首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The various stages of the malaria parasites in the vertebrate host and in the mosquito vector offer numerous candidates for vaccine and drug development. However, the biological complexity of the parasites and the interaction with the immune system of the host continue to frustrate all such efforts thus far. While most of the targets for drug and vaccine design have focused on the asexual stages, the sexual stages of the parasite are critical for transmission and maintenance of parasites among susceptible vertebrate hosts. Sexual stage parasites undergo a series of morphological and biochemical changes during their development, accompanied by a co-ordinated cascade of a distinct expression pattern of sexual stage specific proteins. Mechanisms underlying the developmental switch from asexual parasite to sexual parasite still remain elusive. Methods that can break the malaria transmission cycle thus occupy a central place in the overall malaria control strategies. This paper provides a review of genes expressed in sexually differentiated Plasmodium. In the past few years, a molecular approach based on targeted gene disruption has revealed fascinating biological roles for many of the sexual stage gene products. In addition, we will briefly discuss other functional genomic approaches employed to study not only sexual but also other aspects of host-parasite biology.  相似文献   

2.
3.
A number of cyclosporins, including certain non-immunosuppressive ones, are potent inhibitors of the intraerythrocytic growth of the human malarial parasite Plasmodium falciparum. The major cyclosporin-binding proteins of P. falciparum were investigated by affinity chromatography on cyclosporin-Affigel followed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis, Western blotting, and peptide mass fingerprinting. The two bands obtained on gels were shown to correspond to cyclophilins, PfCyP-19A (formerly PfCyP-19) and PfCyP-19B, whose genes had been characterised previously. PfCyP-19B was an abundant protein of intraerythrocytic P. falciparum (up to 0.5% of parasite protein) that was present in the highest amounts in schizont-stage parasites. Unexpectedly, given its apparent signal sequence, it was located primarily in the cytosol of the parasite. The peptidyl-prolyl cis-trans isomerase activity of recombinant PfCyP-19B had the same profile of susceptibility to cyclosporin derivatives as the bulk isomerase activity of crude P. falciparum extracts. The binding of cyclosporins to cyclophilins may be relevant to the mechanism of action of the drug in the parasite.  相似文献   

4.
The within-host and between-host dynamics of malaria are linked in myriad ways, but most obviously by gametocytes, the parasite blood forms transmissible from human to mosquito. Gametocyte dynamics depend on those of non-transmissible blood forms, which stimulate immune responses, impeding transmission as well as within-host parasite densities. These dynamics can, in turn, influence antigenic diversity and recombination between genetically distinct parasites. Here, we embed a differential-equation model of parasite-immune system interactions within each of the individual humans represented in a discrete-event model of Plasmodium falciparum transmission, and examine the effects of human population turnover, parasite antigenic diversity, recombination, and gametocyte production on the dynamics of malaria. Our results indicate that the local persistence of P. falciparum increases with turnover in the human population and antigenic diversity in the parasite, particularly in combination, and that antigenic diversity arising from meiotic recombination in the parasite has complex differential effects on the persistence of founder and progeny genotypes. We also find that reductions in the duration of individual human infectivity to mosquitoes, even if universal, produce population-level effects only if near-absolute, and that, in competition, the persistence and prevalence of parasite genotypes with gametocyte production concordant with data exceed those of genotypes with higher gametocyte production. This new, integrated approach provides a framework for investigating relationships between pathogen dynamics within an individual host and pathogen dynamics within interacting host and vector populations.  相似文献   

5.
Proteins containing the DHHC motif have been shown to function as palmitoyl transferases. The palmitoylation of proteins has been shown to play an important role in the trafficking of proteins to the proper subcellular location. Herein, we describe a protein containing both ankyrin domains and a DHHC domain that is present in the Golgi of late schizonts of P. falciparum. The timing of expression as well as the location of this protein suggests that it may play an important role in the sorting of proteins to the apical organelles during the development of the asexual stage of the parasite.  相似文献   

6.
Malaria is a global problem that affects millions of people annually. A relatively poor understanding of the malaria parasite biology has hindered vaccine and drug development against this disease. Robust methods for genetic analyses in Plasmodium have been lacking due to the difficulties in its genetic manipulation. Introduction of transfection technologies laid the foundation for genetic dissection of Plasmodium and recent years have seen the development of novel tools for genetic manipulation that will help us delineate the intriguing biology of this parasite. This review focuses on such recent advances in transfection technologies for Plasmodium that have improved our ability to carry out more thorough genetic analyses of the biology of the malaria parasite.  相似文献   

