首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Population effects of malaria vaccination programs will depend on a complex interaction of the stage specificity of the vaccine, its duration of effectiveness, whether it is responsive to natural boosting, the strategy implemented, the proportion vaccinated and the pre-existing endemic conditions. In this article, Elizabeth Halloran and Claudio Struchiner review models of malaria transmission that incorporate aspects of immunity relevant to studying the effects of stage-specific malaria vaccination programs. They discuss the difference in the assumptions and applicability of the models and compare their predictions. Experience with malaria has demonstrated the difficulty in eliminating transmission, so emphasis needs to be on the new host-parasite balance that will be induced by the vaccination program. Although Halloran and Struchiner advise caution in interpreting the results of such models, they conclude that quantitative and theoretical analysis will be important in planning and evaluating interventions with malaria vaccines.  相似文献   

2.
A simple, visual representation of spatial aspects of malaria transmission in successive snap-shots in time, is presented. The spatial components of the simulation involve (i) the identification of mosquito vector breeding sites of defined shape and area, (ii) the identification of a zone of malaria transmission determined by the shapes and areas of the vector breeding sites and the distance from these sites that the mosquitoes disperse, (iii) a human population dispersed in relation to the malaria transmission zone, (iv) perimeters around each individual human within which his or her infection can be transmitted by the local vector mosquitoes. The intensity of transmission within a malaria transmission zone is given by a number which is the number of new cases of malaria that each existing case will distribute through the human population within the duration of an infection. The simulation has been used here to examine the effects of vaccination against malaria transmission. Different levels of vaccine coverage are represented under endemic and epidemic malaria. The consequences of full or partial coverage of a zone of malaria transmission are also examined. The results are numerically compatible with the predictions of previous simple mathematical simulations of malaria transmission and interventions. The present simulation allows the nature of malaria transmission and the effects of interventions to be communicated easily and directly to an audience. It could have practical value in discussions of malaria control strategies with health planners.  相似文献   

3.
Modeling malaria vaccines. I: New uses for old ideas   总被引:1,自引:0,他引:1  
Starting from a modification of the model of malaria transmission developed for the Garki project, this paper develops a model containing variables relevant to the stimulation of malaria vaccination programs. Modifications include (1) integration of maintenance of immunity dependent on boosting and the possibility of loss of immunity; (2) introduction of a boosting factor distinct from susceptibility to infection; (3) reinterpretation of the epidemiological compartments of positive immunes and nonimmunes in terms of severity of disease rather than just infection; (4) interpretation of the different stage-specific levels of immunity; (5) discrimination between different susceptibilities for the immune and nonimmune classes; (6) reformulation of the expression for acquisition of immunity to be biologically more acceptable. Simulations using the Garki model, Nedelman's modification of it, and our Basic model compare the similarities and differences in the predictive behavior of the models. Simulations using the Basic model reproduce observed periodic fluctuations of malaria attributed to the interplay of transmission-blocking immunity and loss of immunity in the absence of boosting in areas of unstable malaria transmission.  相似文献   

4.
Salmonella spp. in cattle contribute to bacterial foodborne disease for humans. Reduction of Salmonella prevalence in herds is important to prevent human Salmonella infections. Typical control measures are culling of infectious animals, vaccination, and improved hygiene management. Vaccines have been developed for controlling Salmonella transmission in dairy herds; however, these vaccines are imperfect and a variety of vaccine effects on susceptibility, infectiousness, Salmonella shedding level, and duration of infectious period were reported. To assess the potential impact of imperfect Salmonella vaccines on prevalence over time and the eradication criterion, we developed a deterministic compartmental model with both replacement (cohort) and lifetime (continuous) vaccination strategies, and applied it to a Salmonella Cerro infection in a dairy farm. To understand the uncertainty of prevalence and identify key model parameters, global parameter uncertainty and sensitivity analyses were performed. The results show that imperfect Salmonella vaccines reduce the prevalence of Salmonella Cerro. Among three vaccine effects that were being considered, decreasing the length of the infectious period is most effective in reducing the endemic prevalence. Analyses of contour lines of prevalence or the critical reproduction ratio illustrate that, reducing prevalence to a certain level or zero can be achieved by choosing vaccines that have either a single vaccine effect at relatively high effectiveness, or two or more vaccine effects at relatively low effectiveness. Parameter sensitivity analysis suggests that effective control measures through applying Salmonella vaccines should be adjusted at different stages of infection. In addition, lifetime (continuous) vaccination is more effective than replacement (cohort) vaccination. The potential application of the developed vaccination model to other Salmonella serotypes related to foodborne diseases was also discussed. The presented study may be used as a tool for guiding the development of Salmonella vaccines.  相似文献   

