首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Cdc4/34/53 pathway targets Cdc6p for proteolysis in budding yeast.   总被引:31,自引:6,他引:25       下载免费PDF全文
L S Drury  G Perkins    J F Diffley 《The EMBO journal》1997,16(19):5966-5976
The budding yeast Cdc6 protein (Cdc6p) is essential for formation of pre-replicative complexes (pre-RCs) at origins of DNA replication. Regulation of pre-RC assembly plays a key role in making initiation of DNA synthesis dependent upon passage through mitosis and in limiting DNA replication to once per cell cycle. Cdc6p is normally only present at high levels during the G1 phase of the cell cycle. This is partly because the CDC6 gene is only transcribed during G1. In this article we show that rapid degradation of Cdc6p also contributes to this periodicity. Cdc6p degradation rates are regulated during the cell cycle, reaching a peak during late G1/early S phase. Removal of a 47-amino-acid domain near the N-terminus of Cdc6p prevents degradation of Cdc6p. Likewise, mutations in the Cdc4/34/53 pathway involved in ubiquitin-mediated degradation block proteolysis and genetic evidence is presented indicating that the N-terminus of Cdc6p interacts with the Cdc4/34/53 pathway, probably through Cdc4p. A stable Cdc6p mutant which is no longer degraded by the Cdc4/34/53 pathway is, none the less, fully functional. Constitutive overexpression of either wild-type or stable Cdc6p does not induce re-replication and does not induce assembly of pre-replicative complexes after DNA replication is complete.  相似文献   

2.
The Cdc6 protein is an essential component of pre-replication complexes (preRCs), which assemble at origins of DNA replication during the G1 phase of the cell cycle. Previous studies have demonstrated that, in response to ionizing radiation, Cdc6 is ubiquitinated by the anaphase promoting complex (APC(Cdh1)) in a p53-dependent manner. We find, however, that DNA damage caused by UV irradiation or DNA alkylation by methyl methane sulfonate (MMS) induces Cdc6 degradation independently of p53. We further demonstrate that Cdc6 degradation after these forms of DNA damage is also independent of cell cycle phase, Cdc6 phosphorylation of the known Cdk target residues, or the Cul4/DDB1 and APC(Cdh1) ubiquitin E3 ligases. Instead Cdc6 directly binds a HECT-family ubiquitin E3 ligase, Huwe1 (also known as Mule, UreB1, ARF-BP1, Lasu1, and HectH9), and Huwe1 polyubiquitinates Cdc6 in vitro. Degradation of Cdc6 in UV-irradiated cells or in cells treated with MMS requires Huwe1 and is associated with release of Cdc6 from chromatin. Furthermore, yeast cells lacking the Huwe1 ortholog, Tom1, have a similar defect in Cdc6 degradation. Together, these findings demonstrate an important and conserved role for Huwe1 in regulating Cdc6 abundance after DNA damage.  相似文献   

3.
Cdc7, originally discovered by Hartwell1 as a budding yeast mutant that arrests immediately before the onset of S phase, is conserved through evolution and plays essential roles in initiation of mitotic DNA replication. Inducible inactivation of Cdc7 in mouse embryonic stem cells leads to rapid cessation of DNA synthesis and the subsequent activation of checkpoint responses, resulting in p53 activation and eventually p53-mediated apoptosis. This indicates a requirement of Cdc7 kinase for ongoing replication of mammalian genomes, and loss of Cdc7 kinase presumably generates arrested replication fork signals. Cdc7-/- mice or embryonic fibroblast cells (MEFs) expressing a low level of transgene-encoded Cdc7 protein are viable but exhibit reduced body size with impaired germ cell development and decreased cell proliferation. Interestingly, these phenotypes are largely corrected by the presence of an additional copy of the transgene, resulting in increased level of Cdc7 expression. This indicates the requirement of a critical level of Cdc7 for normal cell proliferation and development of specific organs. These results from mammals will be discussed in conjunction with the pleiotropic effects of Cdc7 mutation observed in yeasts.  相似文献   

4.
Cdc7, originally discovered by Hartwell as a budding yeast mutant that arrests immediately before the onset of S phase, is conserved through evolution and plays essential roles in initiation of mitotic DNA replication. Inducible inactivation of Cdc7 in mouse embryonic stem cells leads to rapid cessation of DNA synthesis and the subsequent activation of checkpoint responses, resulting in p53 activation and eventually p53-mediated apoptosis. This indicates a requirement of Cdc7 kinase for ongoing replication of mammalian genomes, and loss of Cdc7 kinase presumably generates arrested replication fork signals. Cdc7-/- mice or embryonic fibroblast cells (MEFs) expressing a low level of transgene-encoded Cdc7 protein are viable but exhibit reduced body size with impaired germ cell development and decreased cell proliferation. Interestingly, these phenotypes are largely corrected by the presence of an additional copy of the transgene, resulting in increased level of Cdc7 expression. This indicates the requirement of a critical level of Cdc7 for normal cell proliferation and development of specific organs. These results from mammals will be discussed in conjunction with the pleiotropic effects of Cdc7 mutation observed in yeasts.  相似文献   