7.
The intraerythrocytic asexual cycle of the malarial parasite is complex and atypical: during schizogony the parasite undergoes multiple rounds of DNA replication and asynchronous nuclear division without cytokinesis. This cell cycle deviates from the classical eukaryotic cell cycle model where, 'DNA replicates only once per cell cycle'. A clear understanding of the molecular switches that control this unusual developmental cycle would be of great interest, both in terms of fundamental Plasmodium biology and in terms of novel potential drug target identification. In recent years considerable effort has been made to identify the malarial orthologues of the cyclin-dependent kinases, which are key regulators of the orderly progression of the eukaryotic cell cycle. This review focuses on the current state-of-knowledge of Plasmodium falciparum cyclin-dependent kinase-like kinases and their regulators.  相似文献   

8.
The invasion of red blood cells (RBCs) is an essential event in the life cycle of all malaria-causing Plasmodium parasites; however, there are major gaps in our knowledge of this process. Here, we use video microscopy to address the kinetics of RBC invasion in the human malaria parasite Plasmodium falciparum. Under in vitro conditions merozoites generally recognise new target RBCs within 1 min of their release from their host RBC. Parasite entry ensues and is complete on average 27.6 s after primary contact. This period can be divided into two distinct phases. The first is an ∼11 s ‘pre-invasion’ phase that involves an often dramatic RBC deformation and recovery process. The second is the classical ‘invasion’ phase where the merozoite becomes internalised within the RBC in a ∼17 s period. After invasion, a third ‘echinocytosis’ phase commences when about 36 s after every successful invasion a dramatic dehydration-type morphology was adopted by the infected RBC. During this phase, the echinocytotic effect reached a peak over the next 23.4 s, after which the infected RBC recovered over a 5-11 min period. By then the merozoite had assumed an amoeboid-like state and was apparently free in the cytoplasm. A comparison of our data with that of an earlier study of the distantly related primate parasite Plasmodium knowlesi indicated remarkable similarities, suggesting that the kinetics of invasion are conserved across the Plasmodium genus. This study provides a morphological and kinetic framework onto which the invasion-associated physiological and molecular events can be overlaid.  相似文献   

9.
The genome sequence of Plasmodium falciparum, the causative agent of the most severe form of malaria in humans, rapidly approaches completion, but our ability to genetically manipulate this organism remains limited. Chromosomal integration has only been achieved following the prolonged maintenance of circularised episomal plasmids which selects for single crossover recombinants. It has not been possible to construct genetic deletions via double crossover recombination, presumably due to the low frequency of this event. We have used the Herpes simplex virus thymidine kinase gene and the Escherichia coli cytosine deaminase gene for negative selection of P. falciparum. Parasites were transformed with plasmids expressing the thymidine kinase and cytosine deaminase genes by positive selection for the human dihydrofolate reductase gene. Parasites expressing thymidine kinase are susceptible to the pro-drug ganciclovir while those expressing cytosine deaminase are sensitive to 5-fluorocytosine. Parental parasites were inherently resistant to these drugs. A significant 'bystander effect' was evident in cultures with either ganciclovir or 5-fluorocytosine. Positive and negative selection of the thymidine kinase transformants with both ganciclovir and WR99210 resulted in the selection of parasites containing a genetic deletion of the Pfrh3 gene, the first targeted double crossover deletions in P. falciparum. The use of negative selection for gene disruptions via double crossover recombination will dramatically improve our ability to analyse protein function and opens the possibility of using this strategy for a variety of gene deletion and modification experiments in the analysis of this important infectious agent.  相似文献   

10.
Rhoptries are cellular organelles localized at the apical pole of apicomplexan parasites. Their content is rich in lipids and proteins that are released during target cell invasion. Plasmodium falciparum rhoptry-associated protein 1 (RAP1) has been the most widely studied among this parasite species' rhoptry proteins and is considered to be a good anti-malarial vaccine candidate since it displays little polymorphism and induces antibodies in infected humans. Monoclonal antibodies directed against RAP1 are also able to inhibit target cell invasion in vitro and protection against P. falciparum experimental challenge is induced when non-human primates are immunized with this protein expressed in its recombinant form. This study describes identifying and characterizing RAP1 in Plasmodium vivax, the most widespread parasite species causing malaria in humans, producing more than 80 million infections yearly, mainly in Asia and Latin America. This new protein is encoded by a two-exon gene, is proteolytically processed in a similar manner to its falciparum homologue and, as observed by microscopy, the immunofluorescence pattern displayed is suggestive of its rhoptry localization. Further studies evaluating P. vivax RAP1 protective efficacy in non-human primates should be carried out taking into account the relevance that its P. falciparum homologue has as an anti-malarial vaccine candidate.  相似文献   