5.
Vaccines could be a crucial component of efforts to eradicate malaria. Current attempts to develop malaria vaccines are primarily focused on Plasmodium falciparum and are directed towards reducing morbidity and mortality. Continued support for these efforts is essential, but if malaria vaccines are to be used as part of a repertoire of tools for elimination or eradication of malaria, they will need to have an impact on malaria transmission. We introduce the concept of "vaccines that interrupt malaria transmission" (VIMT), which includes not only "classical" transmission-blocking vaccines that target the sexual and mosquito stages but also pre-erythrocytic and asexual stage vaccines that have an effect on transmission. VIMT may also include vaccines that target the vector to disrupt parasite development in the mosquito. Importantly, if eradication is to be achieved, malaria vaccine development efforts will need to target other malaria parasite species, especially Plasmodium vivax, where novel therapeutic vaccines against hypnozoites or preventive vaccines with effect against multiple stages could have enormous impact. A target product profile (TPP) for VIMT is proposed and a research agenda to address current knowledge gaps and develop tools necessary for design and development of VIMT is presented.  相似文献   

6.

Background

Sex-specific differences regarding the transmissibility and the course of infection are the rule rather than the exception in the epidemiology of sexually transmitted infections (STIs). Human papillomavirus (HPV) provides an example: disease outcomes differ between men and women, as does the potential for transmission to the opposite sex. HPV vaccination of preadolescent girls was recently introduced in many countries, and inclusion of boys in the vaccination programs is being discussed. Here, we address the question of whether vaccinating females only, males only, or both sexes is the most effective strategy to reduce the population prevalence of an STI like HPV.

Methods and Findings

We use a range of two-sex transmission models with varying detail to identify general criteria for allocating a prophylactic vaccine between both sexes. The most effective reduction in the population prevalence of infection is always achieved by single-sex vaccination; vaccinating the sex with the highest prevaccine prevalence is the preferred strategy in most circumstances. Exceptions arise only when the higher prevaccine prevalence is due to a substantially lower rate of natural immunity, or when natural immunity is lifelong, and a prolonged duration of infectiousness coincides with increased transmissibility. Predictions from simple models were confirmed in simulations based on an elaborate HPV transmission model. Our analysis suggests that relatively inefficient genital transmission from males to females might render male vaccination more effective in reducing overall infection levels. However, most existing HPV vaccination programs have achieved sufficient coverage to continue with female-only vaccination.

Conclusions

Increasing vaccine uptake among preadolescent girls is more effective in reducing HPV infection than including boys in existing vaccination programs. As a rule, directing prophylactic immunization at the sex with the highest prevaccine prevalence results in the largest reduction of the population prevalence. Please see later in the article for the Editors'' Summary  相似文献   

7.
The unique biology of Plasmodium vivax, with its ability to form latent hypnozoites in the liver stage and the early appearance of gametocytes during blood stage infection, makes it difficult to target for elimination with standard malaria control tools. Here, we use modelling studies to demonstrate that vaccines that target different stages of P. vivax could greatly assist efforts to eliminate P. vivax. Combination of vaccines that target different P. vivax life cycle stages may be required to achieve high efficacy. Our simulations demonstrate that repeated rounds of mass vaccination with multi-stage vaccines can help achieve pre-elimination levels of P. vivax in both low and high transmission settings. We review the status of global efforts to develop vaccines for P. vivax malaria. We describe the status of the leading P. vivax vaccine candidates and share some thoughts on the prospects for availability of an effective vaccine for P. vivax malaria.  相似文献   

