首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Massé K  Eason R  Bhamra S  Dale N  Jones EA 《Genomics》2006,87(3):366-381
The purines, ATP and adenosine, are important signaling molecules in the nervous system. ATP is sequentially degraded to adenosine by the ectonucleotidase proteins. The NTPDase (or CD39) family is a subfamily of these enzymes, which consists of nine members in mammals. In Xenopus embryos, we have shown that ATP, and its antagonist adenosine, regulate the rundown of swimming and we therefore proposed that ectonucleotidase proteins are key regulators of locomotor activity. Here, we report the cloning of all nine members of the NTPDase family in Xenopus laevis and Xenopus tropicalis. Our phylogenetic analysis shows that this family is highly conserved between the frog species and also during vertebrate evolution. In the adult frog, NTPDase genes are broadly expressed. During development, all NTPDase genes, except for NTPDase8, are expressed and display a distinct specific expression pattern, suggesting potentially different functions of these proteins during embryogenesis of X. laevis.  相似文献   

3.
Frequently, although not exclusively, multidrug resistance (MDR) results from the action of drug-efflux pumps, which are thought to be able to catalyze the active expulsion of several unrelated cytotoxic compounds out of the cell or their intracellular partitioning. The transporters of the major facilitator superfamily (MFS) presumably involved in MDR belong to the 12-spanner drug:H(+) antiporter DHA1 or to the 14- spanner drug:H(+) antiporter DHA2 families. The expression of most Saccharomyces cerevisiae DHA1 family members was found to confer broad chemoprotection. The evolution of the hemiascomycetous DHA1 proteins, belonging to the Génolevures GL3C007 family, was studied using a combined phylogenetic and gene neighborhood approach. The phylogenetic analysis of 189 DHA1 proteins belonging to the genome of 13 hemiascomycetous species identified 20 clusters. Eleven clusters contained no S. cerevisiae members. The phylogenetic clusters were analyzed by the IONS method developed for Identification of Orthologues by Neighborhood and Similarity. This allowed reconstructing the evolutionary history of most DHA1 members within 10 main gene lineages, spanning the whole hemiascomycetes clade, encompassing an evolutionary history of about 350 million years. In addition, five other more species specific lineages, spanning only two hemiascomycetous species, were identified. It is concluded that 57 out of the 143 members of the DHA1 hemiascomycetous members originated from gene duplication events. In half of these duplicates, the two members belong to different phylogenetic clusters, indicating that at least one of them has sufficiently differentiated to provide potential novel functions to this complex family from which most physiological substrates remain unknown.  相似文献   

4.
5.
Members of the Ikaros multigene family of zinc finger proteins are expressed in a tissue-specific manner and most are critical determinants in the development of both the B and T lymphocytes as well as NK and dendritic APC lineages. A PCR amplification strategy that is based on regions of shared sequence identity in Ikaros multigene family members found in mammals and several other vertebrates has led to the recovery of cDNAs that represent the orthologues of Ikaros, Aiolos, Helios, and Eos in Raja eglanteria (clearnose skate), a cartilaginous fish that is representative of an early divergence event in the phylogenetic diversification of the vertebrates. The tissue-specific patterns of expression for at least two of the four Ikaros family members in skate resemble the patterns observed in mammals, i.e., in hematopoietic tissues. Prominent expression of Ikaros in skate also is found in the lymphoid Leydig organ and epigonal tissues, which are unique to cartilaginous fish. An Ikaros-related gene has been identified in Petromyzon marinus (sea lamprey), a jawless vertebrate species, in which neither Ig nor TCRs have been identified. In addition to establishing a high degree of evolutionary conservation of the Ikaros multigene family from cartilaginous fish through mammals, these studies define a possible link between factors that regulate the differentiation of immune-type cells in the jawed vertebrates and related factors of unknown function in jawless vertebrates.  相似文献   

