首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Early in ovarian differentiation, female mouse germ cells develop in clusters called oocyte nests or germline cysts. After birth, mouse germ cell nests break down into individual oocytes that are surrounded by somatic pregranulosa cells to form primordial follicles. Previously, we have shown that mice treated neonatally with genistein, the primary soy phytoestrogen, have multi-oocyte follicles (MOFs), an effect apparently mediated by estrogen receptor 2 (ESR2, more commonly known as ERbeta). To determine if genistein treatment leads to MOFs by inhibiting breakdown of oocyte nests, mice were treated neonatally with genistein (50 mg/kg per day) on Days 1-5, and the differentiation of the ovary was compared with untreated controls. Mice treated with genistein had fewer single oocytes and a higher percentage of oocytes not enclosed in follicles. Oocytes from genistein-treated mice exhibited intercellular bridges at 4 days of age, long after disappearing in controls by 2 days of age. There was also an increase in the number of oocytes that survived during the nest breakdown period and fewer oocytes undergoing apoptosis on Neonatal Day 3 in genistein-treated mice as determined by poly (ADP-ribose) polymerase (PARP1) and deoxynucleotidyl transferase mediated deoxyuridine triphosphate nick end-labeling (TUNEL). These data taken together suggest that genistein exposure during development alters ovarian differentiation by inhibiting oocyte nest breakdown and attenuating oocyte cell death.  相似文献   

2.
The pool of primordial follicles determines the reproductive lifespan of the mammalian female, and its establishment is highly dependent upon proper oocyte cyst breakdown and regulation of germ cell numbers. The mechanisms controlling these processes remain a mystery. We hypothesized that KIT signaling might play a role in perinatal oocyte cyst breakdown, determination of oocyte numbers and the assembly of primordial follicles. We began by examining the expression of both KIT and KIT ligand in fetal and neonatal ovaries. KIT was expressed only in oocytes during cyst breakdown, but KIT ligand was present in both oocytes and somatic cells as primordial follicles formed. To test whether KIT signaling plays a role in cyst breakdown and primordial follicle formation, we used ovary organ culture to inhibit and activate KIT signaling during the time when these processes occur in the ovary. We found that when KIT was inhibited, there was a reduction in cyst breakdown and an increase in oocyte numbers. Subsequent studies using TUNEL analysis showed that when KIT was inhibited, cell death was reduced. Conversely, when KIT was activated, cyst breakdown was promoted and oocyte numbers decreased. Using Western blotting, we found increased levels of phosphorylated MAP Kinase when KIT ligand was added to culture. Taken together, these results demonstrate a role for KIT signaling in perinatal oocyte cyst breakdown that may be mediated by MAP Kinase downstream of KIT.  相似文献   

3.
Xu B  Hua J  Zhang Y  Jiang X  Zhang H  Ma T  Zheng W  Sun R  Shen W  Sha J  Cooke HJ  Shi Q 《PloS one》2011,6(1):e16046
Primordial follicles, providing all the oocytes available to a female throughout her reproductive life, assemble in perinatal ovaries with individual oocytes surrounded by granulosa cells. In mammals including the mouse, most oocytes die by apoptosis during primordial follicle assembly, but factors that regulate oocyte death remain largely unknown. Proliferating cell nuclear antigen (PCNA), a key regulator in many essential cellular processes, was shown to be differentially expressed during these processes in mouse ovaries using 2D-PAGE and MALDI-TOF/TOF methodology. A V-shaped expression pattern of PCNA in both oocytes and somatic cells was observed during the development of fetal and neonatal mouse ovaries, decreasing from 13.5 to 18.5 dpc and increasing from 18.5 dpc to 5 dpp. This was closely correlated with the meiotic prophase I progression from pre-leptotene to pachytene and from pachytene to diplotene when primordial follicles started to assemble. Inhibition of the increase of PCNA expression by RNA interference in cultured 18.5 dpc mouse ovaries strikingly reduced the apoptosis of oocytes, accompanied by down-regulation of known pro-apoptotic genes, e.g. Bax, caspase-3, and TNFα and TNFR2, and up-regulation of Bcl-2, a known anti-apoptotic gene. Moreover, reduced expression of PCNA was observed to significantly increase primordial follicle assembly, but these primordial follicles contained fewer granulosa cells. Similar results were obtained after down-regulation by RNA interference of Ing1b, a PCNA-binding protein in the UV-induced apoptosis regulation. Thus, our results demonstrate that PCNA regulates primordial follicle assembly by promoting apoptosis of oocytes in fetal and neonatal mouse ovaries.  相似文献   

