首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hypothalamic-pituitary-adrenal (HPA) axis plays an important role in regulating and controlling immune responses. Dysfunction of the HPA axis has been implicated in the pathogenesis of rheumatoid arthritis (RA) and other rheumatic diseases. The impact of glucocorticoid (GC) therapy on HPA axis function also remains a matter of concern, particularly for longer treatment duration. Knowledge of circadian rhythms and the influence of GC in rheumatology is important: on the one hand we aim for optimal treatment of the daily undulating inflammatory symptoms, for example morning stiffness and swelling; on the other, we wish to disturb the HPA axis as little as possible. This review describes circadian rhythms in RA and other chronic inflammatory diseases, dysfunction of the HPA axis in RA and other rheumatic diseases and the recent concept of the hepato-hypothalamic-pituitary-adrenal-renal axis, the problem of adrenal suppression by GC therapy and how it can be avoided, and evidence that chronotherapy with modified release prednisone effective at 02:00 a.m. can inhibit proinflammatory sequelae of nocturnal inflammation better compared with GC administration in the morning but does not increase the risk of HPA axis insufficiency in RA.  相似文献   

2.
With aging, incidence of severe stress-related diseases increases. However, mechanisms, underlying individual vulnerability to stress and age-related diseases are not clear. The goal of this review is to analyze finding from the recent literature on age-related characteristics of the hypothalamic-pituitary-adrenal (HPA) axis associated with stress reactivity in animals that show behavioral signs of anxiety and depression under mild stress, and in human patients with anxiety disorders and depression with emphasis on the impact of the circadian rhythm and the negative feedback mechanisms involved in the stress response. One can conclude that HPA axis reaction to psycho-emotional stress, at least acute stress, increases in the aged individuals with anxiety and depression behavior. Elevated stress reactivity is associated with disruption of the circadian rhythm and the mineralocorticoid receptor-mediated glucocorticoid negative feedback. The disordered function of the HPA axis in individuals with anxiety and depression behavior can contribute to aging-related pathology.  相似文献   

3.
Increasing evidence suggests that the detrimental effects of glucocorticoid (GC) hypersecretion occur by activation of the hypothalamic-pituitary-adrenal (HPA) axis in several human pathologies, including obesity, Alzheimer's disease, AIDS dementia, and depression. The different patterns of response by the HPA axis during chronic activation are an important consideration in selecting an animal model to assess HPA axis function in a particular disorder. This article will discuss how chronic HPA axis activation and GC hypersecretion affect hippocampal function and contribute to the development of obesity. In the brain, the hippocampus has the highest concentration of GC receptors. Chronic stress or corticosterone treatment induces neuropathological alterations, such as dendritic atrophy in hippocampal neurons, which are paralleled by cognitive deficits. Excitatory amino acid (EAA) neurotransmission has been implicated in chronic HPA axis activation. EAAs play a major role in neuroendocrine regulation. Hippocampal dendritic atrophy may involve alterations in EAA transporter function, and decreased EAA transporter function may also contribute to chronic HPA axis activation. Understanding the molecular mechanisms of HPA axis activation will likely advance the development of therapeutic interventions for conditions in which GC levels are chronically elevated.  相似文献   

4.
ABSTRACT

Natural glucocorticoids, a class of cholesterol-derived hormones, modulate an array of metabolic, anti-inflammatory, immunosuppressive and cognitive signaling. The synthesis of natural glucocorticoids, largely cortisol in humans, is regulated by the hypothalamic-pituitary-adrenal (HPA) axis and exhibits pronounced circadian variation. Considering the central regulatory function of endogenous glucocorticoids, maintenance of the circadian activity of the HPA axis is essential to host survival and chronic disruption of such activity leads to systemic complications. There is a great deal of interest in synthetic glucocorticoids due to the immunosuppressive and anti-inflammatory properties and the development of novel dosing regimens that can minimize the disruption of endogenous activity, while still maintaining the pharmacological benefits of long-term synthetic glucocorticoid therapy. Synthetic glucocorticoids are associated with an increased risk of developing the pathological disorders related to chronic suppression of cortisol rhythmicity as a result of the potent negative feedback by synthetic glucocorticoids on the HPA axis precursors. In this study, a mathematical model was developed to explore the influence of chronopharmacological dosing of exogenous glucocorticoids on the endogenous cortisol rhythm considering intra-venous and oral dosing. Chronic daily dosing resulted in modification of the circadian rhythmicity of endogenous cortisol with the amplitude and acrophase of the altered rhythm dependent on the administration time. Simulations revealed that the circadian features of the endogenous cortisol rhythm can be preserved by proper timing of administration. The response following a single dose was not indicative of the response following long-term, repeated chronopharmacological dosing of synthetic glucocorticoids. Furthermore, simulations revealed the inductive influence of long-term treatment was only associated with low to moderate doses, while high doses generally led to suppression of endogenous activity regardless of the chronopharmacological dose. Finally, chronic daily dosing was found to alter the responsiveness of the HPA axis, such that a decrease in the amplitude of the cortisol rhythm resulted in a partial loss in the time-of-day dependent response to CRH stimulation, while an increase in the amplitude was associated with a more pronounced time-of-day dependence of the response.  相似文献   