5.
The cyclopropylpyrroloindole anti-cancer drug, adozelesin, binds to and alkylates DNA. Treatment of human cells with low levels of adozelesin results in potent inhibition of both cellular and simian virus 40 (SV40) DNA replication. Extracts were prepared from adozelesin-treated cells and shown to be deficient in their ability to support SV40 DNA replication in vitro. This effect on in vitro DNA replication was dependent on both the concentration of adozelesin used and the time of treatment but was not due to the presence of adozelesin in the in vitro assay. Adozelesin treatment of cells was shown to result in the following: induction of p53 protein levels, hyperphosphorylation of replication protein A (RPA), and disruption of the p53-RPA complex (but not disruption of the RPA-cdc2 complex), indicating that adozelesin treatment triggers cellular DNA damage response pathways. Interestingly, in vitro DNA replication could be rescued in extracts from adozelesin-treated cells by the addition of exogenous RPA. Therefore, whereas adozelesin and other anti-cancer therapeutics trigger common DNA damage response markers, adozelesin causes DNA replication arrest through a unique mechanism. The S phase checkpoint response triggered by adozelesin acts by inactivating RPA in some function essential for SV40 DNA replication.  相似文献   

6.
In eukaryotes, the initiation of DNA replication involves the ordered assembly on chromatin of pre-replicative complexes (pre-RCs), including the origin recognition complex (ORC), Cdc6, Cdt1 and the minichromosome maintenance proteins (MCMs). In light of its indispensable role in the formation of pre-RCs, Cdc6 binding to chromatin represents a key step in the regulation of DNA replication and cell proliferation. Here, we study the human Cdc6 (HuCdc6) protein during programmed cell death (apoptosis). We find that HuCdc6, but not HuOrc2 (a member of the ORC) or HuMcm5 (one of the MCMs), is specifically cleaved in several human cell lines induced to undergo apoptosis by a variety of stimuli. Expression of caspase-uncleavable mutant HuCdc6 attenuates apoptosis, delaying cell death. Therefore, an important function for cleavage of HuCdc6 is to prevent a wounded cell from replicating and to facilitate death.  相似文献   

7.
Activation of tumor suppressor p53 in response to genotoxic stress imposes cellular growth arrest or apoptosis. We identified Cdc6, a licensing factor of the prereplication complex, as a novel target of the p53 pathway. We show that activation of p53 by DNA damage results in enhanced Cdc6 destruction by the anaphase-promoting complex. This destruction is triggered by inhibition of CDK2-mediated CDC6 phosphorylation at serine 54. Conversely, suppression of p53 expression results in stabilization of Cdc6. We demonstrate that loss of p53 results in more replicating cells, an effect that can be reversed by reducing Cdc6 protein levels. Collectively, our data suggest that initiation of DNA replication is regulated by p53 through Cdc6 protein stability.  相似文献   

8.
Kim JM  Yamada M  Masai H 《Mutation research》2003,532(1-2):29-40
Cdc7 kinase plays an essential role in firing of replication origins by phosphorylating components of the replication complexes. Cdc7 kinase has also been implicated in S phase checkpoint signaling downstream of the ATR and Chk1 kinases. Inactivation of Cdc7 in yeast results in arrest of cell growth with 1C DNA content after completion of the ongoing DNA replication. In contrast, conditional inactivation of Cdc7 in undifferentiated mouse embryonic stem (ES) cells leads to growth arrest with rapid cessation of DNA synthesis, suggesting requirement of Cdc7 functions for continuation of ongoing DNA synthesis. Furthermore, loss of Cdc7 function induces recombinational repair (nuclear Rad51 foci) and G2/M checkpoint responses (inhibition of Cdc2 kinase). Eventually, p53 becomes highly activated and the cells undergo massive p53-dependent apoptosis. Thus, defective origin activation in mammalian cells can generate DNA replication checkpoint signals. Efficient removal of those cells in which replication has been perturbed, through cell death, may be beneficial to maintain the highest level of genetic integrity in totipotent stem cells. Partial, rather than total, loss of Cdc7 kinase expression results in retarded growth at both cellular and whole body levels, with especially profound impairment of germ cell development.  相似文献   