8.
Immunity to malaria.   总被引:16,自引:0,他引:16  
Malaria remains prevalent throughout tropical and subtropical regions and almost a third of the World's population is exposed to the risk of infection. There is currently a serious resurgence of the disease in Asia and Central America. The failure of global eradication measures based upon the use of insecticides and chemotherapy has resulted from difficulties of practical implementation compounded by the spread of insecticide and drug resistance. Repeated natural infection does not produce detectable resistance to the exo-erythrocytic cycle of malaria in man. Irradiated sporzoite vaccines do, however, induce stage specific immunity in murine malaria and in a proportion of human subjects. Vaccinated individuals remain susceptible to blood stage infection which causes clinical malaria. In addition the vaccine is unstable and must be administered by intravenous inoculation. Since neither sporogonic nor exo-erythrocytic parasite development is cyclical in human malarias, there is little prospect for vaccine production through cultivation of these stages. The inhabitants of hyperendaemic areas become increasingly resistant to malaria during childhood and adolescence, through the slow development of specific, acquired immunity to asexual blood stage parasites. Immunity is mediated by antibody, which blocks merozoite invasion of red cells, as well as by cell mediated mechanisms and non-specific cytotoxic agents. Vaccination with merozoites induces long lasting immunity of broad serological specificity active against the blood-stage of the parasite. Merozoite vaccines can be preserved by freeze drying and harvested from continuous cultures of blood stage parasites. The major problem in development of a human merozoite vaccine concerns the requirement for Freund's complete adjuvant which is not acceptable for man. The effective immunity induced by vaccination contrasts with the slow development of incomplete resistance which follows repeated natural infection. The latter is associated with the generation of immune suppressor cells, lymphoid cell mitogens and soluble antigens, and in some species by the occurrence of antigenic variation--all of which may favour parasite survival. It is probable that vaccination with non-viable antigen of appropriate composition, induces immune effector processes without activating mechanisms which allow parasites to escape the consequences of immunity. Many effective vaccines such as those against measles, poliomyelitis, tetanus and rabies are commercially available but barely used in the developing world. The affected nations cannot afford their purchase, nor do the means exist for their distribution. It follows that if a safe and effective malaria vaccine were to be developed, its bulk manufacture and administration would require massive international support and cooperation.  相似文献   

9.
Studies on the natural immune responses to the sexual stages of malaria parasites have been reviewed in the context of human malaria transmission-blocking vaccines. Antibodies against the sexual stages of the malaria parasite, gametocytes and gametes, are readily evoked by natural malaria infections. These antibodies that suppress infectivity at high concentrations can, at low concentrations, enhance the development of the parasite in the mosquito; however, because enhancing antibodies are prevalent during natural malaria infections, it is likely that a vaccine would rapidly boost these antibodies to blocking levels. The immunogenicity of sexual stage antigens appears to be constrained in the human host, probably due to T epitope polymorphism and MHC restriction in humans. These constraints apply mainly to those antigens that are sensitive targets of host immunity such as the gamete surface antigens and not to internal gamete antigens, indicating that antigenic polymorphism may have evolved in response to immune selection pressure. Evidence for immunosuppression of the host by exposure to endemic malaria is presented and its consequences on vaccine development are discussed.  相似文献   

10.
A population with (individually) varying susceptibilities to infection and a vaccine with (individually) varying protective effect are considered. A simple stochastic model is used to illustrate different effects of the vaccine on the spread of the infection. The behavior of different estimators of the vaccine efficacy using data from a clinical trial and the relation between vaccine efficacy and the effectiveness of a vaccination program are discussed.  相似文献   

11.
Molecular techniques offer new approaches for malaria field trials, particularly PCR techniques, which facilitate accurate diagnosis of Plasmodium infections and increase the power of estimates of vaccine effects on malaria prevalence or incidence. Molecular methods also help to assess selective effects of vaccines. Longitudinal genotyping data can be used to initiate novel analyses of parasite dynamics, including estimates of incidence of infection with individual parasite clones and duration of infections. In addition, high-throughput methods can be used to apply these techniques routinely in randomized controlled trials, as well as programme-based evaluations of malaria control.  相似文献   

12.
The misery and suffering caused worldwide by infection with the malaria parasite, especially Plasmodium falciparum, has been well documented. Although no licensed vaccine against malaria currently exists, progress has accelerated in recent years towards the goal of developing one. Although the complexity of the malaria parasite has made the malaria vaccine development process tenuous, advances in science and in the vaccine development process as well as increases in funding are encouraging. These advances, coupled with the results of the recent clinical trial of the vaccine candidate RTS,S, have added new vigor to the idea that a malaria vaccine is not only possible but probable.  相似文献   

