首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Targeting cell division by chemotherapy is a highly effective strategy to treat a wide range of cancers. However, there are limitations of many standard-of-care chemotherapies: undesirable drug toxicity, side-effects, resistance and high cost. New small molecules which kill a wide range of cancer subtypes, with good therapeutic window in vivo, have the potential to complement the current arsenal of anti-cancer agents and deliver improved safety profiles for cancer patients. We describe results with a new anti-cancer small molecule, WEHI-7326, which causes cell cycle arrest in G2/M, cell death in vitro, and displays efficacious anti-tumor activity in vivo. WEHI-7326 induces cell death in a broad range of cancer cell lines, including taxane-resistant cells, and inhibits growth of human colon, brain, lung, prostate and breast tumors in mice xenografts. Importantly, the compound elicits tumor responses as a single agent in patient-derived xenografts of clinically aggressive, treatment-refractory neuroblastoma, breast, lung and ovarian cancer. In combination with standard-of-care, WEHI-7326 induces a remarkable complete response in a mouse model of high-risk neuroblastoma. WEHI-7326 is mechanistically distinct from known microtubule-targeting agents and blocks cells early in mitosis to inhibit cell division, ultimately leading to apoptotic cell death. The compound is simple to produce and possesses favorable pharmacokinetic and toxicity profiles in rodents. It represents a novel class of anti-cancer therapeutics with excellent potential for further development due to the ease of synthesis, simple formulation, moderate side effects and potent in vivo activity. WEHI-7326 has the potential to complement current frontline anti-cancer drugs and to overcome drug resistance in a wide range of cancers.Subject terms: Breast cancer, Cancer models, Cancer therapeutic resistance, Drug development, Mitosis  相似文献   

2.
Steroids are polycyclic compounds that have a wide range of biological activities. They are bio-synthesized from cholesterol through a series of enzyme-mediated transformations, so they are highly lipophilic and readily enter most cells to interact with intracellular receptors, making them ideal vehicles for targeting a broad array of pathologies. New curative agents for cancers have been developed from several steroidal derivatives. Some biologically important properties of modified steroids are dependent on structural features of the steroid moiety and their side chains. Therefore, chemical derivatization of steroids provides a way to modify their function, and many structure–activity relationships have been confirmed by such synthetic modifications. Several studies demonstrate that steroidal heterocyclic derivatives can be effective in the prevention and treatment of many types of hormone-dependent cancers. The present review is a concise report on steroidal heterocyclic derivatives, with special emphasis on steroid heterocyclic derivatives with 5 membered rings or six-membered rings having interesting therapeutic potential as enzyme inhibitors and cytotoxic drugs to be used as candidates for anti-cancer drug development.  相似文献   

3.
This review discusses studies on marine macroalgae that have been investigated for their potential as sources of novel anti-cancer drugs. The review highlights the very large number of studies of crude, partially purified and purified seaweed extracts, collected from many locations, which have shown potential as sources of potent anti-cancer drugs when tested in vitro and/or in vivo. The activity of polysaccharides, polyphenols, proteinaceous molecules, carotenoids, alkaloids, terpenes and others is described here. In some reports, mechanistic studies have identified specific inhibitory activity on a number of key cellular processes including apoptosis pathways, telomerase and tumour angiogenesis. However, despite the potential shown by these studies, translation to clinically useful preparations is almost non-existent. It is hoped this review will serve as a source document and guide for those carrying out research into the potential use of macroalgae as a source of novel anti-cancer agents.  相似文献   

4.
Prodigiosins (PrGs) are a family of promising therapeutic molecules, isolated mostly from Gram-negative bacteria and characterized by a common pyrryldipyrrylmethene structure with varying side chains. They show a broad spectrum of activities such as anti-microbial, anti-malarial, anti-cancer and immunosuppressive. PrGs are attracting increasing attention due to the ongoing research for less toxic, but effective agents for cancer chemotherapy and immunosuppression for preventing allograft rejection and autoimmunity. Different analogues have been synthesized and evaluated. This review discusses the immunosuppressive and anti-cancer activities of this class of compounds, as both involve inhibition of cell proliferation. The main focus is on the in vitro and in vivo immunosuppressive activity of the different PrGs and the mechanisms involved. PrGs primarily target the T cells, though some effects are observed on other cell types also. Unlike the well-known immunosuppressant cyclosporin A, PrGs do not inhibit the secretion of IL-2 but inhibit the mitogenic signaling from IL-2, suggesting a different mechanism of action. Janus tyrosine kinase 3 (Jak3) that associates with IL-2R upon activation is considered as the molecular target for PrGs. Its restricted expression makes Jak3 as an attractive target for immunosuppressive therapy. However, the available literature suggests that some other pathways are also influenced by the PrGs. These may be important for the anti-cancer activity, as well as immunosuppressive action. Therefore, PrGs appear to be potential candidates for pharmaceutical development as immunosuppressants and also as anti-cancer agents.  相似文献   