9.
10.
Cdc7-related kinases play essential roles in the initiation of yeast DNA replication. We show that mice lacking murine homologs of Cdc7 (muCdc7) genes die between E3.5 and E6.5. We have established a mutant embryonic stem (ES) cell line lacking the muCdc7 genes in the presence of a loxP-flanked transgene expressing muCdc7 cDNA. Upon removal of the transgene by Cre recombinase, mutant ES cells cease DNA synthesis, arresting growth with S-phase DNA content, and generate nuclear Rad51 foci, followed by cell death with concomitant increase in p53 protein levels. Inhibition of p53 leads to partial rescue of muCdc7(-/-) ES cells from cell death. muCdc7(-/-)p53(-/-) embryos survive up to E8.5, and their blastocysts generate inner cell mass of a significant size in vitro, whereas those of the muCdc7(-/-)p53(+/-) embryos undergoes complete degeneration. These results demonstrate that, in contrast to cell cycle arrest at the G(1)/S boundary observed in yeasts, loss of Cdc7 in ES cells results in rapid cessation of DNA synthesis within S phase, triggering checkpoint responses leading to recombinational repair and p53-dependent cell death.  相似文献   

11.
Apoptosis (programmed cell death) is a genetically programmed active cell death process for maintaining homeostasis under physiological conditions and for responding to various stimuli. Many human diseases have been associated with either increased apoptosis (such as AIDS and neurodegenerative disorders) or decreased apoptosis (such as cancer and autoimmune disorders). In an attempt to understand apoptosis signaling pathway and genes associated with apoptosis, we established two cell model systems on which apoptosis is induced either by DNA damaging agent, etoposide or by redox agent, 1,10-phenanthroline (OP). DNA chip profiling or mRNA differential display (DD) was utilized to identify genes responsive to apoptosis induced by these two agents. In etoposide model with chip hybridization, we defined signaling pathways that mediate apoptosis in p53 dependent manner (through activation of p53 target genes such as Waf-1/p21, PCNA, GPX, S100A2 and PTGF-beta) as well as in p53-independent manner (through activation of ODC and TGF-beta receptor, among others). In OP model with DD screening, we cloned and characterized two genes: glutathione synthetase, encoding an enzyme involved in glutathione synthesis and Sensitive to Apoptosis Gene (SAG), a novel evolutionarily conserved gene encoding a zinc RING finger protein. Both genes appear to protect cells from apoptosis induced by redox agents. Further characterization of SAG revealed that it is a growth essential gene in yeast and belongs to a newly identified gene family that promotes protein ubiquitination and degradation. Through this activity, SAG regulates cell cycle progression and many other key biological processes. Thus, SAG could be a valid drug target for anti-cancer and anti-inflammation therapies.  相似文献   

12.
13.
The initiator protein Cdc6 (Cdc18 in fission yeast) plays an essential role in the initiation of eukaryotic DNA replication. In yeast the protein is expressed before initiation of DNA replication and is thought to be essential for loading of the helicase onto origin DNA. The biochemical properties of the protein, however, are largely unknown. Using three archaeal homologues of Cdc6, it was found that the proteins are autophosphorylated on Ser residues. The winged-helix domain at the C terminus of Cdc6 interacts with DNA, which apparently regulates the autophosphorylation reaction. Yeast Cdc18 was also found to autophosphorylate, suggesting that this function of Cdc6 may play a widely conserved and essential role in replication initiation.  相似文献   

14.
In mammalian cells DNA damage activates a checkpoint that halts progression through S phase. To determine the ability of nitrating agents to induce S-phase arrest, mouse C10 cells synchronized in S phase were treated with nitrogen dioxide (NO(2)) or SIN-1, a generator of reactive nitrogen species (RNS). SIN-1 or NO(2) induced S-phase arrest in a dose- and time-dependent manner. As for the positive controls adozelesin and cisplatin, arrest was accompanied by phosphorylation of ATM kinase; dephosphorylation of pRB; decreases in RF-C, cyclin D1, Cdc25A, and Cdc6; and increases in p21. Comet assays indicated that RNS induce minimal DNA damage. Moreover, in a cell-free replication system, nuclei from cells treated with RNS were able to support control levels of DNA synthesis when incubated in cytosolic extracts from untreated cells, whereas nuclei from cells treated with cisplatin were not. Induction of phosphatase activity may represent one mechanism of RNS-induced arrest, for the PP1/PP2A phosphatase inhibitor okadaic acid inhibited dephosphorylation of pRB; prevented decreases in the levels of RF-C, cyclin D1, Cdc6, and Cdc25A; and bypassed arrest by SIN-1 or NO(2), but not cisplatin or adozelesin. Our studies suggest that RNS may induce S-phase arrest through mechanisms that differ from those elicited by classical DNA-damaging agents.  相似文献   