5.
When vertebrates face stressful events, the hypothalamic–pituitary–adrenal (HPA) axis is activated, generating a rapid increase in circulating glucocorticoid (GC) stress hormones followed by a return to baseline levels. However, repeated activation of HPA axis may lead to increase in oxidative stress. One target of oxidative stress is telomeres, nucleoprotein complexes at the end of chromosomes that shorten at each cell division. The susceptibility of telomeres to oxidizing molecules has led to the hypothesis that increased GC levels boost telomere shortening, but studies on this link are scanty. We studied if, in barn swallows Hirundo rustica, changes in adult erythrocyte telomere length between 2 consecutive breeding seasons are related to corticosterone (CORT) (the main avian GC) stress response induced by a standard capture-restraint protocol. Within-individual telomere length did not significantly change between consecutive breeding seasons. Second-year individuals showed the highest increase in circulating CORT concentrations following restraint. Moreover, we found a decline in female stress response along the breeding season. In addition, telomere shortening covaried with the stress response: a delayed activation of the negative feedback loop terminating the stress response was associated with greater telomere attrition. Hence, among-individual variation in stress response may affect telomere dynamics.  相似文献   

6.
The profound anti-inflammatory effects of glucocorticoids in drug therapy are reflected in the effects in vivo of endogenous glucocorticoids produced by the adrenals. The production of adrenal glucocorticoids is driven by the hypothalamus and pituitary, which in turn are responsive to circulating products of the inflammatory response, especially cytokines. That inflammation can drive the production of anti-inflammatory glucocorticoids denotes the hypothalamic-pituitary-adrenal (HPA)-immune axis as a classic negative feedback control loop. Defects in HPA axis function are implicated in susceptibility to, and severity of, animal models of rheumatoid arthritis (RA), and are hypothesized to contribute to the human disease. In this paper, data supporting the concept of the HPA axis as a regulator of the inflammatory response in animal models of arthritis are reviewed, along with data from studies in humans. Taken together, these data support the hypothesis that the HPA axis provides one of the key mechanisms for inhibitory regulation of the inflammatory response. Manipulation of HPA axis-driven endogenous anti-inflammatory responses may provide new methods for the therapeutic control of inflammatory diseases.  相似文献   

7.
The hypothalamic suprachiasmatic nucleus (SCN) is an essential component of the circadian timing system, and an important determinant of neuroendocrine and metabolic regulation. Recent data indicate a modulatory role for the immune system on the circadian timing system. The authors investigated how the circadian timing system affects the hypothalamo-pituitary-adrenal (HPA) axis and glucose regulatory responses evoked by an immune challenge induced by lipopolysaccharide (LPS). LPS-induced increases in corticosterone were minimal during the trough of the daily corticosterone rhythm; in contrast, LPS effects on glucose, glucagon, and insulin did not vary across time-of-day. Complete ablation of the SCN resulted in increased corticosterone responses but did not affect LPS-induced hyperglycemia. The paraventricular nucleus (PVN) of the hypothalamus is an important neuroendocrine and autonomic output pathway for hypothalamic information, as well as one of the main target areas of the SCN. Silencing the neuronal activity in the PVN did not affect the LPS-induced corticosterone surge and only slightly delayed the LPS-induced plasma glucose and glucagon responses. Finally, surgical interruption of the neuronal connection between hypothalamus and liver did not affect the corticosterone response but slightly delayed the LPS-induced glucose response. Together, these data support the previously proposed circadian modulation of LPS-induced neuroendocrine responses, but they are at variance with the suggested major role for the hypothalamic pacemaker on the autonomic output of the hypothalamus, as reflected by the effects of LPS on glucose homeostasis. The latter effects are more likely due to direct interactions of LPS with peripheral tissues, such as the liver.  相似文献   