4.
5.
The maximum number of germ cells is present during the fetal life in mammals. Follicular atresia results in rapid depletion of germ cells from the cohort of the ovary. At the time of puberty, only a few hundred (<1%) germ cells are either culminated into oocytes or further get eliminated during the reproductive life. Although apoptosis plays a major role, necrosis as well as necroptosis, might also be involved in germ cell elimination from the mammalian ovary. Both necrosis and necroptosis show similar morphological features and are characterized by an increase in cell volume, cell membrane permeabilization, and rupture that lead to cellular demise. Necroptosis is initiated by tumor necrosis factor and operated through receptor interacting protein kinase as well as mixed lineage kinase domain-like protein. The acetylcholinesterase, cytokines, starvation, and oxidative stress play important roles in necroptosis-mediated granulosa cell death. The granulosa cell necroptosis directly or indirectly induces susceptibility toward necroptotic or apoptotic cell death in oocytes. Indeed, prevention of necrosis and necroptosis pathways using their specific inhibitors could enhance growth/differentiation factor-9 expression, improve survivability as well as the meiotic competency of oocytes, and prevent decline of reproductive potential in several mammalian species and early onset of menopause in women. This study updates the information and focuses on the possible involvement of necrosis and necroptosis in germ cell depletion from the mammalian ovary.  相似文献   

6.

Background  

Female reproductive potential, or the ability to propagate life, is limited in mammals with the majority of oocytes lost before birth. In mice, surviving perinatal oocytes are enclosed in ovarian follicles for subsequent oocyte development and function in the adult. Before birth, fetal germ cells of both sexes develop in clusters, or germline cysts, in the undifferentiated gonad. Upon sex determination of the fetal gonad, germ cell cysts become organized into testicular or ovarian cord-like structures and begin to interact with gonadal somatic cells. Although germline cysts and testicular cords are required for spermatogenesis, the role of cyst and ovarian cord formation in mammalian oocyte development and female fertility has not been determined.  相似文献   

7.
The fetal gonad is composed of a mixture of somatic cell lineages and germ cells. The fate of the gonad, male or female, is determined by a population of somatic cells that differentiate into Sertoli or granulosa cells and direct testis or ovary development. It is well established that germ cells are not required for the establishment or maintenance of Sertoli cells or testis cords in the male gonad. However, in the agametic ovary, follicles do not form suggesting that germ cells may influence granulosa cell development. Prior investigations of ovaries in which pre-meiotic germ cells were ablated during fetal life reported no histological changes during stages prior to birth. However, whether granulosa cells underwent normal molecular differentiation was not investigated. In cases where germ cell loss occurred secondary to other mutations, transdifferentiation of granulosa cells towards a Sertoli cell fate was observed, raising questions about whether germ cells play an active role in establishing or maintaining the fate of granulosa cells. We developed a group of molecular markers associated with ovarian development, and show here that the loss of pre-meiotic germ cells does not disrupt the somatic ovarian differentiation program during fetal life, or cause transdifferentiation as defined by expression of Sertoli markers. Since we do not find defects in the ovarian somatic program, the subsequent failure to form follicles at perinatal stages is likely attributable to the absence of germ cells rather than to defects in the somatic cells.  相似文献   

8.
The time at which ovarian failure (menopause) occurs in females is determined by the size of the oocyte reserve provided at birth, as well as by the rate at which this endowment is depleted throughout post-natal life. Here we show that disruption of the gene for acid sphingomyelinase in female mice suppressed the normal apoptotic deletion of fetal oocytes, leading to neonatal ovarian hyperplasia. Ex vivo, oocytes lacking the gene for acid sphingomyelinase or wild-type oocytes treated with sphingosine-1-phosphate resisted developmental apoptosis and apoptosis induced by anti-cancer therapy, confirming cell autonomy of the death defect. Moreover, radiation-induced oocyte loss in adult wild-type female mice, the event that drives premature ovarian failure and infertility in female cancer patients, was completely prevented by in vivo therapy with sphingosine-1-phosphate. Thus, the sphingomyelin pathway regulates developmental death of oocytes, and sphingosine-1-phosphate provides a new approach to preserve ovarian function in vivo.  相似文献   

