首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We have isolated genomic clones for human fibronectin (FN), by screening a human gene library with previously isolated FN cDNA clones. We have recently reported two different FN mRNAs, one of them containing an additional 270 nucleotide insert coding for a structural domain ED. Restriction mapping and DNA sequencing of the genomic clones show that the ED type III unit corresponds to exactly one exon in the gene, whilst the two flanking type III units are split in two exons at variable positions. When an alpha-globin/FN gene hybrid construct, containing the ED exon, flanking introns and neighbouring FN exons, is transfected into HeLa cells, two hybrid mRNAs differing by the ED exon are synthesized. These experiments confirmed that the two FN mRNAs observed in vivo arise from the same gene by alternative splicing.  相似文献   

3.
We have isolated and characterized two kinds of cDNA for the chicken cardiac myosin alkali light chain. The sequences of the two cDNAs are identical, except for a notable divergence in part of the 3' untranslated sequence. By analysis of isolated genomic clones, it was shown that the genomic sequences corresponding to the different sequences in the 3' untranslated regions of the two mRNAs were arranged within a limited part of a single stretch of DNA; also the two distinct 3' untranslated regions of the two mRNAs shared part of the last exon, which was 0.6 x 10(3) base-pairs long. There are two canonical acceptor sites available for RNA splicing in the last exon, the first being located at the 5' end of the exon, and the second at 370 base-pairs downstream from this end. Together with analysis by S1 nuclease mapping, the foregoing results lead us to conclude that, by the differential use of these two acceptor sites, a single gene generates two distinct mRNAs of 1.45 x 10(3) base-pairs and 1.1 x 10(3) base-pairs with or without the 5' half of the last exon. The two mRNAs appear to utilize the same modified poly(A) signal, AGTAAA, rather than the authentic AATAAA sequence present about 30 base-pairs downstream from the poly(A) attachment sites. This is probably because another consensus G + T-rich sequence is present at an appropriate distance from the AGTAAA sequence, but not from the AATAAA sequence. The gene for the cardiac myosin alkali light chain has proved to be expressed in ventricular muscle and in atrial and anterior latissimus dorsi muscles, the last of these being characteristic of slow skeletal muscle. In these muscles, two kinds of mRNA for the cardiac myosin alkali light chain, identical with those in ventricular muscle, were expressed and their relative amount in each tissue was almost the same as that in ventricular muscle.  相似文献   

4.
5.
6.
cDNA clones encoding four rat tropomyosin isoforms, termed TM-2, TM-3, TM-5a, and TM-5b, were isolated and characterized. All are derived from the alpha-tropomyosin gene via alternative RNA processing and the use of two alternate promoters. The cDNA sequences predict that TM-2 and TM-3 both contain 284 amino acids and differ from each other only at an internal region of the protein from amino acids 189 through 213, due to alternative splicing of exons 6a and 6b. TM-5a and TM-5b both contain 248 amino acids and differ from each other only at an internal exon encoding amino acids 153 through 177, also due to alternative splicing of exons 6a and 6b. The differences in the amino acid sequence encoded by these alternate exons affects the theoretical actin-binding pattern of the tropomyosins, such that TM-5b is expected to bind actin with greater affinity than TM-5a. TM-2 and TM-3 are transcribed from the upstream promoter, and TM-5a and TM-5b are transcribed from an internal promoter. In addition, all four isoforms contain the identical COOH-terminal coding region. RNA protection analyses revealed that the mRNA for each isoform is expressed in a number of different tissues and cell types, although the expression of some isoforms is restricted to particular cell types. Furthermore, the expression of mRNA encoding these isoforms was found to be altered in a number of different virally transformed cell lines. The changes in the expression of tropomyosin mRNAs in transformed cells reflect changes in the relative use of the two promoters, as well as the relative use of alternatively spliced exons 6a and 6b.  相似文献   

7.
8.
We have previously isolated and characterized cloned complementary DNAs (cDNAs) for striated and smooth muscle alpha-tropomyosin. The sequences of these cDNA clones suggested that these two isoforms were encoded by the same gene. Here, we have determined the complete structure of the alpha-tropomyosin (alpha-TM) gene, establishing that a single gene, with a sequence complexity of 28 kilobase pairs, is split into 12 exons and produces the smooth and striated muscle alpha-TM mRNA isoforms by alternative splicing of a minimum of five exchangeable isotype-specific exons. The elucidation of the intron/exon organization of alpha-TM suggests that this gene evolved from an ancestral gene encoding a 21-aa protein that might represent the primordial actin binding domain. Sequence comparison between the pairs of exons coding for the "isotype switch regions" and among the corresponding regions of tropomyosin genes in a variety of species ranging from insects to mammals, suggests that the alternatively spliced exons are very old and might have arisen before the radiation of the arthropods, more than 600 million years ago. Additionally, the examination of the intronic sequences has uncovered potential alternative intramolecular secondary structures (hairpin-loop structures) which might be involved in the tissue-specific expression of the duplicated and mutually exclusive alpha-TM isotype-specific exons.  相似文献   