6.
Intercellular adhesion molecules can be classified as Ca2+ dependent or Ca2+ independent. This classification has significant functional implications regarding cellular interactions. The best characterized Ca2(+)-dependent adhesion molecules, such as L-CAM or E-cadherin, belong to the family of closely related cell surface molecules called cadherins. On the other hand, those immunoglobulin supergene family members which function as adhesion molecules, such as neural cell adhesion molecule, have been found to be Ca2+ independent. In agreement with this generalization, we have recently shown that carcinoembryonic antigen (CEA) and nonspecific cross-reacting antigen (NCA), two closely related members of the CEA family, a subset of the immunoglobulin supergene family, function in vitro as Ca2(+)-independent adhesion molecules. In contrast, we show here that transfectants of a third member of the CEA family, biliary glycoprotein (BGP), also aggregate homotypically in suspension but require Ca2+ for aggregation. In addition, like the cadherins and unlike CEA or NCA or other adhesion molecules of the immunoglobulin supergene family, BGP transfectant aggregation requires physiological temperatures. Two forms of BGP, with three and two immunoglobulin C2-set domains, show Ca2(+)- and temperature-dependent adhesion, so that these properties do not reside in the third C2-set domain. The significance of this expression in the range of functional properties of the immunoglobulin supergene family and its CEA subset is discussed.  相似文献   

7.
8.
The MHC-encoded butyrophilin, BTN2A1, is a cell surface glycoprotein related to the extended family of B7 costimulatory molecules. BTN2A1 mRNA was expressed in most human tissues, but protein expression was significantly lower in leukocytes. An Ig-fusion protein of BTN2A1 bound to immature monocyte-derived dendritic cells. Binding diminished upon MoDC maturation and no binding was detected to Langerhans cells. Induction of the counterreceptor was IL-4 dependent and occurred early during dendritic cell differentiation. The interaction required the presence of Ca2+ and was mediated by high-mannose oligosaccharides. These properties matched DC-SIGN, a DC-specific HIV-1 entry receptor. This was confirmed by binding of soluble BTN2A1 to DC-SIGN-transfectants and its inhibition by a specific Ab. DC-SIGN bound to native BTN2A1 expressed on a range of tissues. However, BTN2A1 was not recognized on some normal cells such as HUVECs despite a similar expression level. The BTN2A1 of tumor cells such as HEK293T have more high-mannose moieties in comparison to HUVECs, and those high-mannose moieties are instrumental for binding to DC-SIGN. The data are consistent with tumor- or tissue-specific glycosylation of BTN2A1 governing recognition by DC-SIGN on immature monocyte-derived dendritic cells.  相似文献   

9.
The thioredoxin/glutaredoxin family consists of small heat-stable proteins that have a highly conserved CXXC active site and that participate in the regulation of many redox reactions. We have searched the human genome sequence to find putative pseudogenes (non-functional copies of protein-coding genes) for all known members of this family. This survey has resulted in the identification of seven processed pseudogenes for human Trx1 and two more for human Grx1. No evidence for the presence of processed pseudogenes has been found for the remaining members of this family. In addition, we have been unable to detect any non-processed pseudogenes derived from any member of the family in the human genome. The seven thioredoxin pseudogenes can be divided into two groups: Trx1-psi2, -psi3, -psi4, -psi5 and -psi6 arose from the functional ancestor, whereas Trx1-psi1 and -psi7 originated from Trx1-psi2 and -psi6, respectively. In all cases, the pseudogenes originated after the human/rodent radiation as shown by phylogenetic analysis. This is also the case for Grx1-psi1 and Grx1-psi2, which are placed between rodent and human sequences in the phylogenetic tree. Our study provides a molecular record of the recent evolution of these two genes in the hominid lineage.  相似文献   

10.
The database of Phylogeny and ALIgnment of homologous protein structures (PALI) contains three-dimensional (3-D) structure-dependent sequence alignments as well as structure-based phylogenetic trees of protein domains in various families. The latest updated version (Release 2.1) comprises of 844 families of homologous proteins involving 3863 protein domain structures with each of these families having at least two members. Each member in a family has been structurally aligned with every other member in the same family using two proteins at a time. In addition, an alignment of multiple structures has also been performed using all the members in a family. Every family with at least three members is associated with two dendrograms, one based on a structural dissimilarity metric and the other based on similarity of topologically equivalenced residues for every pairwise alignment. Apart from these multi-member families, there are 817 single member families in the updated version of PALI. A new feature in the current release of PALI is the integration, with 3-D structural families, of sequences of homologues from the sequence databases. Alignments between homologous proteins of known 3-D structure and those without an experimentally derived structure are also provided for every family in the enhanced version of PALI. The database with several web interfaced utilities can be accessed at: http://pauling.mbu.iisc.ernet.in/~pali.  相似文献   

