首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
1. If resistance traits drive recolonisation after drought, then drought refuges should contribute strongly to assemblage composition within streams. If resilience traits drive recolonisation, macroinvertebrates emerging from refuges may disperse widely, colonising many streams. To determine whether the contribution of drought refuges to macroinvertebrate recolonisation in non‐perennial streams was mostly local (within stream) or broader scale (across streams), we measured the association between the composition of invertebrate assemblages in different types of in‐stream drought refuge and the assemblage composition of streams when flow resumed. 2. We sampled 16 streams of varying hydrological regime on the western side of the Victoria Range in the Grampians National Park, Victoria, Australia. Drought refuges (perennial pools, dry sediment, damp sediment, seeps, patches of leaf litter, beneath stones) were identified and sampled during autumn. Most taxa were found in perennial pools; few taxa were found aestivating beneath stones or having desiccation‐resistant stages in dry sediment. Perennial pools and perennially flowing reaches were the refuges that harboured the greatest diversity of macroinvertebrate taxa. 3. Streams were sampled again during spring. Assemblage composition of non‐perennial reaches in spring was unrelated to composition in nearby refuges in the previous autumn. In contrast, assemblage composition in perennial reaches during spring was strongly correlated with composition during autumn. Therefore, drought refuges did not directly influence assemblage composition locally within non‐perennial streams. Rather, both perennially flowing reaches and perennial pools acted as drought refuges across the broader landscape. Resilience traits are likely to drive recolonisation in these streams. 4. Monitoring of drought refuges in a particular stream will therefore not predict species composition when flow resumes. Drought refuges are likely to sustain biodiversity over larger spatial scales such as groups of streams or whole drainage networks. Consequently, stream networks will need to be managed as entities rather than as single waterways and the focus of drought refuge protection should be on perennial pools and reaches.  相似文献   

2.
3.
Boyero  Luz  Bosch  Jaime 《Hydrobiologia》2004,524(1):125-132
In a tropical stream (at the Soberaní;a National Park, Panama), different environmental factors were quantified in riffle habitats (water characteristics: velocity, depth, turbulence, and direction; stone characteristics: surface area, sphericity, and degree of burial; and others: substrate type, and canopy cover). Characteristics of macroinvertebrate assemblages (mean density of individuals, mean taxon richness, and cumulative taxon richness in three stones at each riffle) were related to both mean values and variability of these environmental factors at riffle scale. Macroinvertebrate density was higher in shallow, fast flowing, stony riffles, with low variability in dominant substrate type. Taxon richness was also higher in shallow riffles with loose, not buried stones, and water direction more or less parallel to the bank. Environmental variability resulted as important as mean values of environmental factors to explain variation in macroinvertebrate assemblages. This is the first study, to our knowledge, that quantifies substratum variability and demonstrates its influence on macroinvertebrate assemblages in a tropical stream.  相似文献   

4.
1. Many natural ecosystems are heterogeneous at scales ranging from microhabitats to landscapes. Running waters are no exception in this regard, and their environmental heterogeneity is reflected in the distribution and abundance of stream organisms across multiple spatial scales. 2. We studied patchiness in benthic macroinvertebrate abundance and functional feeding group (FFG) composition at three spatial scales in a boreal river system. Our sampling design incorporated a set of fully nested scales, with three tributaries, two stream sections (orders) within each tributary, three riffles within each section and ten benthic samples in each riffle. 3. According to nested anova s, most of the variation in total macroinvertebrate abundance, abundances of FFGs, and number of taxa was accounted for by the among‐riffle and among‐sample scales. Such small‐scale variability reflected similar patterns of variation in in‐stream variables (moss cover, particle size, current velocity and depth). Scraper abundance, however, varied most at the scale of stream sections, probably mirroring variation in canopy cover. 4. Tributaries and stream sections within tributaries differed significantly in the structure and FFG composition of the macroinvertebrate assemblages. Furthermore, riffles in headwater (second order) sections were more variable than those in higher order (third order) sections. 5. Stream biomonitoring programs should consider this kind of scale‐dependent variability in assemblage characteristics because: (i) small‐scale variability in abundance suggests that a few replicate samples are not enough to capture macroinvertebrate assemblage variability present at a site, and (ii) riffles from the same stream may support widely differing benthic assemblages.  相似文献   

