首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Because many osteoporotic fractures occur during a fall, understanding the effect of off-axis loads on initiation and propagation of microdamage in trabecular bone should provide further insight into the biomechanics of age-related fractures. Fourteen on-axis cylindrical specimens were prepared from 12 bovine tibiae. Fluorescent stains were used to label the microdamage due to a sequence of compressive and torsional damaging loads. The mean decrease in Young's modulus was over four times greater than that in the shear modulus after the compressive overload, while there was no difference between the decrease in the axial and torsional stiffnesses after the torsional overload. The total microcrack density due to compression was uniform across the radius of the cylindrical specimens, while the mean density of microcracks due to torsional overloading increased from the axis of the cylindrical specimen to the circumference. The high density of microcracks near the axis of the specimen following torsional overloading was unexpected because of the low strains. Nearly 40% of the microcracks due to torsion propagated from pre-existing microcracks caused by axial compression, indicating that existing microcracks may extend at relatively low strain if the loading mode changes. The propagating microcracks were, on average, longer than the initiating microcracks due to either compressive or torsional loading. Damage due to axial compression appears to increase the susceptibility of trabecular bone to damage propagation during subsequent torsional loads, but it has little effect on the elastic properties in shear.  相似文献   

2.
PURPOSE: In a meta-analysis of the literature we evaluated the present knowledge of the material properties of cortical and cancellous bone to answer the question whether the available data are sufficient to realize anisotropic finite element (FE)-models of the proximal femur. MATERIAL AND METHOD: All studies that met the following criteria were analyzed: Young's modulus, tensile, compressive and torsional strengths, Poisson's ratio, the shear modulus and the viscoelastic properties had to be determined experimentally. The experiments had to be carried out in a moist environment and at room temperature with freshly removed and untreated human cadaverous femurs. All material properties had to be determined in defined load directions (axial, transverse) and should have been correlated to apparent density (g/cm(3)), reflecting the individually variable and age-dependent changes of bone material properties. RESULTS: Differences in Young's modulus of cortical [cancellous] bone at a rate of between 33% (58%) (at low apparent density) and 62% (80%) (at high apparent density), are higher in the axial than in the transverse load direction. Similar results have been seen for the compressive strength of femoral bone. For the tensile and torsional strengths, Poisson's ratio and the shear modulus, only ultimate values have been found without a correlation to apparent density. For the viscoelastic behaviour of bone only data of cortical bone and in axial load direction have been described up to now. CONCLUSIONS: Anisotropic FE-models of the femur could be realized for most part with the summarized material properties of bone if characterized by apparent density and load directions. Because several mechanical properties have not been correlated to these main criteria, further experimental investigations will be necessary in future.  相似文献   

3.
Heterogeneity of the mechanical properties of demineralized bone   总被引:3,自引:0,他引:3  
Knowledge of the mechanical properties of the collagenous component of bone is required for composite modeling of bone tissue and for understanding the age- and disease-related reductions in the ductility and strength of bone. The overall goal of this study was to investigate the heterogeneity of the mechanical properties of demineralized bone which remains unexplained and may be due to differences in the collagen structure or organization or in experimental protocols. Uniaxial tension tests were conducted to measure the elastic and failure properties of demineralized human femoral (n = 10) and tibial (n = 13) and bovine humeral (n = 8) and tibial (n = 8) cortical bone. Elastic modulus differed between groups (p = 0.02), varying from 275 +/- 94 MPa (mean +/- SD) to 450 + 50 MPa. Similarly, ultimate stress varied across groups from 15 + 4.2 to 26 + 4.7 MPa (p = 0.03). No significant differences in strain-to-failure were observed between any groups in this study (pooled mean of 8.4 +/- 1.6%; p = 0.42). However, Bowman et al. (1996) reported an average ultimate strain of 12.3 +/- 0.5% for demineralized bovine humeral bone, nearly 40% higher than our value. Taken together, it follows that all the monotonic mechanical properties of demineralized bone can display substantial heterogeneity. Future studies directed at explaining such differences may therefore provide insight into aging and disease of bone tissue.  相似文献   