11.
Lonze BE  Ginty DD 《Neuron》2002,35(4):605-623
  相似文献   

12.
Enzymes of the thiolase superfamily catalyze the formation of carbon-carbon bond via the Claisen condensation reaction. Thiolases catalyze the reversible non-decarboxylative condensation of acetoacetyl-CoA from two molecules of acetyl-CoA, and possess a conserved Cys-His catalytic diad. Elongation enzymes (beta-ketoacyl-acyl carrier protein synthase (KAS) I and KAS II and the condensing domain of polyketide synthase) have invariant Cys and two His residues (CHH triad), while a Cys-His-Asn (CHN) triad is found in initiation enzymes (KAS III, 3-ketoacyl-CoA synthase (KCS) and the chalcone synthase (CHS) family). These enzymes all catalyze decarboxylative condensation reactions. 3-Hydroxyl-3-methylglutaryl-CoA synthase (HMGS) also contains the CHN triad, although it catalyzes a non-decarboxylative condensation. That the enzymes of the thiolase superfamily share overall similarity in protein structure and function suggested a common evolutionary origin. All thiolases were found to have, in addition to the Cys-His diad, either Asn or His (thus C(N/H)H) at a position corresponding to the His in the CHH and CHN triads. In our phylogenetic analyses, the thiolase superfamily was divided into four main clusters according to active site architecture. During the functional divergence of the superfamily, the active architecture was suggested to evolve from the C(H)H in archaeal thiolases to the C(N/H)H in non-archaeal thiolases, and subsequently to the CHH in the elongation enzymes and the CHN in the initiation enzymes. Based on these observations and available biochemical and structural evidences, a plausible evolutionary history for the thiolase superfamily is proposed that includes the emergence of decarboxylative condensing enzymes accompanied by a recruitment of the His in the CHH and CHN triads for a catalytic role during decarboxylative condensation. In addition, phylogenetic analysis of the plant CHS family showed separate clustering of CHS and non-CHS members of the family with a few exceptions, suggesting repeated gene birth-and-death and re-invention of non-CHS functions throughout the evolution of angiosperms. Based on these observations, predictions on the enzymatic functions are made for several members of the CHS family whose functions are yet to be characterized. Further, a moss CHS-like enzyme that is functionally similar to a cyanobacterial enzyme was identified as the most recent common ancestor to the plant CHS family.  相似文献   

13.
The cloning, characterization and developmental expression patterns of two novel murine Hox genes, Hox-4.6 and Hox-4.7, are reported. Structural data allow us to classify the four Hox-4 genes located in the most upstream (5') position in the HOX-4 complex as members of a large family of homeogenes related to the Drosophila homeotic gene Abdominal B (AbdB). It therefore appears that these vertebrate genes are derived from a selective amplification of an ancestral gene which gave rise, during evolution, to the most posterior of the insect homeotic genes so far described. In agreement with the structural colinearity, these genes have very posteriorly restricted expression profiles. In addition, their developmental expression is temporally regulated according to a cranio-caudal sequence which parallels the physical ordering of these genes along the chromosome. We discuss the phylogenetic alternative in the evolution of genetic complexity by amplifying either genes or regulatory sequences, as exemplified by this system in the mouse and Drosophila. Furthermore, the possible role of 'temporal colinearity' in the ontogeny of all coelomic (metamerized) metazoans showing a temporal anteroposterior morphogenetic progression is addressed.  相似文献   

14.
15.
16.
17.
李晓旭  刘成  李伟  张增林  高晓明  周慧  郭永峰 《遗传》2016,38(5):444-460
WUSCHEL相关的同源异型盒(WUSCHEL-related homeobox,WOX)是一类植物特异的转录因子家族,具有调控植物干细胞分裂分化动态平衡等重要功能。本研究利用番茄(Solanum lycopersicum)基因组数据,通过建立隐马尔科夫模型并进行检索,鉴定了番茄10个WOX转录因子家族成员。多序列比对发现,番茄WOX转录因子家族成员具有高度保守的同源异型结构域;以拟南芥WOX转录因子家族成员序列为参照,通过邻接法、极大似然法、贝叶斯法重建了系统发育树,三者呈现出类似的拓扑结构,番茄和拟南芥WOX转录因子家族共25个成员被分为3个进化支(Clade)和9个亚家族(Subgroup);利用MEME和GSDS对WOX转录因子家族成员的蛋白保守结构域和基因结构进行了分析,同一亚家族内的WOX转录因子家族成员的保守结构域的种类、组织形式以及基因结构具有高度的一致性;利用Perl和Orthomcl对家族成员的染色体定位和同源性关系进行分析,结果表明串联重复的SlWOX3a和SlWOX3b可能来源于一次复制事件;利用番茄转录组数据和qRT-PCR进行表达分析,结果显示家族成员在不同组织中的表达存在差异,暗示了WOX家族的不同成员在功能上可能具有多样性。本研究对番茄WOX转录因子家族成员进行GO(Gene Ontology)注释和比较分析,结果表明该家族成员作为转录因子,可能在组织器官发育、细胞间通讯等过程中发挥作用。  相似文献   