13.
There is no licenced vaccine against any human parasitic disease and Plasmodium falciparum malaria, a major cause of infectious mortality, presents a great challenge to vaccine developers. This has led to the assessment of a wide variety of approaches to malaria vaccine design and development, assisted by the availability of a safe challenge model for small-scale efficacy testing of vaccine candidates. Malaria vaccine development has been at the forefront of assessing many new vaccine technologies including novel adjuvants, vectored prime-boost regimes and the concept of community vaccination to block malaria transmission. Most current vaccine candidates target a single stage of the parasite's life cycle and vaccines against the early pre-erythrocytic stages have shown most success. A protein in adjuvant vaccine, working through antibodies against sporozoites, and viral vector vaccines targeting the intracellular liver-stage parasite with cellular immunity show partial efficacy in humans, and the anti-sporozoite vaccine is currently in phase III trials. However, a more effective malaria vaccine suitable for widespread cost-effective deployment is likely to require a multi-component vaccine targeting more than one life cycle stage. The most attractive near-term approach to develop such a product is to combine existing partially effective pre-erythrocytic vaccine candidates.  相似文献   

14.
Vaccination is the attempt to mimic certain aspects of an infection for the purpose of causing an immune response that will protect the individual from that infection. Malaria, a disease responsible for immense human suffering, is caused by infection with Plasmodium spp. parasites, which have a very complex life cycle--antigenically unique stages infect different tissues of the body. It is a parasitic disease for which no successful vaccine has been developed so far, despite considerable efforts to develop a subunit vaccine that offers protective immunity. Due to the spread of drug-resistant malaria, efforts to develop an effective vaccine have become increasingly critical. DNA vaccination provides a stable and long-lived source of protein vaccine capable of inducing both antibody- and cell-mediated immune responses to a wide variety of antigens. Injected DNA enters the cells of the host and makes the protein, which triggers the immune response. According to present needs, the flexibility of DNA vaccine technology permits the combination of multiple antigens from both the preerythrocytic and erythrocytic stages of malaria parasite. DNA vaccines with genes coding for different antigenic parts of malaria proteins have been created and presently some of these are undergoing field trials. The results from these trials will help to determine the likelihood of success of this technology in humans. This review presents an update of the studies carried out in malaria using DNA vaccine approach, the challenges, and the future prospects.  相似文献   

15.

Background

Heterogeneity in malaria exposure complicates survival analyses of vaccine efficacy trials and confounds the association between immune correlates of protection and malaria infection in longitudinal studies. Analysis may be facilitated by taking into account the variability in individual exposure levels, but it is unclear how exposure can be estimated at an individual level.

Method and Findings

We studied three cohorts (Chonyi, Junju and Ngerenya) in Kilifi District, Kenya to assess measures of malaria exposure. Prospective data were available on malaria episodes, geospatial coordinates, proximity to infected and uninfected individuals and residence in predefined malaria hotspots for 2,425 individuals. Antibody levels to the malaria antigens AMA1 and MSP1142 were available for 291 children from Junju. We calculated distance-weighted local prevalence of malaria infection within 1 km radius as a marker of individual''s malaria exposure. We used multivariable modified Poisson regression model to assess the discriminatory power of these markers for malaria infection (i.e. asymptomatic parasitaemia or clinical malaria). The area under the receiver operating characteristic (ROC) curve was used to assess the discriminatory power of the models. Local malaria prevalence within 1 km radius and AMA1 and MSP1142 antibodies levels were independently associated with malaria infection. Weighted local malaria prevalence had an area under ROC curve of 0.72 (95%CI: 0.66–0.73), 0.71 (95%CI: 0.69–0.73) and 0.82 (95%CI: 0.80–0.83) among cohorts in Chonyi, Junju and Ngerenya respectively. In a small subset of children from Junju, a model incorporating weighted local malaria prevalence with AMA1 and MSP1142 antibody levels provided an AUC of 0.83 (95%CI: 0.79–0.88).

Conclusion

We have proposed an approach to estimating the intensity of an individual''s malaria exposure in the field. The weighted local malaria prevalence can be used as individual marker of malaria exposure in malaria vaccine trials and longitudinal studies of natural immunity to malaria.  相似文献   

16.
Malaria during pregnancy can be severe in non-immune women, but in areas of stable transmission, where women are semi-immune and often asymptomatic during infection, malaria is an insidious cause of disease and death for mothers and their offspring. Sequelae, such as severe anaemia and hypertension in the mother and low birth weight and infant mortality in the offspring, are often not recognised as consequences of infection. Pregnancy malaria, caused by Plasmodium falciparum, is mediated by infected erythrocytes (IEs) that bind to chondroitin sulphate A and are sequestered in the placenta. These parasites have a unique adhesion phenotype and distinct antigenicity, which indicates that novel targets may be required for development of an effective vaccine. Women become resistant to malaria as they acquire antibodies against placental IE, which leads to higher haemoglobin levels and heavier babies. Proteins exported from the placental parasites have been identified, including both variant and conserved antigens, and some of these are in preclinical development for vaccines. A vaccine that prevents P. falciparum malaria in pregnant mothers is feasible and would potentially save hundreds of thousands of lives each year.  相似文献   

17.