5.
Variability in stream macroinvertebrates at multiple spatial scales   总被引:10,自引:0,他引:10  
1. We intensively sampled 16 western Oregon streams to characterize: (1) the variability in macroinvertebrate assemblages at seven spatial scales; and (2) the change in taxon richness with increasing sampling effort. An analysis of variance (ANOVA) model calculated spatial variance components for taxon richness, total density, percent individuals of Ephemeroptera, Plecoptera and Trichoptera (EPT), percent dominance and Shannon diversity.
2. At the landscape level, ecoregion and among‐streams components dominated variance for most metrics, accounting for 43–72% of total variance. However, ecoregion accounted for very little variance in total density and 36% of the variance was attributable to differences between streams. For other metrics, variance components were more evenly divided between stream and ecoregion effects.
3. Within streams, approximately 70% of variance was associated with unstructured local spatial variation and not associated with habitat type or transect position. The remaining variance was typically split about evenly between habitat and transect. Sample position within a transect (left, centre or right) accounted for virtually none of the variance for any metric.
4. New taxa per stream increased rapidly with sampling effort with the first four to eight Surber samples (500–1000 individuals counted), then increased more gradually. After counting more than 50 samples, new taxa continued to be added in stream reaches that were 80 times as long as their mean wetted width. Thus taxon richness was highly dependent on sampling effort, and comparisons between sites or streams must be normalized for sampling effort.
5. Characterization of spatial variance structure is fundamental to designing sampling programmes where spatial comparisons range from local to regional scales. Differences in metric responses across spatial scales demonstrate the importance of designing sampling strategies and analyses capable of discerning differences at the scale of interest.  相似文献   

6.
Luz Boyero  Jaime Bosch 《Biotropica》2002,34(4):567-574
The detection of spatial variation in macroinvertebrate drift depends on the spatial scale of investigation in streams of the La Selva Biological Station, Costa Rica. Drift samples were taken in a spatially nested design, with two streams, two reaches per stream, two riffles per reach, and four replicate samples per riffle. Drift showed little variation among streams, but varied significantly at the scales of reach and riffle, with variation among samples also high. In addition, sampling took place at two temporal scales: diel and at two different periods that differed in rainfall conditions. Drift diel periodicity was a clear pattern, while only density of individuals varied among sampling periods. This is the first study of macroinvertebrate drift at multiple spatial scales, despite the recognition that multi‐scale studies are essential for a more complete understanding of community patterns and processes.  相似文献   

7.
We examined the variability of macroinvertebrate assemblage structure, species identities, and functional feeding group composition in relation to stream size, tributary position, and in-stream factors in a boreal watershed in Finland. Our study included three riffle sites in each of three stream sections in each of three stream size classes. Multi-response permutation procedure, indicator value method, and canonical correspondence analysis revealed clear differences in assemblage structure among the stream size classes, with a gradual increase of species richness as the stream size increased. Significant differences in assemblage structure were also found among the tributary river systems. The functional feeding group composition broadly followed the river continuum concept, i.e., headwaters were dominated by shredders, gatherers, or filterers, whereas scrapers increased in relative abundance with stream size. There was, however, considerable variation in the functional feeding group composition both among and within the headwater stream sections. Our findings refer to a strong influence of stream size on macroinvertebrate assemblages, but also factors prevailing at the scale of individual riffles should be considered in biodiversity conservation of lotic ecosystems.  相似文献   