18.
Milk lipid is secreted by a unique process, during which triacylglycerol droplets bud from mammary cells coated with an outer bilayer of apical membrane. In all current schemes, the integral protein butyrophilin 1A1 (BTN) is postulated to serve as a transmembrane scaffold, which interacts either with itself or with the peripheral proteins, xanthine oxidoreductase (XOR) and possibly perilipin‐2 (PLIN2), to form an immobile bridging complex between the droplet and apical surface. In one such scheme, BTN on the surface of cytoplasmic lipid droplets interacts directly with BTN in the apical membrane without binding to either XOR or PLIN2. We tested these models using both biochemical and morphological approaches. BTN was concentrated in the apical membrane in all species examined and contained mature N‐linked glycans. We found no evidence for the association of unprocessed BTN with intracellular lipid droplets. BTN‐enhanced green fluorescent protein was highly mobile in areas of mouse milk‐lipid droplets that had not undergone post‐secretion changes, and endogenous mouse BTN comprised only 0.5–0.7% (w/w) of the total protein, i.e. over 50‐fold less than in the milk‐lipid droplets of cow and other species. These data are incompatible with models of milk‐lipid secretion in which BTN is the major component of an immobile global adhesive complex and suggest that interactions between BTN and other proteins at the time of secretion are more transient than previously predicted. The high mobility of BTN in lipid droplets marks it as a potential mobile signaling molecule in milk .  相似文献   

19.
A novel family of membrane-bound E3 ubiquitin ligases   总被引:1,自引:0,他引:1  
A novel E3 ubiquitin ligase family that consists of viral E3 ubiquitin ligases (E3s) and their mammalian homologues was recently discovered. These novel E3s are membrane-bound molecules that share the secondary structure and catalytic domain for E3 activity. All family members have two transmembrane regions at the center and a RING-CH domain at the amino terminus. Forced expression of these novel E3s has been shown to reduce the surface expression of various membrane proteins through ubiquitination of target molecules. Initial examples of viral E3s were identified in Kaposi's sarcoma associated herpesvirus (KSHV) and murine gamma-herpesvirus 68 (MHV-68) and have been designated as modulator of immune recognition (MIR) 1, 2 and mK3, respectively. MIR 1, 2 and mK3 are able to down-regulate MHC class I molecule expression, and mK3 is required to establish an effective latent viral infection in vivo. The first characterized mammalian homologue to MIR 1, 2 and mK3 is c-MIR/MARCH VIII. Forced expression of c-MIR/MARCH VIII down-regulates B7-2, a co-stimulatory molecule important for antigen presentation. Subsequently, several mammalian molecules related to c-MIR/MARCH VIII have been characterized and named as membrane associated RING-CH (MARCH) family. However, the precise physiological function of MARCH family members remains as yet unknown.  相似文献   

20.
The prostate is a site of high expression of serine proteinases including members of the kallikrein-related peptidase (KLK) family, as well as other secreted and membrane-anchored serine proteinases. It has been known for some time that members of this enzyme family elicit cellular responses by acting directly on cells. More recently, it has been recognised that for serine proteinases with specificity for cleavage after arginine and lysine residues (trypsin-like or tryptic enzymes) these cellular responses are often mediated by cleavage of members of the proteinase-activated receptor (PAR) family--a four member sub-family of G protein-coupled receptors. Here, we review the expression of PARs in prostate, the ability of prostatic trypsin-like KLKs and other prostate-expressed tryptic enzymes to cleave PARs, as well as the prostate cancer-associated consequences of PAR activation. In addition, we explore the dysregulation of trypsin-like serine proteinase activity through the loss of normal inhibitory mechanisms and potential interactions between these dysregulated enzymes leading to aberrant PAR activation, intracellular signalling and cancer-promoting cellular changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号