15.
The budding yeast Cdc6 protein is important for regulating DNA replication intiation. Cdc6p acts at replication origins, and cdc6-1 mutants arrest with unreplicated DNA and show elevated minichromosome loss rates. Overexpression of the related Cdc 18 protein in fission yeast results in DNA rereplication; however, Cdc6p overexpression does not cause this result. A recent paper(1) further defines the role of Cdc6p in DNA replication. Cdc6p only promotes DNA replication between the end of mitosis and late G1, and although the Cdc6 protein is highly unstable, neither degradation nor nuclear localization is critical for limiting DNA replication to this interval.  相似文献   

16.
In fission yeast, overexpression of the replication initiator protein Cdc18p induces re-replication, a phenotype characterized by continuous DNA synthesis in the absence of cell division. In contrast, overexpression of Cdc6p, the budding yeast homolog of Cdc18p, does not cause re-replication in S. cerevisiae. However, we have found that Cdc6p has the ability to induce re-replication in fission yeast. Cdc6p cannot functionally replace Cdc18p, but instead interferes with the proteolysis of both Cdc18p and Rum1p, the inhibitor of the protein kinase Cdc2p. This activity of Cdc6p is entirely contained within a short N-terminal peptide, which forms a tight complex with Cdc2p and the F-box/WD-repeat protein Sud1p/Pop2p, a component of the SCFPop ubiquitin ligase in fission yeast. These interactions are mediated by two distinct regions within the N-terminal region of Cdc6p and depend on the integrity of its Cdc2p phosphorylation sites. The data suggest that disruption of re-replication control by overexpression of Cdc6p in fission yeast is a consequence of sequestration of Cdc2p and Pop2p, two factors involved in the negative regulation of Rum1p, Cdc18p and potentially other replication proteins.  相似文献   

17.
In fission yeast, overexpression of the replication initiator protein Cdc18p induces re-replication, a phenotype characterized by continuous DNA synthesis in the absence of cell division. In contrast, overexpression of Cdc6p, the budding yeast homolog of Cdc18p, does not cause re-replication in S. cerevisiae. However, we have found that Cdc6p has the ability to induce re-replication in fission yeast. Cdc6p cannot functionally replace Cdc18p, but instead interferes with the proteolysis of both Cdc18p and Rum1p, the inhibitor of the protein kinase Cdc2p. This activity of Cdc6p is entirely contained within a short N-terminal peptide, which forms a tight complex with Cdc2p and the F-box/WD-repeat protein Sud1p/Pop2p, a component of the SCFPop ubiquitin ligase in fission yeast. These interactions are mediated by two distinct regions within the N-terminal region of Cdc6p and depend on the integrity of its Cdc2p phosphorylation sites. The data suggest that disruption of re-replication control by overexpression of Cdc6p in fission yeast is a consequence of sequestration of Cdc2p and Pop2p, two factors involved in the negative regulation of Rum1p, Cdc18p and potentially other replication proteins. Received: 29 April 1999 / Accepted: 27 June 1999  相似文献   

18.
Cdc6p is an essential component of the pre-replicative complex (pre-RC), which binds to DNA replication origins to promote initiation of DNA replication. Only once per cell cycle does DNA replication take place. After initiation, the pre-RC components are disassembled in order to prevent re-replication. It has been shown that the N-terminal region of Cdc6p is targeted for degradation after phosphorylation by Cyclin Dependent Kinase (CDK). Here we show that Mck1p, a yeast homologue of GSK-3 kinase, is also required for Cdc6 degradation through a distinct mechanism. Cdc6 is an unstable protein and is accumulated in the nucleus only during G1 and early S-phase in wild-type cells. In mck1 deletion cells, CDC6p is stabilized and accumulates in the nucleus even in late S phase and mitosis. Overexpression of Mck1p induces rapid Cdc6p degradation in a manner dependent on Threonine-368, a GSK-3 phosphorylation consensus site, and SCFCDC4. We show evidence that Mck1p-dependent degradation of Cdc6 is required for prevention of DNA re-replication. Loss of Mck1 activity results in synthetic lethality with other pre-RC mutants previously implicated in re-replication control, and these double mutant strains over-replicate DNA within a single cell cycle. These results suggest that a GSK3 family protein plays an unexpected role in preventing DNA over-replication through Cdc6 degradation in Saccharomyces cerevisiae. We propose that both CDK and Mck1 kinases are required for Cdc6 degradation to ensure a tight control of DNA replication.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号