5.
6.
Denbinobin (5-hydroxy-3,7-dimethoxy- 1,4-phenanthraquinone), a biologically active chemical isolated from Ephemerantha lonchophylla, has been demonstrated to display anti-cancer activity. Breast cancer is the leading cause of female mortality, and the high mortality is mainly attributable to metastasis. Src kinase activity is elevated in many human cancers, including breast cancer, and is often associated with aggressive disease. In the present study, we examined the anti-metastatic effects of denbinobin through decreasing Src kinase activity in human and mouse breast cancer cells. Denbinobin caused significant block of Src kinase activity in both human and mouse breast cancer cells. Moreover, phosphorylation of the signaling molecules focal adhesion kinase, Crk-associated substrate and paxillin downstream of Src was also inhibited by denbinobin. Furthermore, denbinobin inhibited the in vitro migration, invasion and in vivo metastasis of breast cancers in a mouse metastatic model. The denbinobin-treated group showed a significant reduction in tumor metastasis, orthrotopic tumor volume, and spleen enlargement compared to the control group. In addition, transfection of breast cancer cells with a plasmid coding for a constitutively active Src prevented the denbinobin-mediated phosphorylation of Src and downstream molecules and cell migration. Our findings provide evidences that denbinobin inhibits Src-mediated signaling pathways involved in controlling breast cancer migration and metastasis, suggesting that it has therapeutic potential in breast cancer treatment.  相似文献   

7.
There is a growing interest for screening antitumor drugs for their mechanism of action on cancer cells. Yet, screening for “modes of action” presents a technical challenge that is beyond the capability of conventional methods used in cellular or molecular biology. Several studies have highlighted the advantages of using infrared spectroscopy for diagnostic purposes at the clinical level for identifying cell types. In the present work, we suggest that the Fourier Transform Infrared (FTIR) spectrum of cells exposed to anti-cancer drugs could offer a unique opportunity to obtain a fingerprint of all molecules present in the cells and to observe, with a high sensitivity, the metabolic changes induced by potential anti-cancer drugs. Ouabain is one of the most potent cardenolides, which acts by inhibiting sodium pump activity. Cardenolides represent a class of compounds that are intended to soon enter clinical trials in oncology. In order to evaluate the potential of infrared spectroscopy to yield a signature for ouabain action on cancer cells, human prostate cancer PC-3 cells were treated with 36 nM ouabain, a sub-lethal concentration. Using ouabain as a model, we have thus demonstrated the possibility of using IR spectroscopy in the assessment of the global effects of an investigational compound on the cell constituents, thus contributing to setting up a new method for screening for novel anti-cancer agents in general, and potential anti-cancer cardenolides in particular. The most spectacular data obtained strongly suggest a modification in the nature of the cell lipids.  相似文献   

8.
Oxidative metabolism is very active in brain, where large amounts of chemical energy as ATP molecules are consumed, mostly required to maintain cellular Na+/K+ gradients through the participation of the sodium pump (Na+,K+-ATPase), whose activity is selectively and potently inhibited by the alkaloid ouabain. Na+/K+ gradients are involved in nerve impulse propagation, in neurotransmitter release and cation homeostasis in the nervous system. Likewise, enzyme activity modulation is crucial for maintaining normal blood pressure and cardiovascular contractility as well as renal sodium excretion. The present article reviews the progress in disclosing putative ouabain-like substances, examines their denomination according to different research teams, tissue or biological fluid sources, extraction and purification, assays, biological properties and chemical and biophysical features. When data is available, comparison with ouabain itself is mentioned. Likewise, their potential action in normal physiology as well as in experimental and human pathology is summarized.  相似文献   