8.
Aim We examined the relative contributions of spatial gradients and local environmental conditions to macroinvertebrate assemblages of boreal headwater streams at three hierarchical extents: bioregion, ecoregion and drainage system. We also aimed to identify the environmental variables most strongly related to assemblage structure at each study scale, and to assess how the importance of these variables is related to regional context and spatial structuring at different scales. Location Northern Finland ( 62 – 68° N, 25–32° E). Methods Variation in macroinvertebrate data was partitioned using partial canonical correspondence analysis into components explained by spatial variables (nine terms from the cubic trend surface regression), local environmental variables (15 variables) and spatially structured environmental variation. Results The strength of the relationship between assemblage structure and local environmental variables increased with decreasing spatial extent, whereas assemblage variation related to spatial variables and spatially structured environmental variation showed the opposite pattern. At the largest extents, spatial variation was related to latitudinal gradients, whereas spatial autocorrelation among neighbouring streams was the likely mechanism creating spatial structure within drainage systems. Only stream size and water acidity were consistently important in explaining assemblage structure at all study scales, while the importance of other environmental variables was more context‐dependent. Main conclusions The importance of local environmental factors in explaining macroinvertebrate assemblage structure increases with decreasing spatial extent. This scale‐related pattern is not caused solely by changes in study extent, however, but also by variable sample sizes at different regional extents. The importance of environmental gradients is context‐dependent and few factors are likely to be universally important correlates of macroinvertebrate assemblage structure. Finally, our results suggest that bioassessment should give due attention to spatial structuring of stream assemblages, because important assemblage gradients may not only be related to local factors but also to biogeographical constraints and neighbourhood dispersal processes.  相似文献   

9.
  • 1 The seasonal dynamics of the benthic macroinvertebrate assemblage, and the subset of this assemblage colonising naturally formed detritus accumulations, was investigated in two streams in south‐west Ireland, one draining a conifer plantation (Streamhill West) and the other with deciduous riparian vegetation (Glenfinish). The streams differed in the quantity, quality and diversity of allochthonous detritus and in hydrochemistry, the conifer stream being more acid at high discharge. We expected the macroinvertebrate assemblage colonising detritus to differ in the two streams, due to differences in the diversity and quantity of detrital inputs.
  • 2 Benthic density and taxon richness did not differ between the two streams, but the density of shredders was greater in the conifer stream, where there was a greater mass of benthic detritus. There was a significant positive correlation between shredder density and detritus biomass in both streams over the study period.
  • 3 Detritus packs in the deciduous stream were colonised by a greater number of macroinvertebrates and taxa than in the conifer stream, but packs in both streams had a similar abundance of shredders. The relative abundance of taxa colonising detritus packs was almost always significantly different to that found in the source pool of the benthos.
  • 4 Correspondence analysis illustrated that there were distinct faunal differences between the two streams overall and seasonally within each stream. Differences between the streams were related to species tolerances to acid episodes in the conifer stream. Canonical correspondence analysis demonstrated a distinct seasonal pattern in the detrital composition of the packs and a corresponding seasonal pattern in the structure of the detritus pack macroinvertebrate assemblage.
  • 5 Within‐stream seasonal variation both in benthic and detritus pack assemblages and in detrital inputs was of similar magnitude to the between‐stream variation. The conifer stream received less and poorer quality detritus than the deciduous stream, yet it retained more detritus and had more shredders in the benthos. This apparent contradiction may be explained by the influence of hydrochemistry (during spate events) on the shredder assemblage, by differences in riparian vegetation between the two streams, and possibly by the ability of some taxa to exhibit more generalist feeding habits and thus supplement their diets in the absence of high quality detritus.
  相似文献   