8.
9.
Prenatal stress impairs activity of the hypothalamo–pituitary–adrenal (HPA) axis in response to stress in adult offspring. So far, very few data are available on the effects of prenatal stress on circadian functioning of the HPA axis. Here, we studied the effects of prenatal stress on the circadian rhythm of corticosterone secretion in male and female adult rats. To evaluate the effects of prenatal stress on various regulatory components of corticosterone secretion, we also assessed the diurnal fluctuation of adrenocorticotropin, total and free corticosterone levels, and hippocampal corticosteroid receptors. Finally, in the search of possible maternal factors, we studied the effects of repeated restraint stress on the pattern of corticosterone secretion in pregnant female rats. Results demonstrate that prenatal stress induced higher levels of total and free corticosterone secretion at the end of the light period in both males and females, and hypercorticism over the entire diurnal cycle in females. No diurnal fluctuation of adrenocorticotropin was observed in any group studied. The effects of prenatal stress on corticosterone secretion could be mediated, at least in part, by a reduction in corticosteroid receptors at specific times of day. Results also show that prepartal stress alters the pattern of corticosterone secretion in pregnant females. Those data indicate that prenatally stressed rats exhibit an altered temporal functioning of the HPA axis, which, taken together with their abnormal response to stress, reinforces the idea of a general homeostatic dysfunction in those animals. © 1999 John Wiley & Sons, Inc. J Neurobiol 40: 302–315, 1999  相似文献   

10.
Rat pups repeatedly subjected to brief periods of isolation during the stress hyporesponsive period (SHRP) exhibit varied neuroendocrine and behavioral changes as neonates and as adults. For example, neonatal rats exhibit increased circulating corticosterone after 1-h isolation on postnatal day 9 (P9) only if they were isolated daily from P2 to P8 [McCormick, C.M., Kehoe, P., Kovacs, S., 1998. Corticosterone release in response to repeated, short episodes of neonatal isolation: evidence of sensitization. Int. J. Dev. Neurosci. 16, 175-185]. It is not known if the increase in adrenocortical response on P9 following repeated isolation is mediated by increased pituitary ACTH secretion. The present study examined the responsivity of the hypothalamic-pituitary-adrenal (HPA) axis during the SHRP following brief, repeated isolation or acute pharmacological manipulation. Removal from the nest for 1 h daily on P4-8 increased circulating corticosterone after 1-h isolation on P9 by approximately twofold. Neither unhandled nor handled controls showed a corticosterone response to 1-h isolation on P9. The increased corticosterone was sexually dimorphic, with only females showing the sensitization response. Other findings suggest that the hormonal response is centrally mediated; chronically isolated pups of both sexes exhibit increased plasma ACTH following 1-h isolation on P9. While we could not detect an increase in Fos immunoreactivity (IR) on P9 in the hypothalamic paraventricular nucleus (PVN) of chronically isolated pups, acute pharmacological activation of serotonin 2A/2C receptors produced robust activation of ACTH and corticosterone secretion as well as expression of Fos in the PVN on P9. We conclude that chronic isolation stress limited to the SHRP stimulates the neonatal HPA axis, and that the adrenal response is sexually dimorphic. In addition, PVN neurons can express Fos IR on P9 in response to a very potent activation of the HPA axis.  相似文献   

11.
The daily rhythm of the adrenocortical cyclic nucleotides (cyclic AMP and cyclic GIMP) was studied in infant male and female Wistar rats before and after the establishment of an adult-like daily rhythm of plasma corticosterone. As in this strain the rhythm of corticosterone is known to be present on postnatal day 18, pups of 2 and 3 weeks of age were studied. The dams and the pups as well as the young adult animals were kept on a controlled 12L-12D photoperiod. Groups of 8-10 pups were killed at 4-hr intervals throughout the day. Plasma corticosterone levels and adrenal cyclic AMP and cyclic GMP concentrations were simultaneously measured and the daily patterns established. Pups of 2 weeks of age showed neither plasma corticosterone nor adrenal cyclic AMP rhythms whereas pups of 3 weeks of age exhibited a typical adult-like circadian rhythm for both variables. The patterns for adrenal cyclic GMP differed according to sex: In female pups no cyclic GMP circadian rhythm could be detected at either 2 or 3 wk. In male pups of 3 wk a typical mature rhythm for adrenal cyclic GMP was evident whereas in younger male pups (2 wk) a circadian rhythm was detected. This circadian rhythm, however, differed from mature circadian rhythm in that its peak was located at 1300 hr instead of 0700 hr. These results demonstrate that, unlike that of cyclic AMP the adrenal cyclic GMP circadian rhythm does not appear at the same time as the plasma corticosterone circadian rhythm. Moreover, a circadian rhythmicity for adrenal cyclic GMP can be found in the absence of any corticosterone circadian rhythm. These facts argue against the view of cyclic GMP being a mediator of ACTH-stimulated steroidogenesis.  相似文献   