4.
The elastic moduli of human subchondral, trabecular, and cortical bone tissue from a proximal tibia were experimentally determined using three-point bending tests on a microstructural level. The mean modulus of subchondral specimens was 1.15 GPa, and those of trabecular and cortical specimens was 4.59 GPa and 5.44 GPa respectively. Significant differences were found in the modulus values between bone tissues, which may have mainly resulted from the differences in the microstructures of each bone tissue rather than in the mineral density. Furthermore, the size-dependency of the modulus was examined using eight different sizes of cortical specimens (heights h = 100-1000 microns). While the modulus values for relatively large specimens (h greater than 500 microns) remained fairly constant (approximately 15 GPa), the values decreased as the specimens became smaller. A significant correlation was found between the modulus and specimen size. The surface area to volume ratio proved to be a key variable to explain the size-dependency.  相似文献   

5.
A clinical strength MRI and intact bovine caudal intervertebral discs were used to test the hypotheses that (1) mechanical loading and trypsin treatment induce changes in NMR parameters, mechanical properties and biochemical contents; and (2) mechanical properties are quantitatively related to NMR parameters. MRI acquisitions, confined compression stress-relaxation experiments, and biochemical assays were applied to determine the NMR parameters (relaxation times T1 and T2, magnetization transfer ratio (MTR) and diffusion trace (TrD)), mechanical properties (compressive modulus H(A0) and hydraulic permeability k(0)), and biochemical contents (H(2)O, proteoglycan and total collagen) of nucleus pulposus tissue from bovine caudal discs subjected to one of two injections and one of two mechanical loading conditions. Significant correlations were found between k(0) and T1 (r=0.75,p=0.03), T2 (r=0.78, p=0.02), and TrD (r=0.85, p=0.007). A trend was found between H(A0) and TrD (r=0.56, p=0.12). However, loading decreased these correlations (r=0.4, p=0.2). The significant effect of trypsin treatment on mechanical properties, but not on NMR parameters, may suggest that mechanical properties are more sensitive to the structural changes induced by trypsin treatment. The significant effect of loading on T1 and T2, but not on H(A0) or k(0), may suggest that NMR parameters are more sensitive to the changes in water content enhanced by loading. We conclude that MRI offers promise as a sensitive and non-invasive technique for describing alterations in material properties of intervertebral disc nucleus, and our results demonstrate that the hydraulic permeability correlated more strongly to the quantitative NMR parameters than did the compressive modulus; however, more studies are necessary to more precisely characterize these relationships.  相似文献   

6.
Microdamage propagation in trabecular bone due to changes in loading mode   总被引:6,自引:0,他引:6  
Microdamage induced by falls or other abnormal loads that cause shear stress in trabecular bone could impair the mechanical properties of the proximal femur or spine. Existing microdamage may also increase the initiation and propagation of further microdamage during subsequent normal, on-axis, loading conditions, resulting in atraumatic or "spontaneous" fractures. Microdamage formation due to shear and compressive strains was studied in 14 on-axis cylindrical bovine tibial trabecular bone specimens. Microdamage was induced by a torsional overload followed by an on-axis compressive overload and quantified microscopically. Fluorescent agents were used to label microdamage and differentiate damage due to the two loading modes. Both the microcrack density and diffuse damage area caused by the torsional overload increased with increasing shear strain from the center to the edge of the specimen. However, the mean microcrack length was uniform across the specimen, suggesting that microcrack length is limited by microstructural features. The mean density of microcracks caused by compressive overloading was slightly higher near the center of the specimen, and the diffuse damage area was uniform across the specimen. Over 20% of the microcracks formed in the initial torsional overloading propagated during compression. Moreover the propagating microcracks were, on average, longer than microcracks formed by a single overload. As such, changes in loading mode can cause propagation of microcracks beyond the microstructural barriers that normally limit the length. Damage induced by in vivo off-axis loads such as falls may similarly propagate during subsequent normal loading, which could affect both remodeling activity and fracture susceptibility.  相似文献   