10.
SUMMARY 1. The effects of catchment urbanisation on water quality were examined for 30 streams (stratified into 15, 50 and 100 km2 ± 25% catchments) in the Etowah River basin, Georgia, U.S.A. We examined relationships between land cover (implying cover and use) in these catchments (e.g. urban, forest and agriculture) and macroinvertebrate assemblage attributes using several previously published indices to summarise macroinvertebrate response. Based on a priori predictions as to mechanisms of biotic impairment under changing land cover, additional measurements were made to assess geomorphology, hydrology and chemistry in each stream. 2. We found strong relationships between catchment land cover and stream biota. Taxon richness and other biotic indices that reflected good water quality were negatively related to urban land cover and positively related to forest land cover. Urban land cover alone explained 29–38% of the variation in some macroinvertebrate indices. Reduced water quality was detectable at c. >15% urban land cover. 3. Urban land cover correlated with a number of geomorphic variables such as stream bed sediment size (–) and total suspended solids (+) as well as a number of water chemistry variables including nitrogen and phosphorus concentrations (+), specific conductance (+) and turbidity (+). Biotic indices were better predicted by these reach scale variables than single, catchment scale land cover variables. Multiple regression models explained 69% of variation in total taxon richness and 78% of the variation in the Invertebrate Community Index (ICI) using phi variability, specific conductance and depth, and riffle phi, specific conductance and phi variability, respectively. 4. Indirect ordination analysis was used to describe assemblage and functional group changes among sites and corroborate which environmental variables were most important in driving differences in macroinvertebrate assemblages. The first axis in a non‐metric multidimensional scaling ordination was highly related to environmental variables (slope, specific conductance, phi variability; adj. R2=0.83) that were also important in our multiple regression models. 5. Catchment urbanisation resulted in less diverse and more tolerant stream macroinvertebrate assemblages via increased sediment transport, reduced stream bed sediment size and increased solutes. The biotic indices that were most sensitive to environmental variation were taxon richness, EPT richness and the ICI. Our results were largely consistent over the range in basin size we tested.  相似文献   

11.
1. Land‐use studies are challenging because of the difficulty of finding catchments that can be used as replicates and because land‐use effects may be obscured by sources of variance acting over spatial scales smaller than the catchment. To determine the extent to which land‐use effects on stream ecosystems are scale dependent, we designed a whole‐catchment study of six matched pairs (pasture versus native tussock) of second‐order stream catchments, taking replicate samples from replicate bedforms (pools and riffles) in each stream. 2. Pasture streams had a smaller representation of endemic riparian plant species, particularly tussock grasses, higher bank erosion, a somewhat deeper layer of fine sediment, lower water velocities in riffles, less moss cover and higher macroinvertebrate biodiversity. At the bedform scale, suspendable inorganic sediment (SIS) was higher in pools than riffles and in pasture streams there was a negative relationship between SIS and the percentage of the bed free of overhanging vegetation. Differences between stream reaches (including any interactions between land use and stream pair) were significant for SIS, substrate depth and characteristics of riparian vegetation. There were also significant differences between replicate bedforms in the same stream reaches in percentage exotic species in overhanging vegetation, percentage moss cover, QMCI (Quantitative Macroinvertebrate Community Index – a macroinvertebrate‐based stream health index) and macroinvertebrate density. 3. Significant differences among stream reaches and among replicate bedform units within the same reach, as well as interactions between these spatial units and land‐use effects, are neither trivial nor ‘noise’ but represent real differences among spatial units that typically are unaccounted for in stream studies. Our multi‐scale study design, accompanied by an investigation of the explanatory power of different factors operating at different scales, provides an improved understanding of variability in nature.  相似文献   