12.
The daily rhythm of the adrenocortical cyclic nucleotides (cyclic AMP and cyclic GIMP) was studied in infant male and female Wistar rats before and after the establishment of an adult-like daily rhythm of plasma corticosterone. As in this strain the rhythm of corticosterone is known to be present on postnatal day 18, pups of 2 and 3 weeks of age were studied. The dams and the pups as well as the young adult animals were kept on a controlled 12L-12D photoperiod. Groups of 8–10 pups were killed at 4-hr intervals throughout the day. Plasma corticosterone levels and adrenal cyclic AMP and cyclic GMP concentrations were simultaneously measured and the daily patterns established. Pups of 2 weeks of age showed neither plasma corticosterone nor adrenal cyclic AMP rhythms whereas pups of 3 weeks of age exhibited a typical adult-like circadian rhythm for both variables. The patterns for adrenal cyclic GMP differed according to sex: In female pups no cyclic GMP circadian rhythm could be detected at either 2 or 3 wk. In male pups of 3 wk a typical mature rhythm for adrenal cyclic GMP was evident whereas in younger male pups (2 wk) a circadian rhythm was detected. This circadian rhythm, however, differed from mature circadian rhythm in that its peak was located at 1300 hr instead of 0700 hr. These results demonstrate that, unlike that of cyclic AMP the adrenal cyclic GMP circadian rhythm does not appear at the same time as the plasma corticosterone circadian rhythm. Moreover, a circadian rhythmicity for adrenal cyclic GMP can be found in the absence of any corticosterone circadian rhythm. These facts argue against the view of cyclic GMP being a mediator of ACTH-stimulated steroidogenesis.  相似文献   

13.
Glucocorticoids are essential for normal hypothalamic-pituitary-adrenal (HPA) axis activity; however, recent studies warn that exposure to excess endogenous or synthetic glucocorticoid during a specific period of prenatal development adversely affects HPA axis stability. We administered dexamethasone (DEX) to pregnant rats during the last week of gestation and investigated subsequent HPA axis regulation in adult male offspring in unrestrained and restraint-stressed conditions. With the use of real-time PCR and RIA, we examined the expression of regulatory genes in the hippocampus, hypothalamus, and pituitary, including corticotropin-releasing hormone (CRH), arginine vasopressin (AVP), glucocorticoid receptors (GR), mineralcorticoid receptors (MR), and 11-beta-hydroxysteroid dehydrogenase-1 (11beta-HSD-1), as well as the main HPA axis hormones, adrenal corticotropic hormone (ACTH) and corticosterone (CORT). Our results demonstrate that the DEX-exposed group exhibited an overall change in the pattern of gene expression and hormone levels in the unrestrained animals. These changes included an upregulation of CRH in the hypothalamus, a downregulation of MR with a concomitant upregulation of 11beta-HSD-1 in the hippocampus, and an increase in circulating levels of both ACTH and CORT relative to unrestrained control animals. Interestingly, both DEX-exposed and control rats exhibited an increase in pituitary GR mRNA levels following a 1-h recovery from restraint stress; however, the increased expression in DEX-exposed rats was significantly less and was associated with a slower return to baseline CORT compared with controls. In addition, circulating levels of ACTH and CORT as well as hypothalamic CRH and hippocampal 11beta-HSD-1 expression levels were significantly higher in the DEX-exposed group compared with controls following restraint stress. Taken together, these data demonstrate that late-gestation DEX exposure in rats is associated with persistent changes in both the modulation of HPA axis activity and the HPA axis-mediated response to stress.  相似文献   