11.
The genotypes of merozoite surface protein-1, merozoite surface protein-2 and glutamine rich protein are frequently used to distinguish recrudescence from reinfection when parasitaemia reappears after antimalarial drug treatment. However, none of the previous reports has clearly assessed the change of genetic diversity following drug treatment. In the present study, we have assessed the impact of pyrimethamine/sulfadoxine and chlorproguanil/dapsone on the genetic diversity of isolates and the multiplicity of infection in patient isolates from Kilifi, Kenya. We have analysed the length polymorphism of merozoite surface protein-1, merozoite surface protein-2 and glutamine rich protein and the data clearly show that treatment with pyrimethamine/sulfadoxine and chlorproguanil/dapsone did not change the multiplicity of infection found in patients, in contrast to the selection that these drugs exert on the genes encoded by the target enzymes. In addition, we report that children of less than 2 years tend to have fewer numbers of clones per isolate when compared with older children. Overall, this study shows that the selection for genes that confer drug resistance is not a factor in reducing the genetic diversity of parasite clones in a patient.  相似文献   

12.
Dihydrofolate reductases (DHFRs) from Plasmodium falciparum (Pf) and various species of both prokaryotic and eukaryotic organisms have a conserved tryptophan (Trp) at position 48 in the active site. The role in catalysis and binding of inhibitors of the conserved Trp48 of PfDHFR has been analysed by site-specific mutagenesis, enzyme kinetics and use of a bacterial surrogate system. All 19 mutant enzymes showed undetectable or very low specific activities, with the highest value of k(cat)/K(m) from the Tyr48 (W48Y) mutant (0.12 versus 11.94M(-1)s(-1)), of about 1% of the wild-type enzyme. The inhibition constants for pyrimethamine, cycloguanil and WR99210 of the W48Y mutants are 2.5-5.3 times those of the wild-type enzyme. All mutants, except W48Y, failed to support the growth of Escherichia coli transformed with the parasite gene in the presence of trimethoprim, indicating the loss of functional activity of the parasite enzyme. Hence, Trp48 plays a crucial role in catalysis and inhibitor binding of PfDHFR. Interestingly, W48Y with an additional mutation at Asn188Tyr (N188Y) was found to promote bacterial growth and yielded a higher amount of purified enzyme. However, the kinetic parameters of the purified W48Y+N188Y enzyme were comparable with W48Y and the binding affinities for DHFR inhibitors were also similar to the wild-type enzyme. Due to its conserved nature, Trp48 of PfDHFR is a potential site for interaction with antimalarial inhibitors which would not be compromised by its mutations.  相似文献   

13.
Potassium channels are essential for cell survival and regulate the cell membrane potential and electrochemical gradient. During its lifecycle, Plasmodium falciparum parasites must rapidly adapt to dramatically variant ionic conditions within the mosquito mid-gut, the hepatocyte and red blood cell (RBC) cytosols, and the human circulatory system. To probe the participation of K+ channels in parasite viability, growth response assays were performed in which asexual stage P. falciparum parasites were cultured in the presence of various Ca2+-activated K+ channel blocking compounds. These data describe the novel anti-malarial effects of bicuculline methiodide and tubocurarine chloride and the novel lack of effect of apamine and verruculogen. Taken together, the data herein imply the presence of K+ channels, or other parasite-specific targets, in P. falciparum-infected RBCs that are sensitive to blockade with Ca2+-activated K+ channel blocking compounds.  相似文献   

14.
Plasmodium falciparum, the causative agent of human malaria, is totally dependent on de novo pyrimidine biosynthetic pathway. A gene encoding P. falciparum dihydroorotase (pfDHOase) was cloned and expressed in Escherichia coli as monofunctional enzyme. PfDHOase revealed a molecular mass of 42 kDa. In gel filtration chromatography, the major enzyme activity eluted at 40 kDa, indicating that it functions in a monomeric form. This was similarly observed using the native enzyme purified from P. falciparum. Interestingly, kinetic parameters of the enzyme and inhibitory effect by orotate and its 5-substituted derivatives parallel that found in mammalian type I DHOase. Thus, the malarial enzyme shares characteristics of both type I and type II DHOases. This study provides the monofunctional property of the parasite DHOase lending further insights into its differences from the human enzyme which forms part of a multifunctional protein.  相似文献   

15.
16.
Immunisation with live, radiation-attenuated sporozoites (RAS) or genetically attenuated sporozoites (GAS) of rodent plasmodial parasites protects against subsequent challenge infections. We recently showed that immunisation with Plasmodium berghei GAS that lack the microneme protein P36p protects mice for a period of up to 4 months. Here, we show that the period of full protection induced by p36p(-)-sporozoites lasts 12 and 18 months in C57Bl6 and BALB/c mice, respectively. Full protection is also achieved with three doses of only 1000 p36p(-) (but not RAS) sporozoites. Subcutaneous, intradermal or intramuscular routes of administration also lead to partial protection. In addition, immunisation with either P. berghei RAS- or, to a lesser extent, p36p(-)-sporozoites inhibits parasite intrahepatic development in mice challenged with Plasmodium yoelii sporozoites. Since naturally acquired malaria infections or subunit-based vaccines only induce short-term immune responses, the protection conferred by immunisation with p36p(-)-sporozoites described here further emphasises the potential of GAS as a vaccination strategy for malaria.  相似文献   