12.
Leonard Sandin 《Ecography》2003,26(3):269-282
Spatial scale, e.g. from the stream channel, riparian zone, and catchment to the regional and global scale is currently an important topic in running water management and bioassessment. An increased knowledge of how the biota is affected by human alterations and management measures taken at different spatial scales is critical for improving the ecological quality of running waters. However, more knowledge is needed to better understand the relationship between environmental factors at different spatial scales, assemblage structure and taxon richness of running water organisms. In this study, benthic macroinvertebrate data from 628 randomly selected streams were analysed for geographical and environmental relationships. The dataset also included 100 environmental variables, from local measures such as in-stream substratum and vegetation type, catchment vegetation and land-use, and regional variables such as latitude and longitude. Cluster analysis of the macroinvertebrate data showed a continuous gradient in taxonomic composition among the cluster groups from north to south. Both locally measured variables (e.g. water chemistry, substratum composition) and regional factors (e.g. latitude, longitude, and an ecoregional delineation) were important for explaining the variation in assemblage structure and taxon richness for stream benthic macroinvertebrates. This result is of importance when planning conservation and management measurements, implementing large-scale biomonitoring programs, and predicting how human alterations (e.g. global warming) will affect running water ecosystems.  相似文献   

13.
Benthic macroinvertebrates collected in biomonitoring programs are a potentially valuable source of biodiversity information for conservation planning in river ecosystems. Biomonitoring samples often focus on riffles; however, we have only partially assessed the extent to which riffle biodiversity patterns reflect those of other river habitats, particularly riverine wetlands. Using a standard biomonitoring protocol, we assessed the richness, composition and magnitude of variation of macroinvertebrate assemblages in riffles across 18 sites in the Nashwaak river catchment, and compared these to samples from adjacent riverine wetlands. Despite containing on average fewer taxa per site than riffles, riverine wetlands demonstrated similar levels of taxon richness at the catchment scale. There was strong assemblage separation between habitat types, and riverine wetlands displayed significantly greater assemblage variation than riffles. Riffles and riverine wetlands did not demonstrate significant correlations in terms of taxon richness or assemblage variation, though this may be partially due to the scale at which we collected observations. Principal component analysis with vector fitting suggested that (log) sub-catchment area was an important factor structuring riffle assemblages, while depth was potentially important for riverine wetland assemblages. We discuss the implications of these results for the use of biomonitoring data in systematic conservation planning, and identify future research that will improve our understanding of the role riverine wetlands play in maintaining catchment biodiversity and ecosystem processes.  相似文献   

14.
1. In lowland streams sand sedimentation can produce sand slugs: very slow moving, discrete volumes of sand that are created episodically. Hypothetically, such sedimentation causes losses of habitat and fauna but little is known about the effects of sand slugs. In south‐eastern Australia sand slugs are widespread, especially in streams with granitic catchments. 2. This study in north‐central Victoria was centred on three streams that rise in the Strathbogie Ranges and flow out onto lowland plains, where they contain sand slugs. Below the sand slugs, the streams are slow‐flowing ‘chains of ponds’ with a clay streambed. To correct for potential upstream‐downstream confounding of comparisons, two unsanded, nearby streams were included as potential controls. Habitat measurements and faunal samples were taken in Spring 1998, from three sites in the sand slug and three sites in the clay‐bed, downstream sections of each impacted stream, as well as from three sites in commensurate upstream and downstream sections of the control streams. 3. The sand‐slugged sections had significantly higher velocities, shallower depths and less coarse woody debris than the unsanded downstream sections. Macroinvertebrate taxon richness and abundance showed some significant differences between the sand and clay sections compared with commensurate up‐ and downstream locations in the control streams. Effects were not uniform, however. In Castle Creek there were no significant differences between the sand and clay sections, in Pranjip‐Ninemile Creek taxon richness and abundances were higher in sand than in the clay sections, whereas in Creightons Creek the ‘expected’ results of lower taxon richness and abundance in the sand were found. 4. Of the 40 most common taxa, only eight provided a clear signal related to sand and, of these, one (Slavina sp.) occurred only in the sand slugs, whereas the other seven had significantly higher numbers in the clay sections. Of these taxa, three were ostracods, three were chironomids and one was a tubificid oligochaete, all taxa that live in detritus‐rich environments. Overall faunal composition did not show a clear distinction though, between sandy and clay sites. The sand slug community of Creightons Creek was very different from the other communities in all of the streams. There were clear differences in community composition between the sand‐affected and the control streams, even for downstream, clay sections, suggesting they cannot act as controls for the impacted sections of the sand‐slugged streams. 5. Differences between streams within categories (particularly between sand‐slugged streams) and between sites in the same section of stream accounted for most of the variability in species richness and the abundances of each of the 40 most common taxa. That finding was repeated when data were examined at the family level, for both numbers of families per sample and collated lists of families occurring across sites. These results strongly suggest that the effects of sedimentation by sand slugs do not overwhelm background variation in macroinvertebrate density and diversity. Overall the results suggest that many taxa may respond individually, and that there is much variation between sand‐affected streams even over relatively small (approximately <10 km) spatial scales.  相似文献   