9.
Members of the Bcl-2 family serve as central checkpoints for cell death regulation, and overexpression of Bcl-2 is known to inhibit apoptosis in many cell types. To determine whether targeted expression of Bcl-2 could be used to protect female germ cells from apoptosis, we generated transgenic mice expressing fully functional human Bcl-2 protein only in oocytes. Transgenic mice were produced using a previously characterized 480-bp fragment of the mouse zona pellucida protein-3 (ZP3) gene 5'-flanking region to direct oocyte-specific expression of a human bcl-2 complementary DNA. Immunohistochemical analyses using a human Bcl-2-specific antibody showed that transgene expression was restricted to growing oocytes and was not observed in the surrounding ovarian somatic cells or in any other nonovarian tissues. Histomorphometric analyses revealed that ovaries collected from transgenic female mice possessed significantly fewer atretic small preantral follicles compared with wild-type sisters, resulting in a larger population of healthy maturing follicles per ovary. However, the number of oocytes ovulated in response to exogenous gonadotropin priming and the number of pups per litter were not significantly different among wild-type vs. transgenic female mice. Nonetheless, oocytes obtained from transgenic mice and cultured in vitro were found to be resistant to spontaneous and anticancer drug-induced apoptosis. We conclude that targeted expression of Bcl-2 only in oocytes can be achieved as a means to convey resistance of the female germ line to naturally occurring and chemotherapy-induced apoptosis.  相似文献   

10.
It is well established that programmed cell death claims up to two-thirds of the oocytes produced during gametogenesis in the developing fetal ovaries. However, the mechanisms underlying prenatal germ cell loss in females remain poorly understood. Herein we report that caspase-11 null female mice are born with a reduced number of oocyte-containing primordial follicles. This phenotype is likely due to failed cytokine processing known to occur in caspase-11 mutants since neonatal female mice lacking both interleukin (IL)-1alpha and IL-1beta also exhibit a reduced endowment of primordial follicles. In addition, germ cell death in wild-type fetal ovaries cultured ex vivo is suppressed by either cytokine, likely via ligand activation of type 1 IL-1 receptors expressed in fetal germ cells. Normal oocyte endowment can be restored in caspase-11 null female mice by simultaneous inactivation of the gene encoding the cell death executioner enzyme, caspase-2. However, caspase-2 deficiency cannot overcome gametogenic failure resulting from meiotic recombination defects in ataxia telangiectasia-mutated (Atm) null female mice. Thus, genetically distinct mechanisms exist for developmental deletion of oocytes via programmed cell death, one of which probably functions as a meiotic quality-control checkpoint that cannot be overridden.  相似文献   

11.
In many organisms, early germline development takes place within cysts of interconnected cells that form by incomplete cytokinesis and later undergo programmed breakdown. We recently identified similar cell clusters within the fetal mouse ovary, but the fate and functional significance of these germ cell cysts remained unclear. Here, we show that mouse cysts undergo programmed breakdown between 20.5-22.5 dpc, during which approximately 33% of the oocytes survive to form primordial follicles. This process accounts for most of the perinatal reduction in germ cell numbers and germ cell apoptosis reported by previous authors, and suggests that perinatal germ cell loss is a developmentally regulated process that is distinct from the follicular atresia that occurs during adult life. Our observations also suggest a novel function for a transient cyst stage of germ cell development. Prior to breakdown, mitochondria and ER reorganize into perinuclear aggregates, and can be seen within the ring canals joining adjacent germ cells. Cysts may ensure that oocytes destined to form primordial follicles acquire populations of functional mitochondria, through an active process that has been evolutionarily conserved.  相似文献   

12.
The primordial follicles present in neonatal ovary represent the fecundity of a female throughout her reproductive life. Germ cell meiosis and apoptosis are two important events during primordial folliculogenesis. In this study, through focusing on the cytochrome P450 lanosterol 14 alphademethylase (CYP51) and its lanosterol metabolic product(s), we explored the possible regulatory mechanism of the initiation of germ cell meiosis and primordial follicle formation. The expression of CYP51 could be detected in both oocytes and granulosa cells during primordial folliculogenesis by immunochemistry. RS21745, which leads to the reduction of lanosterol metabolic product(s) level, inhibited the primordial follicle formation in a dose-dependent manner, and thus postpone the establishment of the primordial follicle pool when the mouse fetal ovaries were cultured in serum-free medium. In contrast, the number of primordial follicle increased significantly with the accumulation of the lanosterol metabolic products caused by 0.025, 0.0625, and 0.125 microM AY9944-A-7 supplements. AY9944-A-7 also up-regulated the expression of meiotic diplotene stage marker gene msy2 and primordial follicle formation regulatory gene fig-alpha. Furthermore, AY9944-A-7 decreased the expression of apoptosis gene bax and significantly prevented oocyte apoptosis from 15.37 +/- 1.97% to 3.68 +/- 0.27% (P < 0.01) in neonatal ovary in vitro. In conclusion, our results indicate that lanosterol metabolic product(s) is involved in the primordial folliculogenesis by regulating the oocyte meiosis and apoptosis.  相似文献   