7.
The ability to determine trabecular bone tissue elastic and failure properties has biological and clinical importance. To date, trabecular tissue yield strains remain unknown due to experimental difficulties, and elastic moduli studies have reported controversial results. We hypothesized that the elastic and tensile and compressive yield properties of trabecular tissue are similar to those of cortical tissue. Effective tissue modulus and yield strains were calibrated for cadaveric human femoral neck specimens taken from 11 donors, using a combination of apparent-level mechanical testing and specimen-specific, high-resolution, nonlinear finite element modeling. The trabecular tissue properties were then compared to measured elastic modulus and tensile yield strain of human femoral diaphyseal cortical bone specimens obtained from a similar cohort of 34 donors. Cortical tissue properties were obtained by statistically eliminating the effects of vascular porosity. Results indicated that mean elastic modulus was 10% lower (p<0.05) for the trabecular tissue (18.0+/-2.8 GPa) than for the cortical tissue (19.9+/-1.8 GPa), and the 0.2% offset tensile yield strain was 15% lower for the trabecular tissue (0.62+/-0.04% vs. 0.73+/-0.05%, p<0.001). The tensile-compressive yield strength asymmetry for the trabecular tissue, 0.62 on average, was similar to values reported in the literature for cortical bone. We conclude that while the elastic modulus and yield strains for trabecular tissue are just slightly lower than those of cortical tissue, because of the cumulative effect of these differences, tissue strength is about 25% greater for cortical bone.  相似文献   

8.
Multi-scale experimental work was carried out to characterize cortical bone as a heterogeneous material with hierarchical structure, which spans from nanoscale (mineralized collagen fibril), sub-microscale (single lamella), microscale (lamellar structures), to mesoscale (cortical bone) levels. Sections from femoral cortical bone from 6, 12, and 42 months old swine were studied to quantify the age-related changes in bone structure, chemical composition, and mechanical properties. The structural changes with age from sub-microscale to mesoscale levels were investigated with scanning electron microscopy and micro-computed tomography. The chemical compositions at mesoscale were studied by ash content method and dual energy X-ray absorptiometry, and at microscale by Fourier transform infrared microspectroscopy. The mechanical properties at mesoscale were measured by tensile testing, and elastic modulus and hardness at sub-microscale were obtained using nanoindentation. The experimental results showed age-related changes in the structure and chemical composition of cortical bone. Lamellar bone was a prevalent structure in 6 months and 12 months old animals, resorption sites were most pronounced in 6 months old animals, while secondary osteons were the dominant features in 42 months old animals. Mineral content and mineral-to-organic ratio increased with age. The structural and chemical changes with age corresponded to an increase in local elastic modulus, and overall elastic modulus and ultimate tensile strength as bone matured.  相似文献   

9.
We have investigated the dispersion of single-walled carbon nanotubes (SWNTs) and functionalized SWNTs (F-SWNTs) in the unsaturated, biodegradable polymer poly(propylene fumarate) (PPF) and examined the rheological properties of un-cross-linked nanocomposite formulations as well as the electrical and mechanical properties of cross-linked nanocomposites. F-SWNTs were produced from individual SWNTs by a diazonium-based method and dispersed better than unmodified SWNTs in both un-cross-linked and cross-linked PPF matrix. Cross-linked nanocomposites with F-SWNTs were superior to those with unmodified SWNTs in terms of their mechanical properties. Specifically, nanocomposites with 0.1 wt % F-SWNTs loading resulted in a 3-fold increase in both compressive modulus and flexural modulus and a 2-fold increase in both compressive offset yield strength and flexural strength when compared to pure PPF networks, whereas the use of 0.1 wt % SWNTs gained less than 37% mechanical reinforcement. These extraordinary mechanical enhancements considered together with Raman scattering and sol fraction measurements indicate strong SWNT-PPF interactions and increased cross-linking densities resulting in effective load transfer. With enhanced mechanical properties and capabilities of in situ injection and cross-linking, these SWNT/polymer nanocomposites hold significant implications for the fabrication of bone tissue engineering scaffolds.  相似文献   

10.
The ultimate compressive strength and modulus of elasticity of femoral cortical bone from adult geese (Anser anser), were determined by sex and by quadrant by compressing small right circular cylinders which were 2.4 mm in height and 0.8 mm in diameter. The average ultimate compressive strength was 183 +/- 29 MPa. The average modulus of elasticity was 13.2 +/- 3.4 GPa. The bending strength and bending modulus of elasticity were determined by a three point bend test on rectangular prisms which had the approximate dimensions 0.75 mm X 0.75 mm X 25 mm. The average bending strength was 263 +/- 44 MPa while the average bending modulus was 19.6 +/- 3.1 GPa. The calcium content was determined by atomic absorption spectrophotometry and no correlation was found with the mechanical properties. The histology of the cortical bone was examined both quantitatively and qualitatively. A unique type of Haversian bone is described. Goose bone was found to be morphologically similar to adolescent human bone and to have mechanical properties similar to those of adult human bone.  相似文献   