15.
1. To examine the effects of forest harvest practices on headwater stream macroinvertebrates, we compiled a 167 site database with macroinvertebrate, fish, physical habitat and catchment land cover data from the three forested ecoregions in western Oregon. For our analysis, headwater streams were defined by catchment areas <10 km2 and perennial water during summer low flows. Almost all sites in the database were selected using a randomised survey design, constituting a representative sample of headwater streams in these ecoregions. 2. Macroinvertebrate taxonomic and functional feeding group composition were very similar among the three ecoregions in the study area (Coast Range, Cascades and Klamath Mountains). On average, 55% of the individuals at each site were in the orders Ephemeroptera, Plecoptera or Trichoptera. Dipteran taxa (mostly chironomids) accounted for another 34%. At almost all sites, non‐insects made up <10% of the macroinvertebrate assemblage. Almost half (49%) of the assemblages were collectors; remaining individuals were about evenly divided among scrapers, shredders and predators. 3. There were 189 different macroinvertebrate taxa at the 167 sites with richness at individual sites ranging from 7 to 71 taxa. Ordination by non‐metric multidimensional scaling revealed a strong association between % Ephemeroptera, especially Baetis, and site scores along the first axis. This axis was also strongly related to % coarse substratum and fast water habitat. The second axis was strongly related to % intolerant individuals, site slope and altitude. No strong relationships were evident between any ordination axis and either logging activity, presence/absence of fish, catchment size or ecoregion. 4. Based on macroinvertebrate index of biotic integrity (IBI) scores, 62% of the sites had no impairment, 31% of the sites had slight impairment and only 6% of the sites had moderate or severe impairment. IBI scores were not strongly related to forest harvest history. All four severely impaired sites and five of the seven sites with moderate impairment were lower altitude, shallower slope stream reaches located in the Coast Range with evidence of agricultural activity in their catchment or riparian zone. % sand + fine substratum was the environmental variable most strongly related to macroinvertebrate IBI.  相似文献   

16.
The benthic macroinvertebrate community is an important component of stream diversity, because its members are fundamental connectors among the different trophic levels of running waters. In this study, we assessed alpha and beta diversities of benthic macroinvertebrates in three stream sites and four microhabitats: (i) moss in the air-water interface; (ii) submerged roots of terrestrial plants; (iii) leaf litter deposited in pools; (iv) stones in riffles. We constructed rarefaction curves and compared species richness among microhabitats for each stream site. Additionally, we evaluated which factor, stream site, or microhabitat, was most important in determining variation in assemblage structure, i.e., beta diversity. There was no significant difference among microhabitats in terms of taxa richness evaluated by rarefaction curves. Using partial Constrained Correspondence Analysis (pCCA), we found that microhabitat was most important in determining community composition, accounting for 42.02% of the total variation. Stream sites accounted for 22.27%. In accordance with the pCCA, exploratory multivariate methods (ordination and classification) revealed four distinct groups, corresponding to the four microhabitats, independent of stream sites. Our results indicated that differences among environmental conditions are much more important in the determination of stream assemblage structure than are differences in spatial location. Accordingly, adjacent microhabitats in a single stream site harbor macroinvertebrate assemblages more dissimilar than those found in a single microhabitat at different stream sites. Handling editor: D. Dudgeon  相似文献   