13.
Development of a fertilizable oocyte is a complex process that relies on the precise temporal and spatial expression of specific genes in germ cells and in surrounding somatic cells. Since female mice null for Taf4b, a TBP associated factor, are sterile, we sought to determine when during follicular development this phenotype was first observed. At postnatal day 3, ovaries of Taf4b null females contained fewer (P < 0.01) oocytes than ovaries of wild type and heterozygous Taf4b mice. However, expression of only one somatic cell marker Foxl2 was reduced in ovaries at day 15. Despite the reduced number of follicles, many proceed to the antral stage, multiple genes associated with granulosa cell differentiation and oocyte maturation were expressed in a normal pattern, and immature Taf4b null females could be hormonally primed to ovulate and mate. However, the ovulated cumulus oocyte complexes from the Taf4b null mice had fewer (P < 0.01) cumulus cells, and the oocytes were functionally abnormal. GVBD and polar body extrusion were reduced significantly (P < 0.01). The few oocytes that were fertilized failed to progress beyond the two-cell stage of development. Thus, infertility in Taf4b null female mice is associated with defects in early follicle formation, oocyte maturation, and zygotic cleavage following ovulation and fertilization.  相似文献   

14.
15.
Targeted disruption of the mouse FSH receptor gene (FSH-R) that mediates the action of the FSH results in a gene dose-related ovarian phenotype in the developing as well as the adult animal. While null females (FORKO) are sterile, the haplo-insufficient mice experience early reproductive senescence. The purpose of this study was to first record changes in oocyte development in the null FORKO and haplo-insufficient mice. Oocyte growth is significantly retarded in the null mutants with thinner zona pellucida in preantral follicles, but thicker zona pellucida in secondary follicles. This morphometric change indicates developmental aberrations in coordination of the germ cell (oocyte) and the somatic granulosa cell (GC) compartments. Markers for primordial germ cell proliferation and oocyte growth, such as the c-Kit/Kit-ligand and bone morphogenetic protein-15 (BMP-15) were downregulated in both null and +/- ovaries, suggesting disrupted communication between oocyte and GCs. Extensive changes in the expression of other oocyte-specific gene products like the zona pellucida glycoproteins (zona pellucida A, B, and C) indicate major alteration in the extracellular matrix surrounding the germ cells. This led to leaky germ cells that allowed infiltration of somatic cells. These results show that the loss of FSH-R signaling alters the follicular environment, where oocyte-granulosa interactions are perturbed, creating an out-of-phase germ cell and somatic cell development. We believe that these data provide an experimental paradigm to explore the mechanisms responsible for preserving the structural integrity and quality of oocytes at different ages.  相似文献   

16.
哺乳动物卵母细胞凋亡的研究进展   总被引:7,自引:0,他引:7  
细胞凋亡是发育过程中的基本生命现象,除各种体细胞凋亡外,生殖细胞的发生过程中也发生细胞凋亡。就雌性生殖系而言,细胞凋亡是其发育过程中的一个重要组成部分。在哺乳动物中,超过99.9%的雌性生殖细胞都会在卵子发生的不同阶段发生凋亡。有三种学说解释这一现象:1)被忽视死亡;2)因缺陷死亡;3)自我牺牲死亡。本文主要综述了哺乳动物卵母细胞凋亡的现象、卵母细胞凋亡学说、线粒体遗传与卵母细胞凋亡的关系以及凋亡的分子机理,同时还探讨了卵母细胞凋亡的生物学意义。  相似文献   