9.
The poor survival statistics of the fatal cancer diseases highlight the need for multiple alternative treatment options. An impressive embodiment of evidence shows that naturally occurring herbal products contain a wide variety of phytochemicals that are regarded as effective cancer protective agents, possessing the ability to retard, block or reverse carcinogenesis. These include dietary agents often termed as nutraceuticals and also the components of non-dietary plants. Many studies in different cell lines, animal models and human epidemiological trials suggest a protective role of a large number of medicinal molecules of herbal origin against different types of cancers. The standard chemotherapeutic regime against cancer faces an unequivocal challenge due to the severity of the side-effects and the post therapeutic management of the disease. Cancer control may therefore benefit from the anti-cancer potential of alternative therapies that may include herbal treatment which nonetheless has been an effective curative strategy reported for a number of diseases since ancient times. In congruence of the above idea, it has been observed that in recent years the demand to utilize alternative approaches to the treatment of cancer is escalating. Additionally, the emergence of resistance to cancer chemotherapy has forced researchers to turn to natural products of herbal and marine origin. Currently, in the armamentarium of anti-cancer pharmaceuticals there are effective plant-derived drugs such as paclitaxel (a complex taxane diterpene isolated from the bark of Taxus brevifolia) which acts as microtubule disruptor. Further there are plant-based dietary agents such as sulphoraphane (an isothiocyanate derived from cruciferous vegetables) and non-dietary agents such as pomiferin (an isoflavonoid from Maclura pomifera) which strongly mimic chemotherapeutic drugs such as vorinostat (suberoylanilidehydroxamic acid) possessing histone diacetylase inhibition activity. In this review we provide a comprehensive outline of the translational potential of plant-based herbal medicine for complementing the current treatment modalities as an adjuvant or alternative therapy for cancer patients.  相似文献   

10.
The 2-amino-5-(2,4-dihydroxyphenyl)-1,3,4-thiadiazole set are well known compounds with interesting in vitro and in vivo anti-cancer profiles. The aim of this study was an in vitro evaluation of the anti-cancer activity of a new synthesized aminothiadiazole derivative 2-(3-chlorophenyloamino)-5-(2,4-dihydroxyphenyl)- -1,3,4-thiadiazole 4ClABT. The effect on tumor cell proliferation, motility and morphology, DNA synthesis as well as the influence on normal cells was assessed. The antiproliferative activity of 4ClABT in tumor cells derived from peripheral cancers including breast carcinoma (T47D), colon carcinoma (HT-29), thyroid carcinoma (FTC-238), teratoma (P19), and T-cell leukemia (Jurkat E6.1), as well as cancers of the nervous system including rhabdomyosarcoma/medulloblastoma (TE671), brain astrocytoma (MOGGCCM) and glioma (C6) was studied by means of MTT assay. DNA synthesis level was determined in BrdU ELISA test. Wound assay model was applied for tumor cell motility assessment. Morphological changes induced by 4ClABT in cancer and normal cells were analyzed in HE staining specimens. Moreover, the influence of 4ClABT on normal cells including skin fibroblasts (HSF), hepatocytes (Fao), astroglia and neurons was studied by means of LDH assay. The tested compound inhibited the proliferation of tumor cells in dose-dependent fashion. The anti-cancer effect was attributed to decreased DNA synthesis, prominent changes in tumor cell morphology as well as reduced cell motility. In antiproliferative concentrations, 4ClABT was not toxic to normal cells. Our study showed prominent anti-cancer effects of the tested aminothiadiazole derivative in the absence of toxicity in normal cells. The obtained results confirmed the promising anti-cancer profile of previously tested 2-(monohalogenphenylamino)- -5-(2,4-dihydroxyphenyl)-1,3,4-thiadiazole derivatives (ClABT - chlorophenyl derivative, FABT and 3FABT - fluorophenyl derivatives and 4BrABT - bromophenyl derivative). The molecular mechanisms and the in vivo activity of aminothiadiazole derivatives will be the subject of further studies.  相似文献   

11.
The urokinase plasminogen activator (uPA) and tissue plasminogen activator (tPA) are very similar serine proteases with the same physiological function, the activation of plasminogen. An increased amount or activity of uPA but not tPA has been detected in human cancers. The PAs are weak proteolytic enzymes, but they activate plasminogen to plasmin, a strong proteolytic enzyme largely responsible for the malignant properties of cancers. It has been shown recently that the administration of uPA inhibitors can reduce tumor size. Inhibitors of uPA could therefore be used as anti-cancer and anti-angiogenesis agents. It has been found that amiloride competitively inhibits the catalytic activity of uPA but not tPA. Modification of this chemical could therefore produce a new class of uPA specific inhibitors and a new class of anti-cancer agents. The X-ray structure of the uPA complex with amiloride is not known. There are structural differences in the specificity pocket of uPA and tPA. However, the potential energy of binding amiloride is lower outside this cavity in the case of tPA. A region responsible for binding amiloride to tPA has been proposed as the loop B93-B101, reached in negatively charged amino acids present in tPA but not uPA.  相似文献   