17.
1. We tested how strongly aquatic macroinvertebrate taxa richness and composition were associated with natural variation in both flow regime and stream temperatures across streams of the western United States. 2. We used long‐term flow records from 543 minimally impacted gauged streams to quantify 12 streamflow variables thought to be ecologically important. A principal component analysis reduced the dimensionality of the data from 12 variables to seven principal component (PC) factors that characterised statistically independent aspects of streamflow: (1) zero flow days, (2) flow magnitude, (3) predictability, (4) flood duration, (5) seasonality, (6) flashiness and (7) base flow. K‐means clustering was used to group streams into 4–8 hydrologically different classes based on these seven factors. 3. We also used empirical models to estimate mean annual, mean summer and mean winter stream temperatures at each stream site. We then used invertebrate data from 63 sites to develop Random Forest models to predict taxa richness and taxon‐specific probabilities of capture at a site from flow and temperature. We used the predicted taxon‐specific probabilities of capture to estimate how well predicted assemblages matched observed assemblages as measured by RIVPACS‐type observed/expected (O/E) indices and Bray–Curtis dissimilarities. 4. Macroinvertebrate taxon richness was only weakly associated with streamflow and temperature variables, implying that other factors more strongly influenced taxa richness. 5. In contrast to taxa richness, taxa composition was strongly associated with streamflow and temperature. Predictions of taxa composition (O/E and Bray–Curtis) were most precise when both temperature and streamflow PC factors were used, although predictions based on either streamflow PC factors or temperature alone were also better than null model predictions. Of the seven aspects of the streamflow regime we examined, variation in baseflow conditions appeared to be most directly associated with invertebrate biotic composition. We were also able to predict assemblage composition from the conditional probabilities of hydrological class membership nearly as well as Random Forests models that were based directly on continuous PC factors. 6. Our results have direct implication for understanding the relative importance of streamflow and temperature in regulating the structure and composition of stream assemblages and for improving the accuracy and precision of biological assessments.  相似文献   

18.
1. We quantified spatial and temporal variability in benthic macroinvertebrate species richness, diversity and abundance in six unpolluted streams in monsoonal Hong Kong at different scales using a nested sampling design. The spatial scales were regions, stream sites and stream sections within sites; temporal scales were years (1997–99), seasons (dry versus wet seasons) and days within seasons. 2. Spatiotemporal variability in total abundance and species richness was greater during the wet season, especially at small scales, and tended to obscure site‐ and region‐scale differences, which were more conspicuous during the dry season. Total abundance and richness were greater in the dry season, reflecting the effects of spate‐induced disturbance during the wet season. Species diversity showed little variation at the seasonal scale, but variability at the site scale was apparent during both seasons. 3. Despite marked variations in monsoonal rainfall, inter‐year differences in macroinvertebrate richness and abundance at the site scale during the wet season were minor. Inter‐year differences were only evident during the dry season when streams were at base flow and biotic interactions may structure assemblages. 4. Small‐scale patchiness within riffles was the dominant spatial scale of variation in macroinvertebrate richness, total abundance and densities of common species, although site or region was important for some species. The proportion of total variance contributed by small‐scale spatial variability increased during the dry season, whereas temporal variability associated with days was greater during the wet season. 5. The observed patterns of spatiotemporal variation have implications for detection of environmental change or biomonitoring using macroinvertebrate indicators in streams in monsoonal regions. Sampling should be confined to the dry season or, in cases where more resources are available, make use of data from both dry and wet seasons. Sampling in more than one dry season is required to avoid the potentially confounding effects of inter‐year variation, although variability at that scale was relatively small.  相似文献   