11.
Loading bone beyond its yield point creates microdamage, leading to reduction in stiffness. Previously, we related microdamage accumulation to changes in mechanical properties. Here, we develop a model that predicts stiffness loss based on the presence of microdamage. Modeling is done at three levels: (1) a single trabecula, (2) a cellular solid consisting of intact, damaged, and fractured trabeculae, and (3) a specimen with a localized damage band. Predictions of a reduced modulus agree well with experimental measured modulus reductions of post-yield compression of bovine trabecular bone. The predicted reduced modulus is relatively insensitive to changes in the input parameters.  相似文献   

12.
Measuring the microscopic mechanical properties of bone tissue is important in support of understanding the etiology and pathogenesis of many bone diseases. Knowledge about these properties provides a context for estimating the local mechanical environment of bone related cells thait coordinate the adaptation to loads experienced at the whole organ level. The objective of this study was to determine the effects of experimental testing parameters on nanoindentation measures of lamellar-level bone mechanical properties. Specifically, we examined the effect of specimen preparation condition, indentation depth, repetitive loading, time delay, and displacement rate. The nanoindentation experiments produced measures of lamellar elastic moduli for human cortical bone (average value of 17.7 +/- 4.0 GPa for osteons and 19.3 +/- 4.7 GPa for interstitial bone tissue). In addition, the hardness measurements produced results consistent with data in the literature (average 0.52 +/- 0.15 GPa for osteons and 0.59 +/- 0.20 GPa for interstitial bone tissue). Consistent modulus values can be obtained from a 500-nm-deep indent. The results also indicated that the moduli and hardnesses of the dry specimens are significantly greater (22.6% and 56.9%, respectively) than those of the wet and wet and embedded specimens. The latter two groups were not different. The moduli obtained at a 5-nm/s loading rate were significantly lower than the values at the 10- and 20-nm/s loading rates while the 10- and 20-nm/s rates were not significantly different. The hardness measurements showed similar rate-dependent results. The preliminary results indicated that interstitial bone tissue has significantly higher modulus and hardness than osteonal bone tissue. In addition, a significant correlation between hardness and elastic modulus was observed.  相似文献   

13.
High-resolution architecture-based finite element models are commonly used for characterizing the mechanical behavior of cancellous bone. The vast majority of studies use homogeneous material properties to model trabecular tissue. The objectives of this study were to demonstrate that inhomogeneous finite element models that account for microcomputed tomography-measured tissue modulus variability more accurately predict the apparent stiffness of cancellous bone than homogeneous models, and to examine the sensitivity of an inhomogeneous model to the degree of tissue property variability. We tested five different material cases in finite element models of ten cancellous cubes in simulated uniaxial compression. Three of these cases were inhomogeneous and two were homogeneous. Four of these cases were unique to each specimen, and the remaining case had the same tissue modulus for all specimens. Results from all simulations were compared with measured elastic moduli from previous experiments. Tissue modulus variability for the most accurate of the three inhomogeneous models was then artificially increased to simulate the effects of non-linear CT-attenuation-modulus relationships. Uniqueness of individual models was more critical for model accuracy than level of inhomogeneity. Both homogeneous and inhomogeneous models that were unique to each specimen had at least 8% greater explanatory power for apparent modulus than models that applied the same material properties to all specimens. The explanatory power for apparent modulus of models with a tissue modulus coefficient of variation (COV) range of 21-31% was 13% greater than homogeneous models (COV=0). The results of this study indicate that inhomogenous finite element models that have tissue moduli unique to each specimen more accurately predict the elastic behavior of cancellous cubic specimens than models that have common tissue moduli between all specimens.  相似文献   