9.
10.
Two mRNAs for P-450PB-1 and P-450PB-1(ps) are about 2 kilobase pairs long and have identical sequences with each other except for one short region of high variability (Kimura, H., Yoshioka, H., Sogawa, K., Sakai, Y., and Fujii-Kuriyama, Y. (1988) J. Biol. Chem. 263, 701-707). To clarify the origin of the short replacement block between the two mRNAs, we isolated several genomic clones containing relevant gene sequences. Sequence analysis of these genomic clones revealed that the two short segments specific for the two mRNAs are tandemly arranged in a genomic sequence and form exonic sequences equipped with AG and GT sequences on their 5' and 3' ends, respectively, and the putative consensus sequences for the lariat formation. The two short sequences lie between the two exonic sequences coding for the common part of the two mRNAs. Taken together with the structure of the related P-450(M-1) gene (Morishima, N., Yoshioka, H., Higashi, Y., Sogawa, K., and Fujii-Kuriyama, Y. (1987) Biochemistry 26, 8279-8285), all these results clearly demonstrate that the two mRNAs are generated from a single gene by alternative splicing at the eighth exons. The synthesis of the two mRNAs is regulated temporally in livers of male and female rats and brains of the female animals. One of the two mRNAs codes for a monooxygenase of P-450PB-1, and the other (P-450PB-1(ps) mRNA) lacks the sequence coding for the heme-binding site conserved among all species of P-450 molecules, and, therefore, it cannot function as a monooxygenase. The immunoblot analysis using an antibody specific for the 15-mer peptide uniquely encoded by P-450PB-1(ps) mRNA shows that the P-450PB-1(ps) peptide is synthesized at least in rat livers of both sexes in temporally regulated manners and is bound to the microsomal membranes. The function of this peptide remains to be seen.  相似文献   

11.
12.
13.
We have isolated two cDNA clones for myosin alkali light chain (MLC) mRNA from two respective cDNA libraries of chick gizzard and fibroblast cells by cross-hybridization to the previously isolated cDNA of skeletal muscle MLC. Sequence analysis of the two cloned cDNAs revealed that both of them are homologous to but distinct from the cDNA sequence used as the probe so that they may be classified into members of the MLC family, that they are identical with each other in the 3' and 5' untranslated sequence as well as in the coding sequence with a notable exception of a 39-nucleotide insertion in the fibroblast cDNA, 26 nucleotides of which are used for encoding the C-terminal amino acid sequence, and, therefore, that they encode the identical 142-amino acid sequence with different C-terminals of nine amino acids, each specific for fibroblast and gizzard smooth muscle MLC. The position of the inserted block corresponds exactly to one of the exon-intron junctions in the other MLC genes whose structures have so far been elucidated. DNA blot analysis suggested that the two MLC mRNAs of gizzard (smooth muscle) and fibroblast cells (nonmuscle) are generated from a single gene, probably through alternative RNA splicing mechanisms. RNA blot analysis and S1 nuclease mapping analysis using RNA preparations from fibroblast and gizzard tissues showed that the fibroblast MLC mRNA is expressed predominantly in fibroblast cells, but not, or very scantily if at all, in the gizzard, whereas the reverse is true for the gizzard smooth muscle MLC mRNA.  相似文献   

14.
15.
16.
17.
18.
19.
Analysis of the human Rab6A gene structure reveals the presence of a duplicated exon, and incorporation of either of the two exons by alternative splicing is shown to generate two Rab6 isoforms named Rab6A and Rab6A', which differ in only three amino acid residues located in regions flanking the PM3 GTP-binding domain of the proteins. These isoforms are ubiquitously expressed at similar levels, exhibit the same GTP-binding properties, and are localized to the Golgi apparatus. Overexpression of the GTP-bound mutants of Rab6A (Rab6A Q72L) or Rab6A' (Rab6A' Q72L) inhibits secretion in HeLa cells, but overexpression of Rab6A' Q72L does not induce the redistribution of Golgi proteins into the endoplasmic reticulum. This suggests that Rab6A' is not able to stimulate Golgi-to-endoplasmic reticulum retrograde transport, as described previously for Rab6A. In addition, Rab6A' interacts with two Rab6A partners, GAPCenA and "clone 1," but not with the kinesin-like protein Rabkinesin-6, a Golgi-associated Rab6A effector. Interestingly, we found that the functional differences between Rab6A and Rab6A' are contingent on one amino acid (T or A at position 87). Therefore, limited amino acid substitutions within a Rab protein introduced by alternative splicing could represent a mechanism to generate functionally different isoforms that interact with distinct sets of effectors.  相似文献   

20.
R Sarao  S K Gupta  V J Auld    R J Dunn 《Nucleic acids research》1991,19(20):5673-5679
Two rat brain Na channel alpha-subunit cDNAs, named RII and RIIA, have almost identical coding regions, with a divergence of only 36 nucleotides (0.6%) over a total length of 6015 residues. A cluster of 20 divergent residues occurs within a 90 nucleotide segment of cDNA sequence. We now demonstrate that this 90 nucleotide segment is encoded twice in the RII/RIIA genomic sequence. Furthermore, the mutually exclusive selection of these two exons is developmentally regulated. RII mRNAs are relatively abundant at birth but are gradually replaced by RIIA mRNAs as development proceeds. The two mRNAs also appear to have different regional distributions in the developing rat brain. Strikingly, although 30 amino acids are encoded by each alternative exon, only amino acid position 209 is altered between the two, specifying asparagine in RII and aspartate in RIIA. Alternative RNA splicing may modulate the RII/RIIA sodium channel properties during neuronal development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号