17.
A novel dynamin-like GTPase gene, Pfdyn1, was cloned from an asexual stage cDNA library of Plasmodium falciparum Dd2 strain. Pfdyn1 contains a highly conserved N-terminal tripartite GTPase domain, a coiled-coil region, and a C-terminal 129 aa unknown function domain. Like yeast Vps1p, it lacks pleckstrin homology domain and proline-rich region. Western blot analysis showed that Pfdyn1 is a Triton X-100 insoluble protein expressed only in the mature sub-stage. Morphological studies indicated that Pfdyn1 is partly co-localized with PfGRP, a known ER-resident protein, and localizes diffusely with several membrane structures and a 60-100 nm vesicle both inside and on surface of the parasites and also in the cytoplasm of infected erythrocytes. The dsRNA originated by C-terminus fragment of Pfdyn1 inhibits markedly the growth of P. falciparum parasite at the erythrocyte stage. Those data showed that Pfdyn1 is a conservative, membrane related protein and plays an essential role for the survival of Plasmodium parasite.  相似文献   

18.
The development of new effective antimalarial agents is urgently needed due to the ineffectiveness of current drug regimes on the most virulent human malaria parasite Plasmodium falciparum. Antisense (AS) oligodeoxynucleotides (ODNs) have shown promise as chemotherapeutic agents. Phosphorothioate AS ODNs against different regions of P. falciparum topoisomerase II gene were investigated. Chloroquine- and pyrimethamine-resistant P. falciparum K1 strain was exposed to phosphorothioate AS ODNs for 48 h and growth was determined by flow cytometric assay or by microscopic assay. Exogenous delivery of phosphorothioate AS ODNs between 0.01 and 0.5 microM significantly inhibited parasite growth compared with sense sequence controls suggesting sequence specific inhibition. This inhibition was shown to occur during maturation stages, with optimal inhibition being detected after 36 h. These results should prove useful in future designs of novel antimalarial agents.  相似文献   

19.
Tryptophan-threonine-rich antigen (TryThrA) is a Plasmodium falciparum homologue of Plasmodium yoelii-infected erythrocyte membrane pypAg-1 antigen. pypAg-1 binds to the surface of uninfected mouse erythrocytes and has been used successfully in vaccine studies. The two antigens are characterized by an unusual tryptophan-rich domain, suggesting similar biological properties. Using synthetic peptides spanning the TryThrA sequence and human erythrocyte we have done binding assays to identify possible TryThrA functional regions. We describe four peptides outside the tryptophan-rich domain having high activity binding to normal human erythrocytes. The peptides termed HABPs (high activity binding peptides) are 30884 ((61)LKEKKKKVLEFFENLVLNKKY(80)) located at the N-terminal and 30901 ((401)RKSLEQQFGDNMDKMNKLKKY(420)), 30902 ((421)KKILKFFPLFNYKSDLESIM(440)) and 30913 ((641)DLESTAEQKAEKKGGKAKAKY(660)) located at the C-terminal. Studies with polyclonal goat antiserum against synthetic peptides chosen to represent the whole length of the protein showed that TryThrA has fluorescence pattern similar to PypAg-1 of P. yoelii. All HABPs inhibited merozoite in vitro invasion, suggesting that TryThrA protein may be participating in merozoite-erythrocyte interaction during invasion.  相似文献   

20.
Hypoestoxide (HE) is a diterpene isolated from Hypoestes rosea (Acanthaceae), a plant indigenous to Nigeria. Previous studies demonstrated that HE exhibited potent anti-inflammatory and anti-cancer activities in well established animal models but weak in vitro activities in both the anti-inflammation and anti-cancer in vitro screening systems. We now report a similar observation in the in vitro and in vivo screening systems for antimalarial activity. The results indicate that while HE exhibits a relatively weak in vitro activity (IC(50) = 10 microM versus 0.11 microM for chloroquine) against different strains of cultured P. falciparum parasites, the dose of HE required to reduce parasitemia by 90% in Plasmodium berghei-infected mice, is much lower than standard antimalaria drugs (SD(90) = 250 microg/kg versus 5mg/kg for chloroquine). Furthermore, lower doses of HE were much more effective than higher doses in inhibiting parasite development. The implications of these findings are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号