12.
HL Huang  HY Lee  AC Tsai  CY Peng  MJ Lai  JC Wang  SL Pan  CM Teng  JP Liou 《PloS one》2012,7(8):e43645
Recently, histone deacetylase (HDAC) inhibitors have emerged as a promising class of drugs for treatment of cancers, especially subcutaneous T-cell lymphoma. In this study, we demonstrated that MPT0E028, a novel N-hydroxyacrylamide-derived HDAC inhibitor, inhibited human colorectal cancer HCT116 cell growth in vitro and in vivo. The results of NCI-60 screening showed that MPT0E028 inhibited proliferation in both solid and hematological tumor cell lines at micromolar concentrations, and was especially potent in HCT116 cells. MPT0E028 had a stronger apoptotic activity and inhibited HDACs activity more potently than SAHA, the first therapeutic HDAC inhibitor proved by FDA. In vivo murine model, the growth of HCT116 tumor xenograft was delayed and inhibited after treatment with MPT0E028 in a dose-dependent manner. Based on in vivo study, MPT0E028 showed stronger anti-cancer efficacy than SAHA. No significant body weight difference or other adverse effects were observed in both MPT0E028-and SAHA-treated groups. Taken together, our results demonstrate that MPT0E028 has several properties and is potential as a promising anti-cancer therapeutic drug.  相似文献   

13.
In vivo and in vitro expressed N-terminal sequence of EWS (EAD) and hsRPB7 (subunit of human RNA polymerase II) were probed for protein–protein interactions using pull-down assays. In result, it was found that the proteins 57Z (residues 1–57 of EAD) and hsRPB7 interact in vitro forming a stable complex. The direct interaction between 57z and hsRPB7 indicate that DHR-related peptides and other small molecules, targeted to N-terminus of EWS might possess therapeutic potentialities as anti-cancer agents to function as inhibitors of EAD-mediated transactivation.  相似文献   

14.
15.
Sulfamoylated derivatives of the endogenous estrogen metabolite 2-methoxyestradiol (2-MeOE2 (7)), such as 2-methoxy-3-O-sulfamoyl estrone (2-MeOEMATE (1)), display greatly enhanced activity against the proliferation of human cancer cells and inhibit steroid sulphatase (STS), another current oncology target. We explore here the effects of steroidal D-ring modification on the activity of such 2-substituted estrogen-3-O-sulfamates in respect of inhibition of tumour cell proliferation and steroid sulphatase. The novel 17-deoxy analogues of 2-MeOEMATE and the related 2-ethyl and 2-methylsulfanyl compounds showed greatly reduced inhibition of MCF-7 proliferation. Introduction of a 17alpha-benzyl substituent to such 2-substituted estrogen sulfamates also proved deleterious to anti-proliferative activity but could, in one case, enhance STS inhibition with respect to the parent substituted estrone sulfamate. In contrast, selected 17-oxime derivatives of 2-MeOEMATE displayed an enhanced anti-proliferative activity. These results illustrate that enhanced in vitro anti-cancer activity can be achieved in the 2-substituted estrogen sulfamate series and highlight, in particular, the importance of potential hydrogen bonding effects around the steroidal D-ring in the activity of these molecules. The SAR parameters established herein will assist the future design of anti-proliferative and anti-endocrine agents as potential therapeutics for both hormone dependent and independent cancers.  相似文献   

16.
The amyloidoses are the extracellular subset of a group of diseases in which in vivo protein misfolding leads to a pathologic gain of function, i.e., aggregation leading to protein deposition, with subsequent tissue damage. Wild-type and mutant transthyretins (TTR) are the etiologic agents in prototypic systemic amyloidoses. We describe a cell-based assay that measures the cytotoxicity of physiologic concentrations of the amyloidogenic Val30Met TTR variant (V30M TTR) using cells of the same lineage as the in vivo tissue target of amyloid deposition. We have utilized the assay to screen small molecules for their capacity to inhibit the TTR-induced cell damage. We compared the inhibitory activity of each compound with its ability to prevent TTR fibril formation in vitro. Our results emphasize the importance of screening compounds under physiologic conditions. Moreover, if a common conformational intermediate is responsible for cell death in all the amyloid diseases, the cell-based assay has the potential to aid in the discovery of compounds useful in the treatment of amyloidoses caused by other misfolded proteins as well as those caused by TTR.  相似文献   