19.
王强  袁兴中  刘红 《生态学报》2012,32(21):6726-6736
浅滩和深潭是山地河流中常见的河流生境结构。2011年7月,在重庆开县东河上游双河口-杉木桥河段,选择21个浅滩和深潭,调查大型底栖动物,研究影响不同生境中底栖动物组成、分布和多样性的生态机理。结果表明:调查河段浅滩和深潭中大型底栖动物分别为31种和24种,密度分别为450.62 个/m2和86.24 个/m2,生物量分别为2.88 g/m2和0.55 g/m2。浅滩有指示种11种,即纹石蛾(Hydropsyche sp.)、假蜉(Iron sp.)、假二翅蜉(Pseudocloeon sp.)、舌石蛾(Glossosoma sp.)、高翔蜉(Epeorus sp.1)、背刺蜉(Notacanthurus sp.)、Heterocloeon sp、锯形蜉(Serratella sp.)、朝大蚊(Antocha sp.)、等蜉(Isonychia sp.)、溪颏蜉(Rhithrogena sp.)。深潭指示种仅蜉蝣(Ephemera sp.)和黑大蚊(Hexatoma sp.)两种。刮食者为两类生境的优势功能摄食类群。浅滩中滤食者和刮食者比例显著高于深潭,而收集者和捕食者显著低于深潭。两类生境中大型底栖动物群落结构差异显著。浅滩中大型底栖动物的密度、生物量、丰富度指数、Shannon-Wiener 指数、改进的Shannon-Wiener指数均明显高于深潭。受地貌形态、水力特征和冲淤变化规律影响的生境稳定性和异质性差异是导致大型底栖动物群落差异的主要原因。  相似文献   

20.
Assessment of river condition at a large spatial scale using predictive models   总被引:12,自引:0,他引:12  
1. RIVPACS-type predictive models were developed at a relatively large spatial scale for the Australian state called New South Wales (NSW, 801 428 km2). Aquatic macroinvertebrate samples and physical and chemical data were collected from 250 reference sites (little affected by human activities) and 23 test sites (with known human impacts) throughout NSW in autumn and spring 1995 and identified mostly to family level. Reference sites were grouped based on their macroinvertebrate data using classification (UPGMA) and ordination techniques. Relationships between macroinvertebrate and environmental data were established using principal axis correlations and stepwise multiple discriminant function analysis. models for predicting invertebrate assemblages were developed separately for edge and riffle habitats for autumn and spring data sets and for combined autumn and spring data sets. 2. Sites in the lowland sections of the western flowing rivers were characterized by low taxonomic richness and were distinct from the sites in the eastern part of the state. Sites on the western slopes of the Great Dividing Range in southern and northern NSW mostly fell into separate groups. In eastern NSW, site groups did not represent a north, central and south division. Sites on highland streams, coastal fringe streams and large rivers mostly formed distinct groups, but most of the sites on east-flowing rivers fell into large site groups that did not have clear geographic boundaries. 3. Environmental variables that were strongly correlated with ordinations of macroinvertebrate presence/absence at sites were water temperature, altitude, longitude and maximum distance from source. The predictor variables determined by DFA for the six models created included alkalinity, altitude, location (longitude and/or latitude), stream size and substratum composition. These are generally in common with the variables determined for other large geographic areas in Australia and the United Kingdom. 4. Model outputs from reference sites suggest that, among the six models, the riffle model combining autumn and spring is likely to give the most reliable predictions. The combined edge model also performed well but refinements are needed for single season models to provide reliable outputs. 5. Combined season models both for riffles and for edges detected biological impairment at all but one of the test sites. Single season riffle models also detected impairment while single season edge models characterized sites as unimpaired despite other models’ indications of impaired fauna. Riffle models may be more sensitive than edge models but the sampling of riffles is often limited by flow. Edge habitats are available at most sites but there may be few riffles in floodplain rivers. Available resources, desired model sensitivity, and river type should be considered jointly to determine the most useful habitat to sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号