14.
The characterization of the biomechanical properties of newly formed bone tissue around implants is important to understand the osseointegration process. The objective of this study is to investigate the evolution of the hardness and indentation modulus of newly formed bone tissue as a function of healing time. To do so, a nanoindentation device is employed following a multimodality approach using histological analysis. Coin-shaped implants were placed in vivo at a distance of 200 μm from the cortical bone surface, leading to an initially empty cavity of 200 μm * 4.4 mm. Three New Zealand White rabbits were sacrificed after 4, 7, and 13 weeks of healing time. The bone samples were embedded and analyzed using histological analyses, allowing to distinguish mature and newly formed bone tissue. The bone mechanical properties were then measured in mature and newly formed bone tissue. The results are within the range of hardness and apparent Young's modulus values reported in previous literature. One-way ANOVA test revealed a significant effect of healing time on the indentation modulus (p < 0.001, F = 111.24) and hardness (p < 0.02, F = 3.47) of bone tissue. A Tukey-Kramer analysis revealed that the biomechanical properties of newly formed bone tissue (4 weeks) were significantly different from those of mature bone tissue. The comparison with the results obtained in Mathieu et al. (2011, "Micro-Brillouin Scattering Measurements in Mature and Newly Formed Bone Tissue Surrounding an Implant," J. Biomech. Eng., 133, 021006). shows that bone mass density increases by approximately 13.5% between newly formed bone (7 weeks) and mature bone tissue.  相似文献   

15.
The convergence behavior of finite element models depends on the size of elements used, the element polynomial order, and on the complexity of the applied loads. For high-resolution models of trabecular bone, changes in architecture and density may also be important. The goal of this study was to investigate the influence of these factors on the convergence behavior of high-resolution models of trabecular bone. Two human vertebral and two bovine tibial trabecular bone specimens were modeled at four resolutions ranging from 20 to 80 microns and subjected to both compressive and shear loading. Results indicated that convergence behavior depended on both loading mode (axial versus shear) and volume fraction of the specimen. Compared to the 20 microns resolution, the differences in apparent Young's modulus at 40 microns resolution were less than 5 percent for all specimens, and for apparent shear modulus were less than 7 percent. By contrast, differences at 80 microns resolution in apparent modulus were up to 41 percent, depending on the specimen tested and loading mode. Overall, differences in apparent properties were always less than 10 percent when the ratio of mean trabecular thickness to element size was greater than four. Use of higher order elements did not improve the results. Tissue level parameters such as maximum principal strain did not converge. Tissue level strains converged when considered relative to a threshold value, but only if the strains were evaluated at Gauss points rather than element centroids. These findings indicate that good convergence can be obtained with this modeling technique, although element size should be chosen based on factors such as loading mode, mean trabecular thickness, and the particular output parameter of interest.  相似文献   

16.
The compressive properties of human cancellous bone of the distal intracondylar femur in its wet condition were determined. Specimens were obtained from six cadaveric femora and were tested at a strain rate of 0.002, 0.10 and 9.16 sec−1. It was found that the compressive strength decreases with an increasing vertical distance from the joint. The highest compressive strength level was recorded in the posterior medial condyle. Correlations among the mechanical properties, the bulk specimen density and the bone mineral content yield (i) highly significant correlations between the compressive strength and the elastic modulus (ii) highly significant correlations between the compressive strength or the modulus of elasticity and the bulk specimen density (iii) a doubtful correlation between the compressive strength and the bone mineral content. All recorded graphs of the impact loaded specimens displayed several well defined stress peaks, unlike the graphs recorded at low loading rates. It can be concluded that upon impact loading the localized trabecular failure which is associated with each peak, does not affect the spongy bone's stress capacity in a detrimental way.  相似文献   

17.
The objective of this study was to examine the dependence of the elastic properties of cortical bone as a transversely isotropic material on its porosity. The longitudinal Young's modulus, transverse Young's modulus, longitudinal shear modulus, transverse shear modulus, and longitudinal Poisson's ratio of cortical bone were determined from eighteen groups of longitudinal and transverse specimens using tensile and torsional tests on a servo-hydraulic material testing system. These cylindrical waisted specimens of cortical bone were harvested from the middle diaphysis of three pairs of human femora. The porosity of these specimens was assessed by means of histology. Our study demonstrated that the longitudinal Young's and shear moduli of human femoral cortical bone were significantly (p<0.01) negatively correlated with the porosity of cortical bone. Conversely, the elastic properties in the transverse direction did not have statistically significant correlations with the porosity of cortical bone. As a result, the transverse elastic properties of cortical bone were less sensitive to changes in porosity than those in the longitudinal direction. Additionally, the anisotropic ratios of cortical bone elasticity were found to be significantly (p<0.01) negatively correlated with its porosity, indicating that cortical bone tended to become more isotropic when its porosity increased. These results may help a number of researchers develop more accurate micromechanics models of cortical bone.  相似文献   