Malaria remains a major health burden especially for the developing countries. Despite concerted efforts at using the current control tools, such as bed nets, anti malarial drugs and vector control measures, the disease is accountable for close to a million deaths annually. Vaccines have been proposed as a necessary addition to the armamentarium that could work towards elimination and eventual eradication of malaria in view of their historical significance in combating infectious diseases. However, because malaria vaccines would work differently depending on the targeted parasite stage, this review addresses the potential impact various malaria vaccine types could have on transmission. Further, because of the wide variation in the epidemiology of malaria across the endemic regions, this paper proposes that the ideal approach to malaria control ought to be tailor-made depending on the specific context. Finally, it suggests that although it is highly desirable to anticipate and aim for malaria elimination and eventual eradication, many affected regions should prioritize reduction of mortality and morbidity before aspiring for elimination.

  相似文献   

18.
Perspectives for malaria vaccination   总被引:4,自引:0,他引:4  
The need for vaccines to relieve the current global resurgence of malaria is apparent. Immunity is specific for each species of human malaria and for each stage in the life cycle. Once protective immunogens have been identified for one species, the homologous molecules in other species may lead to protection. The usefulness of a particular immunogen will be determined, in part, by its antigenic diversity in the population and the potential for boosting during natural infection. Successful immunization with malarial antigens may require adjuvants to induce effective, long-lived immunity. If different vaccines become available against each stage in the life cycle, then the composition of a particular vaccine may be tailored for different objectives: protection for short periods (for example, during epidemics and for tourists), decrease in disease and death, and malaria eradication.  相似文献   

19.
Studies of human immunodeficiency virus (HIV) vaccines in animal models suggest that it is difficult to induce complete protection from infection (sterilizing immunity) but that it is possible to reduce the viral load and to slow or prevent disease progression following infection. We have developed an age-structured epidemiological model of the effects of a disease-modifying HIV vaccine that incorporates the intrahost dynamics of infection, a transmission rate and host mortality that depend on the viral load, the possible evolution and transmission of vaccine escape mutant viruses, a finite duration of vaccine protection, and possible changes in sexual behavior. Using this model, we investigated the long-term outcome of a disease-modifying vaccine and utilized uncertainty analysis to quantify the effects of our lack of precise knowledge of various parameters. Our results suggest that the extent of viral load reduction in vaccinated infected individuals (compared to unvaccinated individuals) is the key predictor of vaccine efficacy. Reductions in viral load of about 1 log(10) copies ml(-1) would be sufficient to significantly reduce HIV-associated mortality in the first 20 years after the introduction of vaccination. Changes in sexual risk behavior also had a strong impact on the epidemic outcome. The impact of vaccination is dependent on the population in which it is used, with disease-modifying vaccines predicted to have the most impact in areas of low prevalence and rapid epidemic growth. Surprisingly, the extent to which vaccination alters disease progression, the rate of generation of escape mutants, and the transmission of escape mutants are predicted to have only a weak impact on the epidemic outcome over the first 25 years after the introduction of a vaccine.  相似文献   

20.
It is obvious that there is a critical need for an efficient malaria vaccine to accelerate malaria eradication. Currently, recombinant subunit vaccination against malaria using proteins and peptides is gaining attention. However, one of the major drawbacks of this approach is the lack of an efficient and durable immune response. Therefore, subunit vaccines require adjuvants to make the vaccine sufficiently immunogenic. Considering the history of the RTS,S vaccine, it seems likely that no single adjuvant is capable of eliciting all the protective immune responses required in many malarial subunit vaccines and the use of combination adjuvants will be increasingly important as the science of malaria vaccines advances. In light of this, it appears that identifying the most effective mixture of adjuvants with minimal adverse effects offers tremendous opportunities in improving the efficacy of vaccines against malaria. Owing to the importance of a multi-adjuvanted approach in subunit malaria vaccine development, this review paper outlines some of the best known combination adjuvants used in malaria subunit vaccines, focusing on their proposed mechanisms of action, their immunological properties, and their notable results. The aim of the present review is to consolidate these findings to aid the application of these combination adjuvants in experimental malaria vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号