17.
Since the cloning of the bcl-2 gene in 1985, considerable progress has been made in elucidating the function of Bcl-2 and related proteins in controlling apoptosis. Although much of this work initially relied on the ectopic expression of bcl-2 gene family members in cell lines in vitro, a number of genetically manipulated mice have been generated to better understand the in vivo significance of specific family members to organ development and homeostasis. Of the many tissues that exhibit apoptosis at some point during fetal or postnatal life, the female gonads arguably possess one of the highest and most protracted incidences of apoptosis, associated with development and maturation of the germ line. Moreover, female germ cells (oocytes) are, for as-yet poorly understood reasons, extremely vulnerable to a host of pathological insults, such as anti-cancer therapies, that ultimately cause premature ovarian failure and infertility due to accelerated oocyte death. Accordingly, efforts to understand the occurrence and regulation of apoptosis in the ovary are of considerable importance from both biological and clinical perspectives. This review will highlight what is known of apoptosis in the female gonads, and the role that Bcl-2 family members play in regulating this process.  相似文献   

18.
The vertebrate ovary is an extremely dynamic organ in which excessive or defective follicles are rapidly and effectively eliminated early in ontogeny and thereafter continuously throughout reproductive life. More than 99% of follicles disappear, primarily due to apoptosis of granulosa cells, and only a minute fraction of the surviving follicles successfully complete the path to ovulation. The balance between signals for cell death and survival determines the destiny of the follicles. An abnormally high rate of cell death followed by atresia can negatively affect fertility and eventually lead irreversibly to premature ovarian failure. In this review we provide a short overview of the role of programmed cell death in prenatal differentiation of the primordial germ cells and in postnatal folliculogenesis. We also discuss the issue of neo-oogenesis. Next, we highlight molecules involved in regulation of granulosa cell apoptosis. We further discuss the potential use of scores for apoptosis in granulosa cells and characteristics of follicular fluid as prognostic markers for predicting the outcome of assisted reproduction. Potential therapeutic strategies for combating premature ovarian failure are also addressed.  相似文献   

19.
In Hirudo medicinalis and Haemopis sanguisuga, two convoluted ovary cords are found within each ovary. Each ovary cord is a polarized structure composed of germ cells (oogonia, developing oocytes, nurse cells) and somatic cells (apical cell, follicular cells). One end of the ovary cord is club-shaped and comprises one huge apical cell, numerous oogonia, and small cysts (clusters) of interconnected germ cells. The main part of the cord contains fully developed cysts composed of numerous nurse cells connected via intercellular bridges with the cytophore, which in turn is connected by a cytoplasmic bridge with the growing oocyte. The opposite end of the cord degenerates. Cord integrity is ensured by flattened follicular cells enveloping the cord; moreover, inside the cord, some follicular cells (internal follicular cells) are distributed among germ cells. As oogenesis progresses, the growing oocytes gradually protrude into the ovary lumen; as a result, fully developed oocytes arrested in meiotic metaphase I float freely in the ovary lumen. This paper describes the successive stages of oogenesis of H. medicinalis in detail. Ovary organization in Hirudinea was classified within four different types: non-polarized ovary cords were found in glossiphoniids, egg follicles were described in piscicolids, ovarian bodies were found characteristic for erpobdellids, and polarized ovary cords in hirudiniforms. Ovaries with polarized structures equipped with apical cell (i.e. polarized ovary cords and ovarian bodies) (as found in arhynchobdellids) are considered as primary for Hirudinea while non-polarized ovary cords and the occurrence of egg follicles (rhynchobdellids) represent derived condition.  相似文献   

20.
Fundamental aspects of embryonic and post-natal development, including maintenance of the mammalian female germline, are largely unknown. Here we employ a retrospective, phylogenetic-based method for reconstructing cell lineage trees utilizing somatic mutations accumulated in microsatellites, to study female germline dynamics in mice. Reconstructed cell lineage trees can be used to estimate lineage relationships between different cell types, as well as cell depth (number of cell divisions since the zygote). We show that, in the reconstructed mouse cell lineage trees, oocytes form clusters that are separate from hematopoietic and mesenchymal stem cells, both in young and old mice, indicating that these populations belong to distinct lineages. Furthermore, while cumulus cells sampled from different ovarian follicles are distinctly clustered on the reconstructed trees, oocytes from the left and right ovaries are not, suggesting a mixing of their progenitor pools. We also observed an increase in oocyte depth with mouse age, which can be explained either by depth-guided selection of oocytes for ovulation or by post-natal renewal. Overall, our study sheds light on substantial novel aspects of female germline preservation and development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号