 is used efficiently in the absence of flanking sequences, but its utilization is suppressed almost completely when the upstream exon 6 and intron 6 are present. The suppression of the 5' splice site of exon 7 does not result from the sequences at the 3' end of intron 6 that block the use of the 3' splice site of exon 7. However, mutating two conserved nucleotides GU at the 5' splice site of exon 6 results in the efficient use of the 5' splice site of exon 7. In addition, a mutation that changes the 5' splice site of exon 7 to the consensus U1 snRNA binding site strongly stimulates the splicing of exon 7 to the downstream common exon 8. Collectively, these studies demonstrate that 5' splice site competition is responsible, in part, for the suppression of exon 7 usage in nonmuscle cells.  相似文献   

18.
G C Roberts  C Gooding    C W Smith 《The EMBO journal》1996,15(22):6301-6310
Alternative splicing is a common mechanism for regulating gene expression in different cell types. In order to understand this important process, the trans-acting factors that enforce the choice of particular splicing pathways in different environments must be identified. We have used the rat alpha-tropomyosin gene as a model system of tissue-specific alternative splicing. Exon 3 of alpha-tropomyosin is specifically inhibited in smooth muscle cells allowing the alternative inclusion of exon 2. We have used a novel gene transfer and selection strategy to detect a gene whose expression in fibroblasts is sufficient to switch them to smooth muscle-specific splicing of alpha-tropomyosin and also alpha-actinin. Extracts from the regulating fibroblasts contain an apparently novel 55 kDa protein which binds to RNA elements required for regulation of tropomyosin splicing. This protein is not detected in extracts of non-regulating cells and is therefore a strong candidate cell-specific splicing regulator. These experiments advance our understanding of smooth muscle splicing regulation as well as establishing a means for direct cloning of tissue-specific splicing regulators which have so far been refractory to biochemical analysis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号