18.
Determining accurate density-mechanical property relationships for trabecular bone is critical for correct characterization of this important structure-function relation. When testing any excised specimen of trabecular bone, an unavoidable experimental artifact originates from the sides of the specimen where peripheral trabeculae lose their vertical load-bearing capacity due to interruption of connectivity, a phenomenon denoted here as the 'side-artifact'. We sought in this study to quantify the magnitude of such side-artifact errors in modulus measurement and to do so as a function of the trabecular architecture and specimen size. Using parametric computational analysis of high-resolution micro-CT-based finite-element models of cores of elderly human vertebral trabecular bone, a specimen-specific correction factor for the side-artifact was quantified as the ratio of the side-artifact-free apparent modulus (Etrue) to the apparent modulus that would be measured in a typical experiment (Emeasured). We found that the width over which the peripheral trabeculae were mostly unloaded was between 0.19 and 0.58 mm. The side-artifact led to an underestimation error in Etrue of over 50% in some specimens, having a mean (+/-SD) of 27+/-11%. There was a trend for the correction factor to linearly increase as volume fraction decreased (p=0.001) and as mean trabecular separation increased (p<0.001). Further analysis indicated that the error increased substantially as specimen size decreased. Two methods used for correcting for the side-artifact were both successful in bringing Emeasured into statistical agreement with Etrue. These findings have important implications for the interpretation of almost all literature data on trabecular bone mechanical properties since they indicate that such properties need to be adjusted to eliminate the substantial effects of side-artifacts in order to provide more accurate estimates of in situ behavior.  相似文献   

19.
The goal of this study was to provide material property data for the cement/bone composite resulting from the introduction of PMMA bone cement into human vertebral bodies. A series of quasistatic tensile and compressive mechanical tests were conducted using cement/bone composite structures machined from cement-infiltrated vertebral bodies. Experiments were performed both at room temperature and at body temperature. We found that the modulus of the composite structures was lower than bulk cement (p<0.0001). For compression at 37( composite function)C: composite =2.3+/-0.5GPa, cement =3.1+/-0.2GPa; at 23( composite function)C: composite =3.0+/-0.3GPa, cement =3.4+/-0.2GPa. Specimens tested at room temperature were stiffer than those tested at body temperature (p=0.0004). Yield and ultimate strength factors for the composite were all diminished (55-87%) when compared to cement properties. In general, computational models have assumed that cement/bone composite had the same modulus as cement. The results of this study suggest that computational models of cement infiltrated vertebrae and cemented arthroplasties could be improved by specifying different material properties for cement and cement/bone composite.  相似文献   

20.
Acoustic microscopy (30-60 microm resolution) and nanoindentation (1-5 microm resolution) are techniques that can be used to evaluate the elastic properties of human bone at a microstructural level. The goals of the current study were (1) to measure and compare the Young's moduli of trabecular and cortical bone tissues from a common human donor, and (2) to compare the Young's moduli of bone tissue measured using acoustic microscopy to those measured using nanoindentation. The Young's modulus of cortical bone in the longitudinal direction was about 40% greater than (p<0.01) the Young's modulus in the transverse direction. The Young's modulus of trabecular bone tissue was slightly higher than the transverse Young's modulus of cortical bone, but substantially lower than the longitudinal Young's modulus of cortical bone. These findings were consistent for both measurement methods and suggest that elasticity of trabecular tissue is within the range of that of cortical bone tissue. The calculation of Young's modulus using nanoindentation assumes that the material is elastically isotropic. The current results, i.e., the average anisotropy ratio (E(L)/E(T)) for cortical bone determined by nanoindentation was similar to that determined by the acoustic microscope, suggest that this assumption does not limit nanoindentation as a technique for measurement of Young's modulus in anisotropic bone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号