14.
The rapid activation of stress-responsive neuroendocrine systems is a basic reaction of animals to perturbations in their environment. One well-established response is that of the hypothalamo-pituitary-adrenal (HPA) axis. In rats, corticosterone is the major adrenal steroid secreted and is released in direct response to adrenocorticotropin (ACTH) secreted from the anterior pituitary gland. ACTH in turn is regulated by the hypothalamic factor, corticotropin-releasing hormone. A sex difference exists in the response of the HPA axis to stress, with females reacting more robustly than males. It has been demonstrated that in both sexes, products of the HPA axis inhibit reproductive function. Conversely, the sex differences in HPA function are in part due to differences in the circulating gonadal steroid hormone milieu. It appears that testosterone can act to inhibit HPA function, whereas estrogen can enhance HPA function. One mechanism by which androgens and estrogens modulate stress responses is through the binding to their cognate receptors in the central nervous system. The distribution and regulation of androgen and estrogen receptors within the CNS suggest possible sites and mechanisms by which gonadal steroid hormones can influence stress responses. In the case of androgens, data suggest that the control of the hypothalamic paraventricular nucleus is mediated trans-synaptically. For estrogen, modulation of the HPA axis may be due to changes in glucocorticoid receptor-mediated negative feedback mechanisms. The results of a variety of studies suggest that gonadal steroid hormones, particularly testosterone, modulate HPA activity in an attempt to prevent the deleterious effects of HPA activation on reproductive function.  相似文献   

15.
ABSTRACT

Endogenous glucocorticoids have diverse physiological effects and are important regulators of metabolism, immunity, cardiovascular function, musculoskeletal health and central nervous system activity. Synthetic glucocorticoids have received widespread attention for their potent anti-inflammatory activity and have become an important class of drugs used to augment endogenous glucocorticoid activity for the treatment of a host of chronic inflammatory conditions. Chronic use of synthetic glucocorticoids is associated with a number of adverse effects as a result of the persistent dysregulation of glucocorticoid sensitive pathways. A failure to consider the pronounced circadian rhythmicity of endogenous glucocorticoids can result in either supraphysiological glucocorticoid exposure or severe suppression of endogenous glucocorticoid secretion, and is thought be a causal factor in the incidence of adverse effects during chronic glucocorticoid therapy. Furthermore, given that synthetic glucocorticoids have potent feedback effects on the hypothalamic-pituitary-adrenal (HPA) axis, physiological factors which can give rise to individual variability in HPA axis activity such as sex, age, and disease state might also have substantial implications for therapy. We use a semi-mechanistic mathematical model of the rodent HPA axis to study how putative sex differences and individual variability in HPA axis regulation can influence the effects of long-term synthetic exposure on endogenous glucocorticoid circadian rhythms. Model simulations suggest that for the same drug exposure, simulated females exhibit less endogenous suppression than males considering differences in adrenal sensitivity and negative feedback to the hypothalamus and pituitary. Simulations reveal that homeostatic regulatory variability and chronic stress-induced regulatory adaptations in the HPA axis network can result in substantial differences in the effects of synthetic exposure on the circadian rhythm of endogenous glucocorticoids. In general, our results provide insight into how the dosage and exposure profile of synthetic glucocorticoids could be manipulated in a personalized manner to preserve the circadian dynamics of endogenous glucocorticoids during chronic therapy, thus potentially minimizing the incidence of adverse effects associated with long-term use of glucocorticoids  相似文献   

16.
Adaptations of the hypothalamic-pituitary-adrenal (HPA) axis to voluntary exercise in rodents are not clear, because most investigations use forced-exercise protocols, which are associated with psychological stress. In the present study, we examined the effects of voluntary wheel running on the circadian corticosterone (Cort) rhythm as well as HPA axis responsiveness to, and recovery from, restraint stress. Male Sprague-Dawley rats were divided into exercise (E) and sedentary (S) groups, with E rats having 24-h access to running wheels for 5 wk. Circadian plasma Cort levels were measured at the end of each week, except for week 5 when rats were exposed to 20 min of restraint stress, followed by 95 min of recovery. Measurements of glucocorticoid receptor content in the hippocampus and anterior pituitary were performed using Western blotting at the termination of the restraint protocol. In week 1, circadian Cort levels were twofold higher in E compared with S animals, but the levels progressively decreased in the E group throughout the training protocol to reach similar values observed in S by week 4. During restraint stress and recovery, Cort values were similar between E and S, as was glucocorticoid receptor content in the hippocampus and pituitary gland after death. Compared with E, S animals had higher plasma ACTH levels during restraint. Taken together, these data indicate that 5 wk of wheel running are associated with normal circadian Cort activity and normal negative-feedback inhibition of the HPA axis, as well as with increased adrenal sensitivity to ACTH after restraint stress.  相似文献   