17.
We studied the effect of some modulators of signal transduction on the erythrocyte Na+/ K+-ATPase. Go6976 and Go6983 (protein kinase C inhibitors) showed a stimulatory effect and calyculin A (protein phosphatase inhibitor) exerted an inhibitory effect on the Na pump activity. Some of the tested modulators of cell-signaling [protein phosphatase(s), phosphodiesterase, calmodulin and some protein kinases] interfered with the lactoferrin (Lf) stimulatory effect on the sodium pump. Lf itself was able to modulate the effect of some agents upon the pump activity. Moreover, an additive effect of stimulation was found when Lf and some agents were used simultaneously. The summarized results showed that: (i) Lf upregulates the Na+/K+-ATPase in erythrocytes and facilitates the K+ influx into the erythrocytes; (ii) the effect of pump stimulation is mediated by phosphorylation processes. These results suggest a potential opportunity for using Lf alone or together with other agents as a stimulator of the erythrocyte Na+/K+-ATPase.  相似文献   

18.
Aberrant epigenetic silencing of tumor suppressor genes by promoter DNA hypermethylation and histone deacetylation plays an important role in the pathogenesis of cancer. The potential reversibility of epigenetic abnormalities encouraged the development of pharmacologic inhibitors of DNA methylation and histone deacetylation as anti-cancer therapeutics. (Pre)clinical studies of DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibitors have yielded encouraging results, especially against hematologic malignancies. Recently, several studies demonstrated that DNMT and HDAC inhibitors are also potent angiostatic agents, inhibiting (tumor) endothelial cells and angiogenesis in vitro and in vivo. By reactivation of epigenetically silenced tumor suppressor genes with angiogenesis inhibiting properties, DNMT and HDAC inhibitors might indirectly - via their effects on tumor cells - decrease tumor angiogenesis in vivo. However, this does not explain the direct angiostatic effects of these agents, which can be unraveled by gene expression studies and examination of epigenetic promoter modifications in endothelial cells treated with DNMT and HDAC inhibitors. Clearly, the dual targeting of epigenetic therapy on both tumor cells and tumor vasculature makes them attractive combinatorial anti-tumor therapeutics. Here we review the therapeutic potential of DNMT and HDAC inhibitors as anti-cancer drugs, as evaluated in clinical trials, and their angiostatic activities, apart from their inhibitory effects on tumor cells.  相似文献   

19.
Cap-dependent translation is a potential cancer-related target (oncotarget) due to its critical role in cancer initiation and progression. 4EGI-1, an inhibitor of eIF4E/eIF4G interaction, was discovered by screening chemical libraries of small molecules. 4EGI-1 inhibits cap-dependent translation initiation by impairing the assembly of the eIF4E/eIF4G complex, and therefore is a potential anti-cancer agent. Here, we report that 4EGI-1 also inhibits mTORC1 signaling independent of its inhibitory role on cap-dependent translation initiation. The inhibition of mTORC1 signaling by 4EGI-1 activates Akt due to both abrogation of the negative feedback loops from mTORC1 to PI3K and activation of mTORC2. We further validated that mTORC2 activity is required for 4EGI-1-mediated Akt activation. The activated Akt counteracted the anticancer effects of 4EGI-1. In support of this model, inhibition of Akt potentiates the antitumor activity of 4EGI-1 both in vitro and in a xenograft mouse model in vivo. Our results suggest that a combination of 4EGI-1and Akt inhibitor is a rational approach for the treatment of cancer.  相似文献   

20.
Cap-dependent translation is a potential cancer-related target (oncotarget) due to its critical role in cancer initiation and progression. 4EGI-1, an inhibitor of eIF4E/eIF4G interaction, was discovered by screening chemical libraries of small molecules. 4EGI-1 inhibits cap-dependent translation initiation by impairing the assembly of the eIF4E/eIF4G complex, and therefore is a potential anti-cancer agent. Here, we report that 4EGI-1 also inhibits mTORC1 signaling independent of its inhibitory role on cap-dependent translation initiation. The inhibition of mTORC1 signaling by 4EGI-1 activates Akt due to both abrogation of the negative feedback loops from mTORC1 to PI3K and activation of mTORC2. We further validated that mTORC2 activity is required for 4EGI-1-mediated Akt activation. The activated Akt counteracted the anticancer effects of 4EGI-1. In support of this model, inhibition of Akt potentiates the antitumor activity of 4EGI-1 both in vitro and in a xenograft mouse model in vivo. Our results suggest that a combination of 4EGI-1and Akt inhibitor is a rational approach for the treatment of cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号