17.
The insect moulting hormones, viz. the ecdysteroids, regulate gene expression during development by binding to an intracellular protein, the ecdysteroid receptor (EcR). In the insect Rhodnius prolixus, circulating levels of ecdysteroids exhibit a robust circadian rhythm. This paper demonstrates associated circadian rhythms in the abundance and distribution of EcR in several major target tissues of ecdysteroids, but not in others. Quantitative analysis of immunofluorescence images obtained by confocal laser-scanning microscopy following the use of anti-EcR has revealed a marked daily rhythm in the nuclear abundance of EcR in cells of the abdominal epidermis, brain, fat body, oenocytes and rectal epithelium of Rhodnius. This EcR rhythm is synchronous with the rhythm of circulating hormone levels. It free-runs in continuous darkness for several cycles, showing that EcR nuclear abundance is under circadian control. Circadian control of a nuclear receptor has not been shown previously in any animal. We infer that the above cell types detect and respond to the temporal signals in the rhythmic ecdysteroid titre. In several cell types, the rhythm in cytoplasmic EcR peaks several hours prior to the EcR peak in the nucleus each day, thereby implying a daily migration of EcR from the cytoplasm to the nucleus. This finding shows that EcR is not a constitutive nuclear receptor, as has previously been assumed. In the brain, rhythmic nuclear EcR has been found in peptidergic neurosecretory cells, indicating a potential pathway for feedback regulation of the neuroendocrine system by ecdysteroids, and also in regions containing circadian clock neurons, suggesting that the circadian timing system in the brain is also sensitive to rhythmic ecdysteroid signals. This work was supported by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada.  相似文献   

18.
The hypothalamic suprachiasmatic nucleus (SCN) is an essential component of the circadian timing system, and an important determinant of neuroendocrine and metabolic regulation. Recent data indicate a modulatory role for the immune system on the circadian timing system. The authors investigated how the circadian timing system affects the hypothalamo-pituitary-adrenal (HPA) axis and glucose regulatory responses evoked by an immune challenge induced by lipopolysaccharide (LPS). LPS-induced increases in corticosterone were minimal during the trough of the daily corticosterone rhythm; in contrast, LPS effects on glucose, glucagon, and insulin did not vary across time-of-day. Complete ablation of the SCN resulted in increased corticosterone responses but did not affect LPS-induced hyperglycemia. The paraventricular nucleus (PVN) of the hypothalamus is an important neuroendocrine and autonomic output pathway for hypothalamic information, as well as one of the main target areas of the SCN. Silencing the neuronal activity in the PVN did not affect the LPS-induced corticosterone surge and only slightly delayed the LPS-induced plasma glucose and glucagon responses. Finally, surgical interruption of the neuronal connection between hypothalamus and liver did not affect the corticosterone response but slightly delayed the LPS-induced glucose response. Together, these data support the previously proposed circadian modulation of LPS-induced neuroendocrine responses, but they are at variance with the suggested major role for the hypothalamic pacemaker on the autonomic output of the hypothalamus, as reflected by the effects of LPS on glucose homeostasis. The latter effects are more likely due to direct interactions of LPS with peripheral tissues, such as the liver. (Author correspondence: )  相似文献   

19.
We tested the hypothesis that the capuchin monkey adrenal (Cebus apella) gland has oscillatory properties that are independent of adrenocorticotropic hormone (ACTH) by exploring under ACTH suppression by dexamethasone: (i) maintenance of a circadian rhythm of plasma cortisol and (ii) clock time dependency of plasma cortisol response to exogenous ACTH. The capuchin monkey had a clear ACTH and plasma cortisol rhythm. Dexamethasone treatment resulted in low non-rhythmic ACTH levels and decreased cortisol to 1/10 of control values; nevertheless, the circadian rhythm of plasma cortisol persisted. We found that cortisol response to exogenous ACTH was clock time-dependent. The maximal response to ACTH occurred at the acrophase of the cortisol rhythm (0800 h). These results suggest that the capuchin monkey adrenal cortex may possess intrinsic oscillatory properties that participate in the circadian rhythm of adrenal cortisol secretion and in the circadian cortisol response to ACTH.  相似文献   

20.
哺乳动物的昼夜节律是基因编码的分子钟在体内产生的一种以大约24 h为周期的生理现象,使机体的生理过程与外界环境的变化相协调,是对环境适应的一种表现.在哺乳动物中,繁殖生理功能受生物钟系统的调节.在下丘脑-垂体-卵巢(hypothalamic-pituitary-ovarian,HPO)轴的各组织中均已观察到生物钟基因的...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号